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Summary. In this paper we present a formalization in the Mizar system
[3],[1] of the partial correctness of the algorithm:

i := val.1
j := val.2
n := val.3
s := val.4
while (i <> n)
i := i + j
s := s * i

return s

computing the factorial of given natural number n, where variables i, n, s are
located as values of a V-valued Function, loc, as: loc/.1 = i, loc/.3 = n and
loc/.4 = s, and the constant 1 is located in the location loc/.2 = j (set V
represents simple names of considered nominative data [16]).

This work continues a formal verification of algorithms written in terms of
simple-named complex-valued nominative data [6],[8],[14],[10],[11],[12]. The va-
lidity of the algorithm is presented in terms of semantic Floyd-Hoare triples
over such data [9]. Proofs of the correctness are based on an inference system
for an extended Floyd-Hoare logic [2],[4] with partial pre- and post-conditions
[13],[15],[7],[5].
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Let D be a set and f1, f2, f3 be binominative functions of D. The functor
PP-composition(f1, f2, f3) yielding a binominative function of D is defined by
the term
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(Def. 1) f1 • f2 • f3.
Let f1, f2, f3, f4 be binominative functions ofD. The functor PP-composition
(f1, f2, f3, f4) yielding a binominative function of D is defined by the term

(Def. 2) PP-composition(f1, f2, f3) • f4.
From now on D denotes a non empty set, f1, f2, f3, f4 denote binominative

functions of D, and p, q, r, t, w denote partial predicates of D.
Now we state the proposition:

(1) Unconditional composition rule for 3 programs:
Suppose 〈p, f1, q〉 is an SFHT of D and 〈q, f2, r〉 is an SFHT of D and 〈r,
f3, w〉 is an SFHT of D and 〈∼ q, f2, r〉 is an SFHT of D and 〈∼ r, f3, w〉 is
an SFHT of D. Then 〈p,PP-composition(f1, f2, f3), w〉 is an SFHT of D.

(2) Unconditional composition rule for 4 programs:
Suppose 〈p, f1, q〉 is an SFHT of D and 〈q, f2, r〉 is an SFHT of D and
〈r, f3, w〉 is an SFHT of D and 〈w, f4, t〉 is an SFHT of D and 〈∼ q, f2,
r〉 is an SFHT of D and 〈∼ r, f3, w〉 is an SFHT of D and 〈∼ w, f4, t〉 is
an SFHT ofD. Then 〈p,PP-composition(f1, f2, f3, f4), t〉 is an SFHT ofD.

In the sequel d, v, v1 denote objects, V , A denote sets, z denotes an element
of V , d1 denotes a non-atomic nominative data of V and A, f denotes a bino-
minative function over simple-named complex-valued nominative data of V and
A, and T denotes a nominative data with simple names from V and complex
values from A.

Now we state the proposition:

(3) If V is without nonatomic nominative data w.r.t. A and v ∈ V and
v 6= v1 and v1 ∈ dom d1, then (d1∇vaT )(v1) = d1(v1).

Let x, y be objects. Assume x is a complex number and y is a complex
number. The functors: x+ y and x ∗ y yielding complex numbers are defined by
conditions

(Def. 3) there exist complex numbers x1, y1 such that x1 = x and y1 = y and
x+ y = x1 + y1,

(Def. 4) there exist complex numbers x1, y1 such that x1 = x and y1 = y and
x ∗ y = x1 · y1,

respectively. Let us consider A. Assume A is complex containing. The functors:
addition(A) and multiplication(A) yielding functions from A × A into A are
defined by conditions

(Def. 5) for every objects x, y such that x, y ∈ A holds addition(A)(x, y) = x+y,

(Def. 6) for every objects x, y such that x, y ∈ A holds multiplication(A)(x, y) =
x ∗ y,

respectively. Let us consider V . Let x, y be elements of V . The functors: addition
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(A, x, y) and multiplication(A, x, y) yielding binominative functions over sim-
ple-named complex-valued nominative date of V and A are defined by terms

(Def. 7) lift-binary-op(addition(A), x, y),

(Def. 8) lift-binary-op(multiplication(A), x, y),

respectively.
Let us consider elements i, j of V and complex numbers x, y. Now we state

the propositions:

(4) SupposeA is complex containing and i, j ∈ dom d1 and d1 ∈ dom(addition
(A, i, j)). Then if x = d1(i) and y = d1(j), then (addition(A, i, j))(d1) =
x+ y.

(5) Suppose A is complex containing and i, j ∈ dom d1 and
d1 ∈ dom(multiplication(A, i, j)). Then if x = d1(i) and y = d1(j), then
(multiplication(A, i, j))(d1) = x · y.

In the sequel loc denotes a V-valued function and val denotes a function.
Let us consider V , A, and loc. The functor factorial-loop-body(A, loc) yiel-

ding a binominative function over simple-named complex-valued nominative da-
ta of V and A is defined by the term

(Def. 9) Asg(loc/1)(addition(A, loc/1, loc/2)) • (Asg(loc/4)(multiplication(A, loc/4,
loc/1))).

The functor factorial-main-loop(A, loc) yielding a binominative function over
simple-named complex-valued nominative data of V and A is defined by the term

(Def. 10) WH(¬Equality(A, loc/1, loc/3), factorial-loop-body(A, loc)).

Let us consider val. The functor factorial-var-init(A, loc, val) yielding a bi-
nominative function over simple-named complex-valued nominative data of V
and A is defined by the term

(Def. 11) PP-composition(Asg(loc/1)(val(1)⇒a),Asg(loc/2)(val(2)⇒a),
Asg(loc/3)(val(3)⇒a),Asg(loc/4)(val(4)⇒a)).

The functor factorial-main-part(A, loc, val) yielding a binominative function
over simple-named complex-valued nominative data of V and A is defined by
the term

(Def. 12) factorial-var-init(A, loc, val) • (factorial-main-loop(A, loc)).

Let us consider z. The functor factorial-program(A, loc, val, z) yielding a bi-
nominative function over simple-named complex-valued nominative data of V
and A is defined by the term

(Def. 13) factorial-main-part(A, loc, val) • (Asgz((loc/4)⇒a)).
In the sequel n0 denotes a natural number.
Let us consider V , A, val, n0, and d. We say that n0 and d constitute a valid

input for the factorial w.r.t. V , A and val if and only if
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(Def. 14) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and {val(1), val(2), val(3), val(4)} ⊆ dom d1 and d1(val(1)) = 0
and d1(val(2)) = 1 and d1(val(3)) = n0 and d1(val(4)) = 1.

The functor valid-factorial-input(V,A, val, n0) yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by

(Def. 15) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if n0 and d constitute a valid input for the factorial w.r.t. V , A and val,
then it(d) = true and if n0 and d do not constitute a valid input for the
factorial w.r.t. V , A and val, then it(d) = false.

Note that valid-factorial-input(V,A, val, n0) is total.
Let us consider z and d. We say that n0 and d constitute a valid output for

the factorial w.r.t. A and z if and only if

(Def. 16) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and z ∈ dom d1 and d1(z) = n0!.

The functor valid-factorial-output(A, z, n0) yielding a partial predicate over
simple-named complex-valued nominative data of V and A is defined by

(Def. 17) dom it = {d, where d is a nominative data with simple names from V
and complex values from A : d ∈ dom(z ⇒a)} and for every object d such
that d ∈ dom it holds if n0 and d constitute a valid output for the factorial
w.r.t. A and z, then it(d) = true and if n0 and d do not constitute a valid
output for the factorial w.r.t. A and z, then it(d) = false.

Let us consider loc and d. We say that n0 and d constitute a valid invariant
for the factorial w.r.t. A and loc if and only if

(Def. 18) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and {loc/1, loc/2, loc/3, loc/4} ⊆ dom d1 and d1(loc/2) = 1 and
d1(loc/3) = n0 and there exist natural numbers I, S such that I = d1(loc/1)
and S = d1(loc/4) and S = I!.

The functor factorial-inv(A, loc, n0) yielding a partial predicate over simple-
named complex-valued nominative data of V and A is defined by

(Def. 19) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if n0 and d constitute a valid invariant for the factorial w.r.t. A and loc,
then it(d) = true and if n0 and d do not constitute a valid invariant for
the factorial w.r.t. A and loc, then it(d) = false.

One can check that factorial-inv(A, loc, n0) is total.
Let us consider val. We say that loc and val are compatible w.r.t. 4 locations

if and only if

(Def. 20) val(4) 6= loc/3 and val(4) 6= loc/2 and val(4) 6= loc/1 and val(3) 6= loc/2
and val(3) 6= loc/1 and val(2) 6= loc/1.
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Now we state the propositions:

(6) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and loc/1, loc/2, loc/3, loc/4 are mutually different and loc and val
are compatible w.r.t. 4 locations. Then 〈valid-factorial-input(V,A, val, n0),
factorial-var-init(A, loc, val), factorial-inv(A, loc, n0)〉 is an SFHT of NDSC
(V,A).
Proof: Set i = loc/1. Set j = loc/2. Set n = loc/3. Set s = loc/4. Set
i1 = val(1). Set j1 = val(2). Set n1 = val(3). Set s1 = val(4). Set I =
valid-factorial-input(V,A, val, n0). Set i2 = factorial-inv(A, loc, n0). Set
D1 = i1 ⇒a. Set D2 = j1 ⇒a. Set D3 = n1 ⇒a. Set D4 = s1 ⇒a. Set
S1 = SP(i2, D4, s). Set R1 = SP(S1, D3, n). Set Q1 = SP(R1, D2, j). Set
P1 = SP(Q1, D1, i). I |= P1. �

(7) Suppose V is not empty and A is complex containing and V is without
nonatomic nominative data w.r.t. A and loc/1, loc/2, loc/3, loc/4 are mu-
tually different. Then 〈factorial-inv(A, loc, n0), factorial-loop-body(A, loc),
factorial-inv(A, loc, n0)〉 is an SFHT of NDSC(V,A). The theorem is a con-
sequence of (3), (4), and (5).

(8) 〈∼ factorial-inv(A, loc, n0), factorial-loop-body(A, loc), factorial-inv(A,
loc, n0)〉 is an SFHT of NDSC(V,A).

(9) Suppose V is not empty and A is complex containing and V is without
nonatomic nominative data w.r.t. A and loc/1, loc/2, loc/3, loc/4 are mu-
tually different. Then 〈factorial-inv(A, loc, n0), factorial-main-loop(A, loc),
Equality(A, loc/1, loc/3)∧factorial-inv(A, loc, n0)〉 is an SFHT of NDSC(V,A).
The theorem is a consequence of (7) and (8).

(10) Suppose V is not empty and A is complex containing and V is without
nonatomic nominative data w.r.t. A and loc/1, loc/2, loc/3, loc/4 are mu-
tually different and loc and val are compatible w.r.t. 4 locations. Then
〈valid-factorial-input(V,A, val, n0), factorial-main-part(A, loc, val),
Equality(A, loc/1, loc/3)∧factorial-inv(A, loc, n0)〉 is an SFHT of NDSC(V,A).
The theorem is a consequence of (6) and (9).

(11) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and for every T , T is a value on loc/1 and T is a value on loc/3.
Then Equality(A, loc/1, loc/3) ∧ factorial-inv(A, loc, n0) |=
SP(valid-factorial-output(A, z, n0), (loc/4)⇒a, z).
Proof: Set i = loc/1. Set j = loc/2. Set n = loc/3. Set s = loc/4. Set
D4 = s⇒a. Consider d1 being a non-atomic nominative data of V and A
such that d = d1 and {i, j, n, s} ⊆ dom d1 and d1(j) = 1 and d1(n) = n0
and there exist natural numbers I, S such that I = d1(i) and S = d1(s) and
S = I!. Reconsider d2 = d as a nominative data with simple names from
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V and complex values from A. Set L = d2∇zaD4(d2). n0 and L constitute
a valid output for the factorial w.r.t. A and z. �

(12) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and for every T , T is a value on loc/1 and T is a value on loc/3.
Then 〈Equality(A, loc/1, loc/3)∧factorial-inv(A, loc, n0),Asgz((loc/4)⇒a),
valid-factorial-output(A, z, n0)〉 is an SFHT of NDSC(V,A). The theorem
is a consequence of (11).

(13) Suppose for every T , T is a value on loc/1 and T is a value on loc/3. Then
〈∼ (Equality(A, loc/1, loc/3) ∧ factorial-inv(A, loc, n0)),Asgz((loc/4) ⇒a),
valid-factorial-output(A, z, n0)〉 is an SFHT of NDSC(V,A).

(14) Partial correctness of a FACTORIAL algorithm:
Suppose V is not empty and A is complex containing and V is without no-
natomic nominative data w.r.t. A and loc/1, loc/2, loc/3, loc/4 are mutually
different and loc and val are compatible w.r.t. 4 locations and for every T ,
T is a value on loc/1 and T is a value on loc/3. Then 〈valid-factorial-input(V,
A, val, n0), factorial-program(A, loc, val, z), valid-factorial-output(A, z, n0)〉
is an SFHT of NDSC(V,A). The theorem is a consequence of (10), (12),
and (13).
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