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Summary. In this article we formalize in Mizar [1], [2] the maximum
number of steps taken by some number theoretical algorithms, “right–to–left
binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For
any natural numbers a, b, n, “right–to–left binary algorithm” can calculate the
natural number, see (Def. 2), AlgoBPow(a, n,m) := ab mod n and for any integers
a, b, “Euclidean algorithm” can calculate the non negative integer gcd(a, b). We
have not formalized computational complexity of algorithms yet, though we had
already formalize the “Euclidean algorithm” in [7].

For “right-to-left binary algorithm”, we formalize the theorem, which says
that the required number of the modular squares and modular products in this al-
gorithms are 1+blog2 nc and for “Euclidean algorithm”, we formalize the Lamé’s
theorem [6], which says the required number of the divisions in this algorithm is
at most 5 log10min(|a|, |b|). Our aim is to support the implementation of number
theoretic tools and evaluating computational complexities of algorithms to prove
the security of cryptographic systems.
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1. Right–to–Left Binary Algorithm for Modular Exponentiation

Let F be an element of Boolean∗ and x be an object. Let us note that the
functor F (x) yields a natural number. Let n, m be natural numbers. Let us
note that the functor nm yields a natural number. Let a, b be objects and c be
a natural number. The functor BinBranch(a, b, c) is defined by the term

(Def. 1)

{
a, if c = 0,
b, otherwise.

Let a, b, c be natural numbers. Let us note that the functor BinBranch(a, b, c)
yields a natural number. Let a, n,m be elements of N. The functor AlgoBPow(a, n,
m) yielding an element of N is defined by

(Def. 2) there exist sequences A, B of N such that it = B(LenBinSeq(n)) and
A(0) = a mod m and B(0) = 1 and for every natural number i, A(i +
1) = A(i) · A(i) mod m and B(i+ 1) = BinBranch(B(i), B(i) · A(i) mod
m, (Nat2BinLen)(n)(i+ 1)).

Now we state the propositions:

(1) Let us consider natural numbers a, m, i, and a sequence A of N. Suppose
A(0) = a mod m and for every natural number j, A(j + 1) = A(j) ·
A(j) mod m. Then A(i) = a2

i
mod m.

Proof: Define P[natural number] ≡ A($1) = a2
$1 mod m. For every

natural number i such that P[i] holds P[i + 1] by [8, (11)]. For every
natural number i, P[i]. �

(2) LenBinSeq(0) = 1.

(3) LenBinSeq(1) = 1.

(4) Let us consider a natural number x. If 2 ¬ x, then 1 < LenBinSeq(x).

(5) Let us consider a natural number n. Suppose 0 < n.
Then LenBinSeq(n) = blog2 nc+ 1.

(6) (Nat2BinLen)(0) = 〈0〉.
(7) (Nat2BinLen)(1) = 〈1〉. The theorem is a consequence of (3).

(8) Let us consider an element n of N. If 0 < n,
then (Nat2BinLen)(n)(LenBinSeq(n)) = 1.
Proof: Reconsider x = (Nat2BinLen)(n) as an element of Boolean∗.
x /∈ {y, where y is an element of Boolean∗ : y(len y) = 1}. �

(9) (Nat2BinLen)(2) = 〈0, 1〉. The theorem is a consequence of (5).

(10) (Nat2BinLen)(3) = 〈1, 1〉. The theorem is a consequence of (5).

(11) (Nat2BinLen)(4) = 〈0, 0, 1〉. The theorem is a consequence of (5).
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(12) Let us consider a natural number n. Then (Nat2BinLen)(2n) = 〈0, . . . , 0︸ ︷︷ ︸
n

〉a

〈1〉. The theorem is a consequence of (5).

(13) Let us consider an element m of N. Then AlgoBPow(0, 0,m) = 1. The
theorem is a consequence of (6).

(14) Let us consider elements n, m of N. If 0 < n, then AlgoBPow(0, n,m) = 0.
The theorem is a consequence of (1) and (8).

Let us consider elements a, n, m of N. Now we state the propositions:

(15) If 0 < n and m ¬ 1, then AlgoBPow(a, n,m) = 0. The theorem is a con-
sequence of (8).

(16) If a 6= 0 and 1 < m, then AlgoBPow(a, n,m) = an mod m.
Proof: Consider A, B being sequences of N such that AlgoBPow(a, n,m) =
B(LenBinSeq(n)) and A(0) = a mod m and B(0) = 1 and for eve-
ry natural number i, A(i + 1) = A(i) · A(i) mod m and B(i + 1) =
BinBranch(B(i), B(i) ·A(i) mod m, (Nat2BinLen)(n)(i+ 1)).

Define P[natural number] ≡ if $1 < LenBinSeq(n), then there exists
a ($1 + 1)-tuple S of Boolean such that S = (Nat2BinLen)(n)�($1 + 1)
and B($1 + 1) = aAbsVal(S) mod m. P[0] by [3, (5)]. For every natural
number i such that P[i] holds P[i+ 1]. For every natural number i, P[i].
Reconsider f = LenBinSeq(n)−1 as a natural number. Consider F1 being
an (f + 1)-tuple of Boolean such that F1 = (Nat2BinLen)(n)�(f + 1) and
B(f + 1) = aAbsVal(F1) mod m. �

2. Lamé’s Theorem

Now we state the propositions:

(17) Fib(5) = 5.

(18) 1 < τ .

(19) τ < 2.

(20) logτ 10 < 5. The theorem is a consequence of (17) and (18).

(21) Let us consider a natural number n. If 3 ¬ n, then τn−2 < Fib(n).
Proof: Define P[natural number] ≡ τ$1−2 < Fib($1). For every natural
number k such that k ­ 3 holds if for every natural number i such that
i ­ 3 holds if i < k, then P[i], then P[k] by [4, (22)], (19). For every
natural number k such that k ­ 3 holds P[k]. �

(22) Let us consider elements a, b of Z. Suppose |a| > |b| and b > 1. Then
there exist sequences A, B of N and there exists a sequence C of real
numbers and there exists an element n of N such that A(0) = |a| and
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B(0) = |b| and for every natural number i, A(i+1) = B(i) and B(i+1) =
A(i) mod B(i) and n = min∗{i, where i is a natural number : B(i) = 0}
and gcd(a, b) = A(n) and Fib(n + 1) ¬ |b| and n ¬ 5 · dlog10 |b|e and
n ¬ C(|b|) and C is polynomially bounded.
Proof: Consider A, B being sequences of N such that A(0) = |a| and
B(0) = |b| and for every natural number i, A(i + 1) = B(i) and B(i +
1) = A(i) mod B(i) and AlgoGCD(a, b) = A(min∗{i, where i is a natural
number : B(i) = 0}). Consider n being an element of N such that n =
min∗{i, where i is a natural number : B(i) = 0} and AlgoGCD(a, b) =
A(n). For every elements a, b of Z and for every sequences A, B of N
such that A(0) = |a| and B(0) = |b| and for every natural number i,
A(i + 1) = B(i) and B(i + 1) = A(i) mod B(i) holds {i, where i is
a natural number : B(i) = 0} is a non empty subset of N. B(n − 1) 6= 0.
For every natural number i such that i < n holds B(i) > 0. For every
natural number i such that i < n holds B(i + 1) ¬ B(i) − 1. Define
P[natural number] ≡ if $1 ¬ n, then B($1) ¬ B(0)− $1.

For every natural number i such that P[i] holds P[i + 1]. For every
natural number i, P[i]. n ¬ B(0). For every natural number j such that
j < n holds A(j + 1) < A(j). If 1 < n, then Fib(3) ¬ A(n− 1). For every
natural number i such that 0 < i < n holds A(i + 2) + A(i + 1) ¬ A(i).
For every natural number i such that i < n holds Fib(i + 2) ¬ A(n − i).
n ¬ 5 · dlog10 |b|e. �
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