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Cross-Ratio in Real Vector Space
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Summary. Using Mizar [1], in the context of a real vector space, we in-
troduce the concept of affine ratio of three aligned points (see [5]).

It is also equivalent to the notion of “Mesure algébrique”1, to the opposite
of the notion of Teilverhältnis2 or to the opposite of the ordered length-ratio [9].

In the second part, we introduce the classic notion of “cross-ratio” of 4 points
aligned in a real vector space.

Finally, we show that if the real vector space is the real line, the notion
corresponds to the classical notion3 [9]:

The cross-ratio of a quadruple of distinct points on the real line with
coordinates x1, x2, x3, x4 is given by:

(x1, x2;x3, x4) =
x3 − x1
x3 − x2

.
x4 − x2
x4 − x1

In the Mizar Mathematical Library, the vector spaces were first defined by
Kusak, Leończuk and Muzalewski in the article [6], while the actual real vector
space was defined by Trybulec [10] and the complex vector space was defined by
Endou [4]. Nakasho and Shidama have developed a solution to explore the notions
introduced by different authors4 [7]. The definitions can be directly linked in the
HTMLized version of the Mizar library5.

The study of the cross-ratio will continue within the framework of the Klein-
Beltrami model [2], [3]. For a generalized cross-ratio, see Papadopoulos [8].
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1. Preliminaries

Let a, b, c, d be objects. Observe that 〈a, b, c, d〉(1) reduces to a and 〈a, b, c,
d〉(2) reduces to b and 〈a, b, c, d〉(3) reduces to c and 〈a, b, c, d〉(4) reduces to d.

Now we state the proposition:

(1) Let us consider objects a, b, c, d, a′, b′, c′, d′. Suppose 〈a, b, c, d〉 = 〈a′,
b′, c′, d′〉. Then

(i) a = a′, and

(ii) b = b′, and

(iii) c = c′, and

(iv) d = d′.

Let r be a real number. We say that r is unit if and only if

(Def. 1) r = 1.

Let us observe that there exists a non zero real number which is non unit.
Let r be a non unit, non zero real number. The functor op1(r) yielding a non

unit, non zero real number is defined by the term

(Def. 2) 1
r .

One can check that the functor is involutive.
The functor op2(r) yielding a non unit, non zero real number is defined by

the term

(Def. 3) 1− r.
Let us observe that the functor is involutive.

From now on a, b, r denote non unit, non zero real numbers.
Now we state the propositions:

(2) (i) op2(op1(r)) = r−1
r , and

(ii) op1(op2(r)) = 1
1−r , and

(iii) op1(op2(op1(r))) = r
r−1 , and

(iv) op2(op1(op2(r))) = r
r−1 .

(3) (i) op2(op1(op2(op1(r)))) = op1(op2(r)), and

(ii) op1(op2(op1(op2(r)))) = op2(op1(r)).
The theorem is a consequence of (2).

(4) op1(a)
op1(b) = b

a .

In the sequel X denotes a non empty set and x denotes a 4-tuple of X.
Now we state the propositions:

(5) X4 = the set of all 〈d1, d2, d3, d4〉 where d1, d2, d3, d4 are elements of X.
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(6) Let us consider objects a, b, c, d. Suppose (a = x(1) or a = x(2) or
a = x(3) or a = x(4)) and (b = x(1) or b = x(2) or b = x(3) or b = x(4))
and (c = x(1) or c = x(2) or c = x(3) or c = x(4)) and (d = x(1) or
d = x(2) or d = x(3) or d = x(4)). Then 〈a, b, c, d〉 is a 4-tuple of X. The
theorem is a consequence of (5).

Let X be a non empty set and x be a 4-tuple of X. The functors: σ1342(x),
σ1423(x), σ2143(x), σ2314(x), and σ2341(x) yielding 4-tuples of X are defined by
terms

(Def. 4) 〈x(1), x(3), x(4), x(2)〉,
(Def. 5) 〈x(1), x(4), x(2), x(3)〉,
(Def. 6) 〈x(2), x(1), x(4), x(3)〉,
(Def. 7) 〈x(2), x(3), x(1), x(4)〉,
(Def. 8) 〈x(2), x(3), x(4), x(1)〉,

respectively. The functors: σ2413(x), σ2431(x), σ3124(x), σ3142(x), and σ3241(x)
yielding 4-tuples of X are defined by terms

(Def. 9) 〈x(2), x(4), x(1), x(3)〉,
(Def. 10) 〈x(2), x(4), x(3), x(1)〉,
(Def. 11) 〈x(3), x(1), x(2), x(4)〉,
(Def. 12) 〈x(3), x(1), x(4), x(2)〉,
(Def. 13) 〈x(3), x(2), x(4), x(1)〉,

respectively. The functors: σ3412(x), σ3421(x), σ4123(x), σ4132(x), and σ4213(x)
yielding 4-tuples of X are defined by terms

(Def. 14) 〈x(3), x(4), x(1), x(2)〉,
(Def. 15) 〈x(3), x(4), x(2), x(1)〉,
(Def. 16) 〈x(4), x(1), x(2), x(3)〉,
(Def. 17) 〈x(4), x(1), x(3), x(2)〉,
(Def. 18) 〈x(4), x(2), x(1), x(3)〉,

respectively. The functors: σ4312(x) and σ4321(x) yielding 4-tuples of X are de-
fined by terms

(Def. 19) 〈x(4), x(3), x(1), x(2)〉,
(Def. 20) 〈x(4), x(3), x(2), x(1)〉,

respectively. The functors: σid(x) and σ12(x) yielding 4-tuples of X are defined
by terms

(Def. 21) 〈x(1), x(2), x(3), x(4)〉,
(Def. 22) 〈x(2), x(1), x(3), x(4)〉,
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respectively. Observe that the functor is involutive.
The functors: σ13(x) and σ14(x) yielding 4-tuples of X are defined by terms

(Def. 23) 〈x(3), x(2), x(1), x(4)〉,
(Def. 24) 〈x(4), x(2), x(3), x(1)〉,

respectively. One can check that the functor is involutive.
The functor σ23(x) yielding a 4-tuple of X is defined by the term

(Def. 25) 〈x(1), x(3), x(2), x(4)〉.
Note that the functor is involutive.

The functors: σ24(x) and σ34(x) yielding 4-tuples of X are defined by terms

(Def. 26) 〈x(1), x(4), x(3), x(2)〉,
(Def. 27) 〈x(1), x(2), x(4), x(3)〉,

respectively. Let us observe that the functor is involutive.
Note that σid(x) reduces to x.
We introduce the notation σ1234(x) as a synonym of σid(x) and σ2134(x)

as a synonym of σ12(x) and σ3214(x) as a synonym of σ13(x). And σ4231(x) as
a synonym of σ14(x) and σ1324(x) as a synonym of σ23(x) and σ1432(x) as a
synonym of σ24(x) and σ1243(x) as a synonym of σ34(x).

Now we state the propositions:

(7) (i) σ12(σ13(x)) = σ13(σ23(x)), and

(ii) σ12(σ14(x)) = σ14(σ24(x)), and

(iii) σ12(σ23(x)) = σ13(σ12(x)), and

(iv) σ12(σ24(x)) = σ14(σ12(x)), and

(v) σ12(σ34(x)) = σ34(σ12(x)), and

(vi) σ13(σ12(x)) = σ23(σ13(x)), and

(vii) σ13(σ14(x)) = σ34(σ13(x)), and

(viii) σ13(σ23(x)) = σ12(σ13(x)), and

(ix) σ13(σ24(x)) = σ13(σ24(x)), and

(x) σ13(σ34(x)) = σ14(σ13(x)), and

(xi) σ23(σ12(x)) = σ13(σ23(x)), and

(xii) σ23(σ13(x)) = σ12(σ23(x)), and

(xiii) σ23(σ14(x)) = σ14(σ23(x)), and

(xiv) σ23(σ24(x)) = σ34(σ23(x)), and

(xv) σ23(σ34(x)) = σ24(σ23(x)), and

(xvi) σ24(σ12(x)) = σ14(σ24(x)), and

(xvii) σ24(σ13(x)) = σ13(σ24(x)), and
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(xviii) σ24(σ14(x)) = σ12(σ24(x)), and

(xix) σ24(σ23(x)) = σ34(σ24(x)), and

(xx) σ24(σ34(x)) = σ23(σ24(x)), and

(xxi) σ34(σ12(x)) = σ12(σ34(x)), and

(xxii) σ34(σ13(x)) = σ14(σ34(x)), and

(xxiii) σ34(σ14(x)) = σ13(σ34(x)), and

(xxiv) σ34(σ23(x)) = σ24(σ34(x)), and

(xxv) σ34(σ24(x)) = σ23(σ34(x)).

(8) (i) σ1342(x) = σ34(σ23(x)), and

(ii) σ1423(x) = σ34(σ24(x)), and

(iii) σ2143(x) = σ12(σ34(x)), and

(iv) σ2314(x) = σ23(σ12(x)), and

(v) σ2341(x) = σ34(σ23(σ12(x))), and

(vi) σ2413(x) = σ34(σ24(σ12(x))), and

(vii) σ2431(x) = σ24(σ12(x)), and

(viii) σ3124(x) = σ23(σ13(x)), and

(ix) σ3142(x) = σ24(σ34(σ13(x))), and

(x) σ3241(x) = σ34(σ13(x)), and

(xi) σ3412(x) = σ24(σ13(x)), and

(xii) σ3421(x) = σ24(σ23(σ13(x))), and

(xiii) σ4123(x) = σ23(σ34(σ14(x))), and

(xiv) σ4132(x) = σ24(σ14(x)), and

(xv) σ4213(x) = σ34(σ14(x)), and

(xvi) σ4312(x) = σ23(σ24(σ14(x))), and

(xvii) σ4321(x) = σ23(σ14(x)).

(9) (i) σ13(σ23(σ13(x))) = σ12(x), and

(ii) σ12(σ34(σ23(σ13(x)))) = σ34(σ23(x)), and

(iii) σ23(σ24(σ14(σ23(σ13(x))))) = σ14(x).

(10) (i) σ23(σ14(σ34(x))) = σ24(σ23(σ13(x))), and

(ii) σ34(σ24(σ12(x))) = σ24(σ13(σ23(x))), and

(iii) σ24(σ34(σ13(x))) = σ12(σ34(σ23(x))).



52 roland coghetto

2. Affine Ratio

In the sequel V denotes a real linear space and A, B, C, P , Q, R, S denote
elements of V .

Now we state the proposition:

(11) P , Q and Q are collinear.

Let V be a real linear space and A, B, C be elements of V . Assume A 6= C

and A, B and C are collinear. The functor AffineRatio(A,B,C) yielding a real
number is defined by

(Def. 28) B −A = it · (C −A).

Now we state the propositions:

(12) IfA 6= C andA,B and C are collinear, thenA−B = (AffineRatio(A,B,C))·
(A− C).

(13) If A 6= C and A, B and C are collinear, then AffineRatio(A,B,C) = 0
iff A = B.

(14) If A 6= C and A, B and C are collinear, then AffineRatio(A,B,C) = 1
iff B = C.

(15) Let us consider real numbers a, b. If P 6= Q and a · (P −Q) = b · (P −Q),
then a = b.

(16) If P ,Q andR are collinear and P 6= R and P 6= Q, then AffineRatio(P,R,
Q) = 1

AffineRatio(P,Q,R) . The theorem is a consequence of (15).

(17) Suppose P , Q and R are collinear and P 6= R and Q 6= R and P 6= Q.
Then AffineRatio(Q,P,R) = AffineRatio(P,Q,R)

AffineRatio(P,Q,R)−1 . The theorem is a conse-
quence of (13) and (14).

(18) If P , Q and R are collinear and P 6= R, then AffineRatio(R,Q, P ) =
1−AffineRatio(P,Q,R). The theorem is a consequence of (15).

(19) If P ,Q andR are collinear and P 6= R and P 6= Q, then AffineRatio(Q,R,
P ) = AffineRatio(P,Q,R)−1

AffineRatio(P,Q,R) . The theorem is a consequence of (13) and (15).

(20) If P ,Q andR are collinear and P 6= R andQ 6= R, then AffineRatio(R,P,
Q) = 1

1−AffineRatio(P,Q,R) . The theorem is a consequence of (14) and (15).

(21) Let us consider a real number r. Suppose P , Q and R are collinear and
P 6= R and Q 6= R and P 6= Q and r = AffineRatio(P,Q,R). Then

(i) AffineRatio(P,R,Q) = 1
r , and

(ii) AffineRatio(Q,P,R) = r
r−1 , and

(iii) AffineRatio(Q,R, P ) = r−1
r , and

(iv) AffineRatio(R,P,Q) = 1
1−r , and
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(v) AffineRatio(R,Q, P ) = 1− r.

(22) Let us consider a non zero real number a. Suppose P , Q and R are
collinear and P 6= R. Then AffineRatio(P,Q,R) = AffineRatio(a · P, a ·
Q, a ·R).

(23) Let us consider elements x, y of R1, and 1-tuples p, q of R. If p = x and
q = y, then x+ y = p+ q.

Let us consider elements x, y of E1
T and 1-tuples p, q of R. Now we state the

propositions:

(24) If p = x and q = y, then x+ y = p+ q.

(25) If p = x and q = y, then x− y = p− q.
(26) Let us consider an element x of E1

T, and a 1-tuple p of R. If p = x, then
−x = −p.

(27) Let us consider a real linear space T , elements x, y of T , and 1-tuples p,
q of R. If T = E1

T and p = x and q = y, then x+ y = p+ q.

(28) Let us consider a 1-tuple p of R. Then −p is a 1-tuple of R.

(29) Let us consider a real linear space T , an element x of T , and a 1-tuple p
of R. If T = E1

T and p = x, then −p = −x. The theorem is a consequence
of (27).

(30) Let us consider a real linear space T , an element x of T , and an element p
of E1

T. If T = E1
T and p = x, then −p = −x. The theorem is a consequence

of (29).

(31) Let us consider a real linear space T , elements x, y of T , and 1-tuples p,
q of R. If T = E1

T and p = x and q = y, then x− y = p− q. The theorem
is a consequence of (28) and (29).

(32) Let us consider a real linear space T , elements x, y of T , and elements p,
q of E1

T. If T = E1
T and p = x and q = y, then x+ y = p+ q. The theorem

is a consequence of (27).

(33) Let us consider a set D, and an element d of D. Then Seg 1 7−→ d = 〈d〉.
(34) Let us consider real numbers a, r. Then (·R)◦(Seg 1 7−→ a, 〈r〉) = 〈a · r〉.

The theorem is a consequence of (33).

Let us consider a real number a and a 1-tuple p of R. Now we state the
propositions:

(35) (·R)◦(dom p 7−→ a, p) = a · p. The theorem is a consequence of (34).

(36) (·R)◦(dom p 7−→ a, p) = a · p.
(37) Let us consider a real linear space T , elements x, y of T , a real number

a, and 1-tuples p, q of R. If T = E1
T and p = x and q = y and x = a · y,

then p = a · q. The theorem is a consequence of (35).
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(38) Let us consider a real linear space T , elements x, y of T , a real number
a, and elements p, q of E1

T. If T = E1
T and p = x and q = y, then if x = a ·y,

then p = a · q. The theorem is a consequence of (37).

(39) Let us consider a real linear space T , elements x, y of T , and elements p,
q of E1

T. If T = E1
T and p = x and q = y, then x− y = p− q. The theorem

is a consequence of (30) and (32).

(40) Let us consider 1-tuples p, q of R, and a real number r. Suppose p = r · q
and p 6= 〈0〉. Then there exist real numbers a, b such that

(i) p = 〈a〉, and

(ii) q = 〈b〉, and

(iii) r = a
b .

(41) Let us consider elements x, y, z of E1
T. Then x, y and z are collinear.

Let us consider a real linear space T and elements x, y, z of T . Now we state
the propositions:

(42) If T = E1
T, then x, y and z are collinear.

(43) Suppose T = E1
T. Then suppose z 6= x and y 6= x. Then there exist real

numbers a, b, c such that

(i) x = 〈a〉, and

(ii) y = 〈b〉, and

(iii) z = 〈c〉, and

(iv) AffineRatio(x, y, z) = b−a
c−a .

The theorem is a consequence of (31), (41), (37), and (40).

Now we state the propositions:

(44) Let us consider an element x of E1
T, and real numbers a, r. If x = 〈a〉,

then r · x = 〈r · a〉.
(45) Let us consider elements x, y of E1

T, and real numbers a, b, r. If x = 〈a〉
and y = 〈b〉, then x = r · y iff a = r · b. The theorem is a consequence of
(44).

(46) Let us consider elements x, y of E1
T, and real numbers a, b. If x = 〈a〉

and y = 〈b〉, then x− y = 〈a− b〉.
(47) Let us consider a real linear space V , elements x, y of RF, and elements

x′, y′ of V . If V = RF and x = x′ and y = y′, then x+ y = x′ + y′.

Let us consider a real linear space V and elements P , Q, R of V . Now we
state the propositions:

(48) If P , Q and R are collinear and P 6= R and Q 6= R and P 6= Q, then
AffineRatio(P,Q,R) 6= 0 and AffineRatio(P,Q,R) 6= 1.
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(49) Suppose P , Q and R are collinear and P 6= R and Q 6= R and P 6= Q.
Then there exists a non unit, non zero real number r such that

(i) r = AffineRatio(P,Q,R), and

(ii) AffineRatio(P,R,Q) = op1(r), and

(iii) AffineRatio(Q,P,R) = op1(op2(op1(r))), and

(iv) AffineRatio(Q,R, P ) = op2(op1(r)), and

(v) AffineRatio(R,P,Q) = op1(op2(r)), and

(vi) AffineRatio(R,Q, P ) = op2(r).

The theorem is a consequence of (13), (14), (16), (17), (18), (19), (20),
and (2).

3. Cross-Ratio

Now we state the propositions:

(50) Let us consider a non empty set X, a 4-tuple x of X, and elements P ,
Q, R, S of X. Suppose x = 〈P,Q,R, S〉. Then

(i) σ1234(x) = 〈P,Q,R, S〉, and

(ii) σ1243(x) = 〈P,Q, S,R〉, and

(iii) σ1324(x) = 〈P,R,Q, S〉, and

(iv) σ1342(x) = 〈P,R, S,Q〉, and

(v) σ1423(x) = 〈P, S,Q,R〉, and

(vi) σ1432(x) = 〈P, S,R,Q〉, and

(vii) σ2134(x) = 〈Q,P,R, S〉, and

(viii) σ2143(x) = 〈Q,P, S,R〉, and

(ix) σ2314(x) = 〈Q,R, P, S〉, and

(x) σ2341(x) = 〈Q,R, S, P 〉, and

(xi) σ2413(x) = 〈Q,S, P,R〉, and

(xii) σ2431(x) = 〈Q,S,R, P 〉, and

(xiii) σ3124(x) = 〈R,P,Q, S〉, and

(xiv) σ3142(x) = 〈R,P, S,Q〉, and

(xv) σ3214(x) = 〈R,Q, P, S〉, and

(xvi) σ3241(x) = 〈R,Q, S, P 〉, and

(xvii) σ3412(x) = 〈R,S, P,Q〉, and
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(xviii) σ3421(x) = 〈R,S,Q, P 〉, and

(xix) σ4123(x) = 〈S, P,Q,R〉, and

(xx) σ4132(x) = 〈S, P,R,Q〉, and

(xxi) σ4213(x) = 〈S,Q, P,R〉, and

(xxii) σ4231(x) = 〈S,Q,R, P 〉, and

(xxiii) σ4312(x) = 〈S,R, P,Q〉, and

(xxiv) σ4321(x) = 〈S,R,Q, P 〉.
(51) Let us consider a non empty set X, and a 4-tuple x of X. Then

(i) σ1324(σ1243(x)) = σ1423(x), and

(ii) σ2143(σ1243(x)) = σ2134(x), and

(iii) σ3412(σ1243(x)) = σ4312(x), and

(iv) σ4321(σ1243(x)) = σ3421(x), and

(v) σ3412(σ1324(x)) = σ2413(x), and

(vi) σ2143(σ1324(x)) = σ3142(x), and

(vii) σ4321(σ1324(x)) = σ4231(x), and

(viii) σ3412(σ1423(x)) = σ2314(x), and

(ix) σ2143(σ1423(x)) = σ4132(x), and

(x) σ4321(σ1423(x)) = σ3241(x), and

(xi) σ1243(σ1423(x)) = σ1432(x), and

(xii) σ4321(σ1432(x)) = σ2341(x), and

(xiii) σ3412(σ1432(x)) = σ3214(x), and

(xiv) σ2143(σ1432(x)) = σ4123(x), and

(xv) σ4321(σ3124(x)) = σ4213(x), and

(xvi) σ3412(σ3124(x)) = σ2431(x), and

(xvii) σ2143(σ3124(x)) = σ1342(x), and

(xviii) σ4312(σ3124(x)) = σ4231(x), and

(xix) σ4321(σ3124(x)) = σ4213(x).

In the sequel x denotes a 4-tuple of the carrier of V and P ′, Q′, R′, S′ denote
elements of V .

Let V be a real linear space and P , Q, R, S be elements of V . The functor
CrossRatio(P,Q,R, S) yielding a real number is defined by the term

(Def. 29) AffineRatio(R,P,Q)
AffineRatio(S,P,Q) .

Now we state the propositions:
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(52) If P , Q, R, and S are collinear and R 6= Q and S 6= Q and S 6= P , then
R = P iff CrossRatio(P,Q,R, S) = 0. The theorem is a consequence of
(13).

(53) If P 6= R and P 6= S, then CrossRatio(P, P,R, S) = 1. The theorem is
a consequence of (11) and (14).

(54) If P , Q, R, and S are collinear and R 6= Q and S 6= Q and R 6= S and
CrossRatio(P,Q,R, S) = 1, then P = Q. The theorem is a consequence of
(15) and (14).

(55) Suppose P , Q, R, and S are collinear and P ′, Q′, R′, and S′ are collinear
and S 6= P and S 6= Q and S′ 6= P ′ and S′ 6= Q′. Then CrossRatio(P,Q,R,
S) = CrossRatio(P ′, Q′, R′, S′) if and only if AffineRatio(R,P,Q)·AffineRa-
tio(S′, P ′, Q′) = AffineRatio(R′, P ′, Q′)·AffineRatio(S, P,Q). The theorem
is a consequence of (13).

(56) If P , Q, R, and S are collinear and P 6= S and R 6= Q and S 6= Q, then
CrossRatio(P,Q,R, S) = CrossRatio(R,S, P,Q). The theorem is a conse-
quence of (13).

(57) Let us consider a real linear space V , and elements P , Q, R, S of V .
Suppose P , Q, R, and S are collinear and P 6= R and P 6= S and R 6= Q

and S 6= Q. Then CrossRatio(P,Q,R, S) = CrossRatio(Q,P, S,R). The
theorem is a consequence of (11), (14), and (49).

(58) If P , Q, R, and S are collinear and P 6= R and P 6= S and R 6= Q

and S 6= Q, then CrossRatio(P,Q,R, S) = CrossRatio(S,R,Q, P ). The
theorem is a consequence of (57) and (56).

(59) CrossRatio(P,Q, S,R) = 1
CrossRatio(P,Q,R,S) .

(60) If P , Q, R, and S are collinear and P 6= R and P 6= S and R 6= Q and
S 6= Q, then CrossRatio(Q,P,R, S) = 1

CrossRatio(P,Q,R,S) . The theorem is
a consequence of (57).

(61) If P , Q, R, and S are collinear and P 6= R and P 6= S and R 6= Q and
S 6= Q, then CrossRatio(R,S,Q, P ) = 1

CrossRatio(P,Q,R,S) . The theorem is
a consequence of (58).

(62) If P , Q, R, and S are collinear and P 6= R and P 6= S and R 6= Q and
S 6= Q, then CrossRatio(S,R, P,Q) = 1

CrossRatio(P,Q,R,S) . The theorem is
a consequence of (56).

(63) If P , Q, R, and S are collinear and P , Q, R, S are mutually different,
then CrossRatio(P,R,Q, S) = 1−CrossRatio(P,Q,R, S). The theorem is
a consequence of (17), (20), (14), (13), and (15).

(64) If P , Q, R, and S are collinear and P , Q, R, S are mutually different,
then CrossRatio(Q,S, P,R) = 1−CrossRatio(P,Q,R, S). The theorem is
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a consequence of (56) and (63).

(65) If P , Q, R, and S are collinear and P , Q, R, S are mutually different,
then CrossRatio(R,P, S,Q) = 1−CrossRatio(P,Q,R, S). The theorem is
a consequence of (57) and (63).

(66) If P , Q, R, and S are collinear and P , Q, R, S are mutually different,
then CrossRatio(S,Q,R, P ) = 1−CrossRatio(P,Q,R, S). The theorem is
a consequence of (58) and (63).

Let V be a real linear space and x be a 4-tuple of the carrier of V . The
functor CrossRatio(x) yielding a real number is defined by

(Def. 30) there exist elements P , Q, R, S of V such that P = x(1) and Q = x(2)
and R = x(3) and S = x(4) and it = CrossRatio(P,Q,R, S).

Now we state the propositions:

(67) If x = 〈P,Q,R, S〉, then CrossRatio(P,Q,R, S) = CrossRatio(x).

(68) Suppose x = 〈P,Q,R, S〉 and P , Q, R, and S are collinear and P 6= S

and Q 6= R and Q 6= S. Then CrossRatio(x) = CrossRatio(σ3412(x)). The
theorem is a consequence of (56).

(69) Suppose x = 〈P,Q,R, S〉 and P , Q, R, and S are collinear and P 6= R

and P 6= S and Q 6= R and Q 6= S. Then

(i) CrossRatio(x) = CrossRatio(σ2143(x)), and

(ii) CrossRatio(x) = CrossRatio(σ4321(x)).

The theorem is a consequence of (57) and (58).

(70) CrossRatio(σ1243(x)) = 1
CrossRatio(x) .

(71) Suppose x = 〈P,Q,R, S〉 and P , Q, R, S are mutually different and P ,
Q, R, and S are collinear. Then there exists a non unit, non zero real
number r such that

(i) r = CrossRatio(x), and

(ii) CrossRatio(σ1243(x)) = op1(r).

The theorem is a consequence of (54), (52), and (70).

(72) Suppose x = 〈P,Q,R, S〉 and P , Q, R, and S are collinear and P 6= R

and P 6= S and Q 6= R and Q 6= S. Then

(i) CrossRatio(σ1243(x)) = 1
CrossRatio(x) , and

(ii) CrossRatio(σ2134(x)) = 1
CrossRatio(x) , and

(iii) CrossRatio(σ3421(x)) = 1
CrossRatio(x) , and

(iv) CrossRatio(σ4312(x)) = 1
CrossRatio(x) .

The theorem is a consequence of (69) and (68).
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(73) Suppose x = 〈P,Q,R, S〉 and P , Q, R, S are mutually different and P ,
Q, R, and S are collinear. Then

(i) CrossRatio(σ1324(x)) = 1− CrossRatio(x), and

(ii) CrossRatio(σ2413(x)) = 1− CrossRatio(x), and

(iii) CrossRatio(σ3142(x)) = 1− CrossRatio(x), and

(iv) CrossRatio(σ4231(x)) = 1− CrossRatio(x).

The theorem is a consequence of (68), (69), and (63).

(74) Suppose x = 〈P,Q,R, S〉 and P , Q, R, S are mutually different and P ,
Q, R, and S are collinear. Then

(i) CrossRatio(σ3124(x)) = 1
1−CrossRatio(x) , and

(ii) CrossRatio(σ2431(x)) = 1
1−CrossRatio(x) , and

(iii) CrossRatio(σ1342(x)) = 1
1−CrossRatio(x) , and

(iv) CrossRatio(σ4213(x)) = 1
1−CrossRatio(x) .

The theorem is a consequence of (70), (73), (68), and (69).

(75) Suppose x = 〈P,Q,R, S〉 and P , Q, R, S are mutually different and P ,
Q, R, and S are collinear. Then

(i) CrossRatio(σ1423(x)) = CrossRatio(x)−1
CrossRatio(x) , and

(ii) CrossRatio(σ2314(x)) = CrossRatio(x)−1
CrossRatio(x) , and

(iii) CrossRatio(σ4132(x)) = CrossRatio(x)−1
CrossRatio(x) , and

(iv) CrossRatio(σ3241(x)) = CrossRatio(x)−1
CrossRatio(x) .

The theorem is a consequence of (52), (67), (73), (72), (68), and (69).

(76) Suppose x = 〈P,Q,R, S〉 and P , Q, R, S are mutually different and P ,
Q, R, and S are collinear. Then

(i) CrossRatio(σ1432(x)) = CrossRatio(x)
CrossRatio(x)−1 , and

(ii) CrossRatio(σ2341(x)) = CrossRatio(x)
CrossRatio(x)−1 , and

(iii) CrossRatio(σ3214(x)) = CrossRatio(x)
CrossRatio(x)−1 , and

(iv) CrossRatio(σ4123(x)) = CrossRatio(x)
CrossRatio(x)−1 .

The theorem is a consequence of (70), (75), (69), and (68).
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4. Cross-Ratio and the Real Line

Now we state the proposition:

(77) Let us consider elements x1, x2, x3, x4 of E1
T. Suppose x2 6= x3 and

x3 6= x1 and x2 6= x4 and x1 6= x4. Then there exist real numbers a, b, c,
d such that

(i) x1 = 〈a〉, and

(ii) x2 = 〈b〉, and

(iii) x3 = 〈c〉, and

(iv) x4 = 〈d〉, and

(v) CrossRatio(〈x1, x2, x3, x4〉) = c−a
c−b ·

d−b
d−a .

The theorem is a consequence of (43).
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