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Multilinear Operator and Its Basic
Properties
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Summary. In the first chapter, the notion of multilinear operator on real
linear spaces is discussed. The algebraic structure [2] of multilinear operators
is introduced here. In the second chapter, the results of the first chapter are
extended to the case of the normed spaces. This chapter shows that bounded
multilinear operators on normed linear spaces constitute the algebraic structure.
We referred to [3], [7], [5], [6] in this formalization.
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1. Multilinear Operator on Real Linear Spaces

Let X be a non empty, non-empty finite sequence, i be an object, and x be
an element of

∏
X. The functor reproj(i, x) yielding a function from X(i) into∏

X is defined by

(Def. 1) for every object r such that r ∈ X(i) holds it(r) = x+· (i, r).
Now we state the propositions:

(1) Let us consider a non empty, non-empty finite sequence X, an element
x of

∏
X, an element i of domX, and an object r. If r ∈ X(i), then

(reproj(i, x))(r)(i) = r.
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(2) Let us consider a non empty, non-empty finite sequence X, an element
x of
∏
X, elements i, j of domX, and an object r. If r ∈ X(i) and i 6= j,

then (reproj(i, x))(r)(j) = x(j).

(3) Let us consider a non empty, non-empty finite sequence X, an element
x of
∏
X, and an element i of domX. Then (reproj(i, x))(x(i)) = x.

Let X be a real linear space sequence, i be an element of domX, and x be
an element of

∏
X. The functor reproj(i, x) yielding a function from X(i) into∏

X is defined by

(Def. 2) there exists an element x0 of
∏
X such that x0 = x and it = reproj(i, x0).

Now we state the propositions:

(4) Let us consider a real linear space sequence X, an element i of domX,
an element x of

∏
X, an element r of X(i), and a function F . If F =

(reproj(i, x))(r), then F (i) = r. The theorem is a consequence of (1).

(5) Let us consider a real linear space sequence X, elements i, j of domX,
an element x of

∏
X, an element r of X(i), and functions F , s. If F =

(reproj(i, x))(r) and x = s and i 6= j, then F (j) = s(j). The theorem is
a consequence of (2).

(6) Let us consider a real linear space sequence X, an element i of domX,
an element x of

∏
X, and a function s. If x = s, then (reproj(i, x))(s(i)) =

x. The theorem is a consequence of (3).

Let X be a real linear space sequence, Y be a real linear space, and f be
a function from

∏
X into Y. We say that f is multilinear if and only if

(Def. 3) for every element i of domX and for every element x of
∏
X, f ·

(reproj(i, x)) is a linear operator from X(i) into Y.

One can verify that there exists a function from
∏
X into Y which is mul-

tilinear.
A multilinear operator from X into Y is a multilinear function from

∏
X

into Y. Now we state the propositions:

(7) Let us consider real linear spaces X, Y, and a linear operator f from X
into Y. Then 0Y = f(0X).

(8) Let us consider a real linear space sequence X, a real linear space Y,
a multilinear operator g from X into Y, a point t of

∏
X, and an element

s of
∏
X. Suppose s = t and there exists an element i of domX such that

s(i) = 0X(i). Then g(t) = 0Y . The theorem is a consequence of (17) and
(7).

(9) Let us consider a real linear space sequence X, a real linear space Y,
a multilinear operator g from X into Y, and a finite sequence a of elements
of R. Suppose dom a = domX. Let us consider points t, t1 of

∏
X, and
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elements s, s1 of
∏
X. Suppose t = s and t1 = s1 and for every element i

of domX, s1(i) = a/i · s(i). Then g(t1) = (
∏
a) · g(t).

Proof: Define P[natural number] ≡ for every points t, t1 of
∏
X for

every elements s, s1 of
∏
X for every finite sequence b of elements of R

such that t = s and t1 = s1 and b = a�$1 and $1 ¬ len a and for every
element i of domX, if i ∈ Seg $1, then s1(i) = a/i · s(i) and if i /∈ Seg $1,
then s1(i) = s(i) holds g(t1) = (

∏
b) ·g(t). P[0]. For every natural number

k such that P[k] holds P[k + 1]. For every natural number k, P[k]. For
every element i of domX, if i ∈ Seg len a, then s1(i) = a/i · s(i) and if
i /∈ Seg len a, then s1(i) = s(i). �

Let X be a real linear space sequence and Y be a real linear space. The
functor MultOpers(X,Y ) yielding a subset of RealVectSpace((the carrier of∏
X), Y ) is defined by

(Def. 4) for every set x, x ∈ it iff x is a multilinear operator from X into Y.

One can check that MultOpers(X,Y ) is non empty and functional and
MultOpers(X,Y ) is linearly closed.

The functor VectorSpaceOfMultOpersR(X,Y ) yielding a strict RLS struc-
ture is defined by the term

(Def. 5) 〈MultOpers(X,Y ),Zero(MultOpers(X,Y ),RealVectSpace((the carrier of∏
X), Y )),Add(MultOpers(X,Y ),RealVectSpace((the carrier of

∏
X), Y )),

Mult(MultOpers(X,Y ),RealVectSpace((the carrier of
∏
X), Y ))〉.

Now we state the proposition:

(10) Let us consider a real linear space sequence X, and a real linear space Y.
Then 〈MultOpers(X,Y ),Zero(MultOpers(X,Y ),RealVectSpace((the carrier
of
∏
X), Y )),Add(MultOpers(X,Y ),RealVectSpace((the carrier of

∏
X),

Y )),Mult(MultOpers(X,Y ),RealVectSpace((the carrier of
∏
X), Y ))〉 is

a subspace of RealVectSpace((the carrier of
∏
X), Y ).

Let X be a real linear space sequence and Y be a real linear space. One can
verify that VectorSpaceOfMultOpersR(X,Y ) is non empty and VectorSpaceOf

MultOpersR(X,Y ) is Abelian, add-associative, right zeroed, right comple-
mentable, vector distributive, scalar distributive, scalar associative, and scalar
unital and VectorSpaceOfMultOpersR(X,Y ) is constituted functions.

Let f be an element of VectorSpaceOfMultOpersR(X,Y ) and v be a vector
of
∏
X. Let us note that the functor f(v) yields a vector of Y. Now we state the

propositions:

(11) Let us consider a real linear space sequence X, a real linear space Y, and
vectors f , g, h of VectorSpaceOfMultOpersR(X,Y ). Then h = f+g if and
only if for every vector x of

∏
X, h(x) = f(x) + g(x).
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(12) Let us consider a real linear space sequence X, a real linear space Y,
vectors f , h of VectorSpaceOfMultOpersR(X,Y ), and a real number a.
Then h = a · f if and only if for every vector x of

∏
X, h(x) = a · f(x).

Let us consider a real linear space sequence X and a real linear space Y.
Now we state the propositions:

(13) 0VectorSpaceOfMultOpersR(X,Y ) = (the carrier of
∏
X) 7−→ 0Y .

(14) (The carrier of
∏
X) 7−→ 0Y is a multilinear operator from X into Y.

2. Bounded Multilinear Operator on Normed Linear Spaces

Now we state the propositions:

(15) Let us consider a real norm space sequence X, an element i of domX,
an element x of

∏
X, an element r of X(i), and a function F . If F =

(reproj(i, x))(r), then F (i) = r. The theorem is a consequence of (1).

(16) Let us consider a real norm space sequence X, elements i, j of domX,
an element x of

∏
X, an element r of X(i), and functions F , s. If F =

(reproj(i, x))(r) and x = s and i 6= j, then F (j) = s(j). The theorem is
a consequence of (2).

(17) Let us consider a real norm space sequence X, an element i of domX,
an element x of

∏
X, and a function s. If x = s, then (reproj(i, x))(s(i)) =

x. The theorem is a consequence of (3).

Let X be a real norm space sequence, Y be a real normed space, and f be
a function from

∏
X into Y. We say that f is multilinear if and only if

(Def. 6) for every element i of domX and for every element x of
∏
X, f ·

(reproj(i, x)) is a linear operator from X(i) into Y.

One can verify that there exists a function from
∏
X into Y which is mul-

tilinear.
A multilinear operator fromX into Y is a multilinear function from

∏
X into

Y. The functor MultOpers(X,Y ) yielding a subset of RealVectSpace((the carrier
of
∏
X), Y ) is defined by

(Def. 7) for every set x, x ∈ it iff x is a multilinear operator from X into Y.

Note that MultOpers(X,Y ) is non empty and functional and MultOpers(X,Y )
is linearly closed.

Now we state the proposition:

(18) Let us consider a real norm space sequenceX, and a real normed space Y.
Then 〈MultOpers(X,Y ),Zero(MultOpers(X,Y ),RealVectSpace((the carrier
of
∏
X), Y )),Add(MultOpers(X,Y ),RealVectSpace((the carrier of

∏
X),
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Y )),Mult(MultOpers(X,Y ),RealVectSpace((the carrier of
∏
X), Y ))〉 is

a subspace of RealVectSpace((the carrier of
∏
X), Y ).

Let X be a real norm space sequence and Y be a real normed space. Note
that 〈MultOpers(X,Y ),Zero(MultOpers(X,Y ),RealVectSpace((the carrier of∏
X), Y )),Add(MultOpers(X,Y ),RealVectSpace((the carrier of

∏
X), Y )),

Mult(MultOpers(X,Y ),RealVectSpace((the carrier of
∏
X), Y ))〉 is Abe-

lian, add-associative, right zeroed, right complementable, vector distributive,
scalar distributive, scalar associative, and scalar unital.

The functor VectorSpaceOfMultOpersR(X,Y ) yielding a strict real linear
space is defined by the term

(Def. 8) 〈MultOpers(X,Y ),Zero(MultOpers(X,Y ),RealVectSpace((the carrier of∏
X), Y )),Add(MultOpers(X,Y ),RealVectSpace((the carrier of

∏
X), Y )),

Mult(MultOpers(X,Y ),RealVectSpace((the carrier of
∏
X), Y ))〉.

One can check that VectorSpaceOfMultOpersR(X,Y ) is constituted func-
tions.

Let f be an element of VectorSpaceOfMultOpersR(X,Y ) and v be a vector
of
∏
X. One can check that the functor f(v) yields a vector of Y. Now we state

the propositions:

(19) Let us consider a real norm space sequence X, a real normed space Y,
and vectors f , g, h of VectorSpaceOfMultOpersR(X,Y ). Then h = f + g
if and only if for every vector x of

∏
X, h(x) = f(x) + g(x).

(20) Let us consider a real norm space sequence X, a real normed space Y,
vectors f , h of VectorSpaceOfMultOpersR(X,Y ), and a real number a.
Then h = a · f if and only if for every vector x of

∏
X, h(x) = a · f(x).

Let us consider a real norm space sequence X and a real normed space Y.
Now we state the propositions:

(21) 0VectorSpaceOfMultOpersR(X,Y ) = (the carrier of
∏
X) 7−→ 0Y .

(22) (The carrier of
∏
X) 7−→ 0Y is a multilinear operator from X into Y.

Let X be a real norm space sequence, Y be a real normed space, I be
a multilinear operator from X into Y, and x be a vector of

∏
X. Let us observe

that the functor I(x) yields a point of Y. Note that
∏
X is constituted functions.

Let x be a point of
∏
X and i be an element of domX. One can check that

the functor x(i) yields a point of X(i). Now we state the propositions:

(23) Let us consider a real norm space sequence G, and points p, q, r of
∏
G.

Then p+q = r if and only if for every element i of domG, r(i) = p(i)+q(i).

(24) Let us consider a real norm space sequence G, points p, r of
∏
G, and

a real number a. Then a ·p = r if and only if for every element i of domG,
r(i) = a · p(i).
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(25) Let us consider a real norm space sequence G, and a point p of
∏
G.

Then 0∏G = p if and only if for every element i of domG, p(i) = 0G(i).

(26) Let us consider a real norm space sequence G, and points p, q, r of
∏
G.

Then p−q = r if and only if for every element i of domG, r(i) = p(i)−q(i).
The theorem is a consequence of (23) and (24).

Let X be a real norm space sequence and x be a point of
∏
X. The functor

NrProductx yielding a non negative real number is defined by

(Def. 9) there exists a finite sequence N of elements of R such that domN =
domX and for every element i of domX, N(i) = ‖x(i)‖ and it =

∏
N .

Now we state the proposition:

(27) Let us consider a real norm space sequence X, and a point x of
∏
X.

Then

(i) there exists an element i of domX such that

x(i) = 0X(i) iff NrProductx = 0, and

(ii) if there exists no element i of domX such that x(i) = 0X(i), then
0 < NrProductx.

Proof: Consider N being a finite sequence of elements of R such that
domN = domX and for every element i of domX, N(i) = ‖x(i)‖ and
NrProductx =

∏
N . There exists an element i of domX such that x(i) =

0X(i) iff NrProductx = 0 by [1, (103)]. If there exists no element i of
domX such that x(i) = 0X(i), then 0 < NrProductx by [4, (42)]. �

Let X be a real norm space sequence, Y be a real normed space, and I be
a multilinear operator from X into Y. We say that I is Lipschitzian if and only
if

(Def. 10) there exists a real number K such that 0 ¬ K and for every point x of∏
X, ‖I(x)‖ ¬ K · (NrProductx).

Now we state the proposition:

(28) Let us consider a real norm space sequence X, a real normed space Y,
and a multilinear operator f from X into Y. If for every vector x of

∏
X,

f(x) = 0Y , then f is Lipschitzian.

Let X be a real norm space sequence and Y be a real normed space. One
can check that there exists a multilinear operator from X into Y which is Lip-
schitzian.

The functor BoundedMultOpers(X,Y ) yielding a subset of
VectorSpaceOfMultOpersR(X,Y ) is defined by

(Def. 11) for every set x, x ∈ it iff x is a Lipschitzian multilinear operator from X
into Y.
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Note that BoundedMultOpers(X,Y ) is non empty and
BoundedMultOpers(X,Y ) is linearly closed.
Now we state the proposition:

(29) Let us consider a real norm space sequence X, and a real normed space
Y. Then 〈BoundedMultOpers(X,Y ),Zero(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Add(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Mult(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y ))〉 is a subspace of
VectorSpaceOfMultOpersR(X,Y ).

Let X be a real norm space sequence and Y be a real normed space. Observe
that 〈BoundedMultOpers(X,Y ),Zero(BoundedMultOpers(X,Y ),

VectorSpaceOfMultOpersR(X,Y )),Add(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Mult(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y ))〉 is Abelian, add-associative, right zeroed,

right complementable, vector distributive, scalar distributive, scalar associative,
and scalar unital.

The functor VectorSpaceOfBoundedMultOpersR(X,Y ) yielding a strict real
linear space is defined by the term

(Def. 12) 〈BoundedMultOpers(X,Y ),Zero(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Add(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Mult(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y ))〉.

Let us note that every element of VectorSpaceOfBoundedMultOpersR(X,Y )
is function-like and relation-like.

Let f be an element of VectorSpaceOfBoundedMultOpersR(X,Y ) and v be
a vector of

∏
X. Note that the functor f(v) yields a vector of Y. Now we state

the propositions:

(30) Let us consider a real norm space sequence X, a real normed space Y,
and vectors f , g, h of VectorSpaceOfBoundedMultOpersR(X,Y ). Then
h = f + g if and only if for every vector x of

∏
X, h(x) = f(x) + g(x).

The theorem is a consequence of (19).

(31) Let us consider a real norm space sequence X, a real normed space
Y, vectors f , h of VectorSpaceOfBoundedMultOpersR(X,Y ), and a real
number a. Then h = a · f if and only if for every vector x of

∏
X, h(x) =

a · f(x). The theorem is a consequence of (20).

(32) Let us consider a real norm space sequenceX, and a real normed space Y.
Then 0VectorSpaceOfBoundedMultOpersR(X,Y ) = (the carrier of

∏
X) 7−→ 0Y .

The theorem is a consequence of (21).



42 kazuhisa nakasho

Let X be a real norm space sequence, Y be a real normed space, and f be
an object. Assume f ∈ BoundedMultOpers(X,Y ). The functor PartFuncs(f,X, Y )
yielding a Lipschitzian multilinear operator fromX into Y is defined by the term

(Def. 13) f .

Let u be a multilinear operator from X into Y. The functor PreNorms(u)
yielding a non empty subset of R is defined by the term

(Def. 14) {‖u(t)‖, where t is a vector of
∏
X : for every element i of domX,

‖t(i)‖ ¬ 1}.

Now we state the propositions:

(33) Let us consider a real norm space sequence X, and an element s of
∏
X.

Then there exists a finite sequence F of elements of R such that

(i) domF = domX, and

(ii) for every element i of domX, F (i) = ‖s(i)‖.
Proof: Define Q[object, object] ≡ there exists an element i of domX
such that $1 = i and $2 = ‖s(i)‖. For every natural number n such that
n ∈ Seg lenX there exists an element d of R such that Q[n, d]. Consider
F being a finite sequence of elements of R such that lenF = lenX and
for every natural number n such that n ∈ Seg lenX holds Q[n, F/n]. For
every element i of domX, F (i) = ‖s(i)‖. �

(34) Let us consider a finite sequence F of elements of R. Suppose for every
element i of domF , 0 ¬ F (i) ¬ 1. Then 0 ¬

∏
F ¬ 1.

(35) Let us consider a real norm space sequenceX, and a point x of
∏
X. Sup-

pose for every element i of domX, ‖x(i)‖ ¬ 1. Then 0 ¬ NrProductx ¬ 1.
The theorem is a consequence of (34).

(36) Let us consider a real norm space sequence X, a real normed space Y,
a multilinear operator g from X into Y, and a point t of

∏
X. Suppose

there exists an element i of domX such that t(i) = 0X(i). Then g(t) = 0Y .
The theorem is a consequence of (17).

(37) Let us consider a real norm space sequence X, and a point x of
∏
X.

Then there exists a finite sequence d of elements of R such that

(i) dom d = domX, and

(ii) for every element i of domX, d(i) = ‖x(i)‖−1.
Proof: Define Q[object, object] ≡ there exists an element i of domX
such that $1 = i and $2 = ‖x(i)‖−1. For every natural number n such that
n ∈ Seg lenX there exists an element d of R such that Q[n, d]. Consider
F being a finite sequence of elements of R such that lenF = lenX and
for every natural number n such that n ∈ Seg lenX holds Q[n, F/n]. For
every element i of domX, F (i) = ‖x(i)‖−1. �
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(38) Let us consider a real norm space sequence X, a point s of
∏
X, and

a finite sequence a of elements of R. Then there exists a point s1 of
∏
X

such that for every element i of domX, s1(i) = a/i · s(i).
Proof: Define Q[object, object] ≡ there exists an element i of domX
such that $1 = i and $2 = a/i · x(i). For every natural number n such
that n ∈ Seg lenX there exists an object d such that Q[n, d]. Consider F
being a finite sequence such that domF = Seg lenX and for every natural
number n such that n ∈ Seg lenX holds Q[n, F (n)]. For every object y
such that y ∈ domX holds F (y) ∈ X(y). For every element i of domX,
F (i) = a/i · x(i). �

(39) Let us consider a real norm space sequence X, a real normed space Y,
a multilinear operator g from X into Y, and a finite sequence a of elements
of R. Suppose dom a = domX. Let us consider points t, t1 of

∏
X. Suppose

for every element i of domX, t1(i) = a/i · t(i). Then g(t1) = (
∏
a) · g(t).

Proof: Define P[natural number] ≡ for every points t, t1 of
∏
X for every

finite sequence b of elements of R such that b = a�$1 and $1 ¬ len a and
for every element i of domX, if i ∈ Seg $1, then t1(i) = a/i · t(i) and if
i /∈ Seg $1, then t1(i) = t(i) holds g(t1) = (

∏
b) · g(t). P[0]. For every

natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. For every element i of domX, if i ∈ Seg len a, then t1(i) = a/i ·t(i)
and if i /∈ Seg len a, then t1(i) = t(i). �

(40) Let us consider finite sequences F , G of elements of R. Suppose domF =
domG and for every element i of domF , G(i) = F (i)−1. Then

∏
G =

(
∏
F )−1.

(41) Let us consider a real norm space sequenceX, a real normed space Y, and
a Lipschitzian multilinear operator g from X into Y. Then PreNorms(g)
is upper bounded. The theorem is a consequence of (35).

(42) Let us consider a real norm space sequence X, a real normed space Y,
and a multilinear operator g from X into Y. Then g is Lipschitzian if and
only if PreNorms(g) is upper bounded. The theorem is a consequence of
(36), (37), (38), (39), (40), and (41).

Let X be a real norm space sequence and Y be a real normed space. The
functor BoundedMultOpersNorm(X,Y ) yielding a function from

BoundedMultOpers(X,Y ) into R is defined by

(Def. 15) for every object x such that x ∈ BoundedMultOpers(X,Y ) holds it(x) =
sup PreNorms(PartFuncs(x,X, Y )).

Let f be a Lipschitzian multilinear operator from X into Y. One can verify
that PartFuncs(f,X, Y ) reduces to f .

Now we state the proposition:
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(43) Let us consider a real norm space sequence X, a real normed spa-
ce Y, and a Lipschitzian multilinear operator f from X into Y. Then
(BoundedMultOpersNorm(X,Y ))(f) = sup PreNorms(f).

Let X be a real norm space sequence and Y be a real normed space. The
functor NormSpaceOfBoundedMultOpersR(X,Y ) yielding a non empty, strict
normed structure is defined by the term

(Def. 16) 〈BoundedMultOpers(X,Y ),Zero(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Add(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),Mult(BoundedMultOpers(X,Y ),
VectorSpaceOfMultOpersR(X,Y )),BoundedMultOpersNorm(X,Y )〉.

Now we state the propositions:

(44) Let us consider a real norm space sequence X, and a real normed space
Y. Then (the carrier of

∏
X) 7−→ 0Y = 0NormSpaceOfBoundedMultOpersR(X,Y ).

The theorem is a consequence of (32).

(45) Let us consider a real norm space sequence X, a real normed space Y,
a point f of NormSpaceOfBoundedMultOpersR(X,Y ), and a Lipschitzian
multilinear operator g from X into Y. Suppose g = f . Let us consider
a vector t of

∏
X. Then ‖g(t)‖ ¬ ‖f‖ · (NrProduct t). The theorem is

a consequence of (41), (36), (37), (38), (39), (40), and (43).

Let us consider a real norm space sequence X, a real normed space Y, and
a point f of NormSpaceOfBoundedMultOpersR(X,Y ). Now we state the pro-
positions:

(46) 0 ¬ ‖f‖. The theorem is a consequence of (41) and (43).

(47) If f = 0NormSpaceOfBoundedMultOpersR(X,Y ), then 0 = ‖f‖. The theorem is
a consequence of (41), (44), and (43).

Let X be a real norm space sequence and Y be a real normed space. Let us
note that every element of NormSpaceOfBoundedMultOpersR(X,Y ) is function-
like and relation-like.

Let f be an element of NormSpaceOfBoundedMultOpersR(X,Y ) and v be
a vector of

∏
X. Note that the functor f(v) yields a vector of Y. Now we state

the propositions:

(48) Let us consider a real norm space sequence X, a real normed space
Y, and points f , g, h of NormSpaceOfBoundedMultOpersR(X,Y ). Then
h = f + g if and only if for every vector x of

∏
X, h(x) = f(x) + g(x).

The theorem is a consequence of (30).

(49) Let us consider a real norm space sequence X, a real normed space Y, po-
ints f , h of NormSpaceOfBoundedMultOpersR(X,Y ), and a real number
a. Then h = a · f if and only if for every vector x of

∏
X, h(x) = a · f(x).
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The theorem is a consequence of (31).

(50) Let us consider a real norm space sequence X, a real normed space Y, po-
ints f , g of NormSpaceOfBoundedMultOpersR(X,Y ), and a real number
a. Then

(i) ‖f‖ = 0 iff f = 0NormSpaceOfBoundedMultOpersR(X,Y ), and

(ii) ‖a · f‖ = |a| · ‖f‖, and

(iii) ‖f + g‖ ¬ ‖f‖+ ‖g‖.
Proof: ‖f + g‖ ¬ ‖f‖+ ‖g‖. ‖a · f‖ = |a| · ‖f‖. �

(51) Let us consider a real norm space sequence X, and a real normed space
Y. Then NormSpaceOfBoundedMultOpersR(X,Y ) is a real normed space.

Let X be a real norm space sequence and Y be a real normed space. Let
us note that NormSpaceOfBoundedMultOpersR(X,Y ) is reflexive, discernible,
real normed space-like, vector distributive, scalar distributive, scalar associative,
scalar unital, Abelian, add-associative, right zeroed, and right complementable.

Now we state the proposition:

(52) Let us consider a real norm space sequence X, a real normed space
Y, and points f , g, h of NormSpaceOfBoundedMultOpersR(X,Y ). Then
h = f − g if and only if for every vector x of

∏
X, h(x) = f(x) − g(x).

The theorem is a consequence of (48).
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