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Zariski Topology

Yasushige Watase
Suginami-ku Matsunoki
3-21-6 Tokyo, Japan

Summary. We formalize in the Mizar system [3], [4] basic definitions of
commutative ring theory such as prime spectrum, nilradical, Jacobson radical,
local ring, and semi-local ring [5], [6], then formalize proofs of some related the-
orems along with the first chapter of [1].

The article introduces the so-called Zariski topology. The set of all prime
ideals of a commutative ring A is called the prime spectrum of A denoted by
Spectrum A. A new functor Spec generates Zariski topology to make Spectrum A
a topological space. A different role is given to Spec as a map from a ring mor-
phism of commutative rings to that of topological spaces by the following manner:
for a ring homomorphism h : A −→ B, we defined (Spec h) : Spec B −→ Spec A
by (Spec h)(p) = h−1(p) where p ∈ Spec B.
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1. Preliminaries: Some Properties of Ideals

From now on R denotes a commutative ring, A, B denote non degenerated,
commutative rings, h denotes a function from A into B, I, I1, I2 denote ideals
of A, J , J1, J2 denote proper ideals of A, p denotes a prime ideal of A.
S denotes non empty subset of A, E, E1, E2 denote subsets of A, a, b, f

denote elements of A, n denotes a natural number, and x denotes object.
Let us consider A and S. The functor Ideals(A,S) yielding a subset of

IdealsA is defined by the term

(Def. 1) {I, where I is an ideal of A : S ⊆ I}.
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Let us observe that Ideals(A,S) is non empty.
Now we state the proposition:

(1) Ideals(A,S) = Ideals(A,S–ideal).
Proof: Ideals(A,S) ⊆ Ideals(A,S–ideal). Consider y being an ideal of A
such that x = y and S–ideal ⊆ y. �

Let A be a unital, non empty multiplicative loop with zero structure and a
be an element of A. We say that a is nilpotent if and only if

(Def. 2) there exists a non zero natural number k such that ak = 0A.

Let us note that 0A is nilpotent and there exists an element of A which is
nilpotent.

Let us consider A. Observe that 1A is non nilpotent.
Let us consider f . The functor MultClSet(f) yielding a subset of A is defined

by the term

(Def. 3) the set of all f i where i is a natural number.

Let us observe that MultClSet(f) is multiplicatively closed.
Now we state the propositions:

(2) Let us consider a natural number n. Then (1A)n = 1A.
Proof: Define P[natural number] ≡ (1A)$1 = 1A. For every natural num-
ber n, P[n]. �

(3) 1A /∈
√
J . The theorem is a consequence of (2).

(4) MultClSet(1A) = {1A}. The theorem is a consequence of (2).

Let us consider A, J , and f . The functor Ideals(A, J, f) yielding a subset of
IdealsA is defined by the term

(Def. 4) {I, where I is a subset of A : I is a proper ideal of A and J ⊆ I and
I ∩MultClSet(f) = ∅}.

Let us consider A, J , and f . Now we state the propositions:

(5) If f /∈
√
J , then J ∈ Ideals(A, J, f).

(6) If f /∈
√
J , then Ideals(A, J, f) has the upper Zorn property w.r.t.

⊆
Ideals(A,J,f).
Proof: Set S = Ideals(A, J, f). Set P = ⊆

S . For every set Y such that
Y ⊆ S and P |2 Y is a linear order there exists a set x such that x ∈ S
and for every set y such that y ∈ Y holds 〈〈y, x〉〉 ∈ P . �

(7) If f /∈
√
J , then there exists a prime ideal m of A such that f /∈ m and

J ⊆ m.
Proof: Set S = Ideals(A, J, f). Set P = ⊆S . Consider I being a set such
that I is maximal in P . Consider p being a subset of A such that p = I
and p is a proper ideal of A and J ⊆ p and p ∩MultClSet(f) = ∅. p is
a quasi-prime ideal of A. �
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(8) There exists a maximal ideal m of A such that J ⊆ m.
Proof: 1A /∈

√
J . Set S = Ideals(A, J, 1A). Set P = ⊆S . Consider I being

a set such that I is maximal in P . Consider p being a subset of A such that
p = I and p is a proper ideal of A and J ⊆ p and p ∩MultClSet(1A) = ∅.
For every ideal q of A such that p ⊆ q holds q = p or q is not proper. �

(9) There exists a prime ideal m of A such that J ⊆ m. The theorem is
a consequence of (8).

(10) If a is a non-unit of A, then there exists a maximal ideal m of A such
that a ∈ m. The theorem is a consequence of (8).

2. Spectrum of Prime Ideals (Spectrum) and Maximal Ideals
(m-Spectrum)

Let R be a commutative ring. The spectrum of R yielding a family of subsets
of R is defined by the term

(Def. 5)


{I, where I is an ideal of R : I is quasi-prime and I 6= ΩR},
if R is not degenerated,

∅, otherwise.
Let us consider A. Observe that the spectrum of A yields a family of subsets

of A and is defined by the term

(Def. 6) the set of all I where I is a prime ideal of A.

Observe that the spectrum of A is non empty.
Let us consider R. The functor m-Spectrum(R) yielding a family of subsets

of R is defined by the term

(Def. 7)


{I, where I is an ideal of R : I is quasi-maximal and I 6= ΩR},
if R is not degenerated,

∅, otherwise.
Let us consider A. Observe that the functor m-Spectrum(A) yields a family

of subsets of the carrier of A and is defined by the term

(Def. 8) the set of all I where I is a maximal ideal of A.

Observe that m-Spectrum(A) is non empty.

3. Local and Semi-Local Ring

Let us consider A. We say that A is local if and only if

(Def. 9) there exists an ideal m of A such that m-Spectrum(A) = {m}.
We say that A is semi-local if and only if
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(Def. 10) m-Spectrum(A) is finite.

Now we state the propositions:

(11) If x ∈ I and I is a proper ideal of A, then x is a non-unit of A.

(12) If for every objects m1, m2 such that m1, m2 ∈ m-Spectrum(A) holds
m1 = m2, then A is local.

(13) If for every x such that x ∈ ΩA \J holds x is a unit of A, then A is local.
The theorem is a consequence of (8), (11), and (12).

In the sequelm denotes a maximal ideal of A. Now we state the propositions:

(14) If a ∈ ΩA \m, then {a}–ideal +m = ΩA.

(15) If for every a such that a ∈ m holds 1A+a is a unit of A, then A is local.
Proof: For every x such that x ∈ ΩA \m holds x is a unit of A. �

Let us consider R. Let E be a subset of R. The functor PrimeIdeals(R,E)
yielding a subset of the spectrum of R is defined by the term

(Def. 11)


{p, where p is an ideal of R : p is quasi-prime and p 6= ΩR and E ⊆ p},
if R is not degenerated,

∅, otherwise.
Let us consider A. Let E be a subset of A. Let us note that the functor

PrimeIdeals(A,E) yields a subset of the spectrum of A and is defined by the
term

(Def. 12) {p, where p is a prime ideal of A : E ⊆ p}.

Let us consider J . Observe that PrimeIdeals(A, J) is non empty.
From now on p denotes a prime ideal of A and k denotes a non zero natural

number. Now we state the proposition:

(16) If a /∈ p, then ak /∈ p.

4. Nilradical and Jacobson Radical

Let us consider A. The functor nilrad(A) yielding a subset of A is defined
by the term

(Def. 13) the set of all a where a is a nilpotent element of A.

Now we state the proposition:

(17) nilrad(A) =
√
{0A}.

Let us consider A. One can verify that nilrad(A) is non empty and nilrad(A)
is closed under addition as a subset of A and nilrad(A) is left and right ideal as
a subset of A.

Now we state the propositions:
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(18)
√
J =

⋂
PrimeIdeals(A, J). The theorem is a consequence of (16), (7),

and (9).

(19) nilrad(A) =
⋂

(the spectrum of A). The theorem is a consequence of (17)
and (18).

(20) I ⊆
√
I.

(21) If I ⊆ J , then
√
I ⊆
√
J .

Proof: Consider s1 being an element of A such that s1 = s and there
exists an element n of N such that s1n ∈ I. Consider n1 being an element
of N such that s1n1 ∈ I. n1 6= 0 by [7, (8)], [2, (19)]. �

Let us consider A. The functor J-Rad(A) yielding a subset of A is defined
by the term

(Def. 14)
⋂

m-Spectrum(A).

5. Construction of Zariski Topology of the Prime Spectrum of A

Now we state the propositions:

(22) PrimeIdeals(A,S) ⊆ Ideals(A,S).

(23) PrimeIdeals(A,S) = Ideals(A,S)∩ (the spectrum of A). The theorem is
a consequence of (22).

(24) PrimeIdeals(A,S) = PrimeIdeals(A,S–ideal). The theorem is a conse-
quence of (23) and (1).

(25) If I ⊆ p, then
√
I ⊆ p.

Proof: Consider s1 being an element of A such that s1 = s and there
exists an element n of N such that s1n ∈ I. Consider n1 being an element
of N such that s1n1 ∈ I. n1 6= 0. �

(26) If
√
I ⊆ p, then I ⊆ p. The theorem is a consequence of (20).

(27) PrimeIdeals(A,
√
S–ideal) = PrimeIdeals(A,S–ideal). The theorem is

a consequence of (26) and (25).

(28) If E2 ⊆ E1, then PrimeIdeals(A,E1) ⊆ PrimeIdeals(A,E2).

(29) PrimeIdeals(A, J1) = PrimeIdeals(A, J2) if and only if
√
J1 =

√
J2. The

theorem is a consequence of (18) and (27).

(30) If I1 ∗ I2 ⊆ p, then I1 ⊆ p or I2 ⊆ p.
Proof: If it is not true that I1 ⊆ p or I2 ⊆ p, then I1 ∗ I2 6⊆ p. �

(31) PrimeIdeals(A, {1A}) = ∅.
(32) The spectrum of A = PrimeIdeals(A, {0A}).
(33) Let us consider non empty subsets E1, E2 of A. Then there exists a non

empty subset E3 of A such that PrimeIdeals(A,E1)∪PrimeIdeals(A,E2) =
PrimeIdeals(A,E3).
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Proof: Set I1 = E1–ideal. Set I2 = E2–ideal. Reconsider I3 = I1 ∗ I2 as
an ideal of A. PrimeIdeals(A,E1) = PrimeIdeals(A, I1). PrimeIdeals(A, I3)
⊆ PrimeIdeals(A, I1)∪PrimeIdeals(A, I2). PrimeIdeals(A, I1)∪PrimeIdeals
(A, I2) ⊆ PrimeIdeals(A, I3). PrimeIdeals(A, I3) = PrimeIdeals(A,E1) ∪
PrimeIdeals(A,E2). �

(34) Let us consider a family G of subsets of the spectrum of A. Suppose for
every set S such that S ∈ G there exists a non empty subset E of A such
that S = PrimeIdeals(A,E). Then there exists a non empty subset F of A
such that Intersect(G) = PrimeIdeals(A,F ). The theorem is a consequence
of (28).

Let us consider A. The functor Spec(A) yielding a strict topological space is
defined by

(Def. 15) the carrier of it = the spectrum of A and for every subset F of it,
F is closed iff there exists a non empty subset E of A such that F =
PrimeIdeals(A,E).

Note that Spec(A) is non empty. Now we state the proposition:

(35) Let us consider points P , Q of Spec(A). Suppose P 6= Q. Then there
exists a subset V of Spec(A) such that

(i) V is open, and

(ii) P ∈ V and Q /∈ V or Q ∈ V and P /∈ V .

Note that there exists a commutative ring which is degenerated. Let R be
a degenerated, commutative ring. Let us observe that ADTS(the spectrum of
R) is T0. Let us consider A. Observe that Spec(A) is T0.

6. Continous Map of Zariski Topology Associated with a Ring
Homomorphism

From now on M0 denotes an ideal of B. Now we state the proposition:

(36) If h inherits ring homomorphism, then h−1(M0) is an ideal of A.

In the sequel M0 denotes a prime ideal of B.

(37) If h inherits ring homomorphism, then h−1(M0) is a prime ideal of A.
Proof: For every elements x, y of A such that x · y ∈ h−1(M0) holds
x ∈ h−1(M0) or y ∈ h−1(M0). h−1(M0) 6= the carrier of A. �

Let us consider A, B, and h. Assume h inherits ring homomorphism. The
functor Spec(h) yielding a function from Spec(B) into Spec(A) is defined by

(Def. 16) for every point x of Spec(B), it(x) = h−1(x).

Now we state the propositions:
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(38) If h inherits ring homomorphism, then Spec(h)−1 PrimeIdeals(A,E) =
PrimeIdeals(B, h◦E).
Proof: Spec(h)−1 PrimeIdeals(A,E) ⊆ PrimeIdeals(B, h◦E). Consider q
being a prime ideal of B such that x = q and h◦E ⊆ q. h−1(q) is a prime
ideal of A. �

(39) If h inherits ring homomorphism, then Spec(h) is continuous. The the-
orem is a consequence of (38).
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