

# Binary Representation of Natural Numbers

Hiroyuki Okazaki<sup>1</sup> Shinshu University Nagano, Japan

**Summary.** Binary representation of integers [5], [3] and arithmetic operations on them have already been introduced in Mizar Mathematical Library [8, 7, 6, 4]. However, these articles formalize the notion of integers as mapped into a certain length tuple of boolean values.

In this article we formalize, by means of Mizar system [2], [1], the binary representation of natural numbers which maps  $\mathbb{N}$  into bitstreams.

MSC: 68W01 68T99 03B35

Keywords: algorithms

MML identifier: BINARI\_6, version: 8.1.08 5.53.1335

#### 1. Preliminaries

Let us consider a natural number x. Now we state the propositions:

- (1) There exists a natural number m such that  $x < 2^m$ .
- (2) If  $x \neq 0$ , then there exists a natural number n such that  $2^n \leqslant x < 2^{n+1}$ . PROOF: Define  $\mathcal{Q}[\text{natural number}] \equiv x < 2^{\$_1}$ . There exists a natural number m such that  $\mathcal{Q}[m]$ . Consider k being a natural number such that  $\mathcal{Q}[k]$  and for every natural number n such that  $\mathcal{Q}[n]$  holds  $k \leqslant n$ . Reconsider  $k_1 = k 1$  as a natural number.  $2^{k_1} \leqslant x$ .  $\square$
- (3) Let us consider a natural number x, and natural numbers  $n_1$ ,  $n_2$ . If  $2^{n_1} \leqslant x < 2^{n_1+1}$  and  $2^{n_2} \leqslant x < 2^{n_2+1}$ , then  $n_1 = n_2$ .

<sup>&</sup>lt;sup>1</sup>This study was supported in part by JSPS KAKENHI Grant Numbers JP17K00182. The author would also like to express gratitude to Prof. Yasunari Shidama for his support and encouragement.

$$(4) \quad \langle 0 \rangle = \langle \underbrace{0, \dots, 0}_{1} \rangle.$$

(5) Let us consider natural numbers 
$$n_1$$
,  $n_2$ . Then  $\langle \underbrace{0,\ldots,0}_{n_1} \rangle \cap \langle \underbrace{0,\ldots,0}_{n_2} \rangle = \langle \underbrace{0,\ldots,0}_{n_1+n_2} \rangle$ .

### 2. Homomorphism from the Natural Numbers to the Bitstreams

Let x be a natural number. The functor LenBinSeq(x) yielding a non zero natural number is defined by

(Def. 1) (i) 
$$it = 1$$
, **if**  $x = 0$ ,

(ii) there exists a natural number n such that  $2^n \le x < 2^{n+1}$  and it = n+1, otherwise.

Let us consider a natural number x. Now we state the propositions:

- (6)  $x < 2^{\operatorname{LenBinSeq}(x)}$ .
- (7) x = AbsVal(LenBinSeq(x) BinarySequence(x)). The theorem is a consequence of (6).
- (8) Let us consider a natural number n, and an (n+1)-tuple x of Boolean. If x(n+1) = 1, then  $2^n \leq \text{AbsVal}(x) < 2^{n+1}$ .
- (9) There exists a function F from  $Boolean^*$  into  $\mathbb{N}$  such that for every element x of  $Boolean^*$ , there exists a  $(\operatorname{len} x)$ -tuple  $x_0$  of Boolean such that  $x = x_0$  and  $F(x) = \operatorname{AbsVal}(x_0)$ .

PROOF: Define  $\mathcal{P}[\text{element of } Boolean^*, \text{object}] \equiv \text{there exists a (len $_1)}$ tuple  $x_0$  of Boolean such that  $\$_1 = x_0$  and  $\$_2 = \text{AbsVal}(x_0)$ . For every
element x of  $Boolean^*$ , there exists an element y of  $\mathbb{N}$  such that  $\mathcal{P}[x, y]$ .
Consider f being a function from  $Boolean^*$  into  $\mathbb{N}$  such that for every
element x of  $Boolean^*$ ,  $\mathcal{P}[x, f(x)]$ .  $\square$ 

The functor Nat2BinLen yielding a function from  $\mathbb N$  into  $Boolean^*$  is defined by

- (Def. 2) for every element x of  $\mathbb{N}$ , it(x) = LenBinSeq(x) BinarySequence(x). Now we state the propositions:
  - (10) Let us consider an element x of  $\mathbb{N}$ , and a (LenBinSeq(x))-tuple y of Boolean. If (Nat2BinLen)(x) = y, then AbsVal(y) = x. The theorem is a consequence of (7).
  - (11) rng Nat2BinLen =  $\{x, \text{ where } x \text{ is an element of } Boolean^* : x(len x) = 1\} \cup \{\langle 0 \rangle\}.$

PROOF: For every object  $z, z \in \operatorname{rng} \operatorname{Nat2BinLen}$  iff  $z \in \{x, \text{ where } x \text{ is an element of } Boolean^* : x(\operatorname{len} x) = 1\} \cup \{\langle 0 \rangle\}$ .  $\square$ 

(12) Nat2BinLen is one-to-one.

Let x, y be elements of  $Boolean^*$ . Assume  $len x \neq 0$  and  $len y \neq 0$ . The functor MaxLen(x, y) yielding a non zero natural number is defined by the term (Def. 3) max(len x, len y).

Let K be a natural number and x be an element of  $Boolean^*$ . The functor ExtBit(x, K) yielding a K-tuple of Boolean is defined by the term

$$(\text{Def. 4}) \quad \left\{ \begin{array}{ll} x \mathbin{\widehat{\hspace{1ex}}} \langle \underline{0, \dots, 0} \rangle, & \text{if } \operatorname{len} x \leqslant K, \\ x {\upharpoonright} K, & \text{otherwise.} \end{array} \right.$$

Now we state the propositions:

- (13) Let us consider a natural number K, and an element x of  $Boolean^*$ . Suppose len  $x \leq K$ . Then  $\operatorname{ExtBit}(x, K+1) = \operatorname{ExtBit}(x, K) \cap \langle 0 \rangle$ .
- (14) Let us consider a non zero natural number K, and an element x of  $Boolean^*$ . If len x = K, then  $\operatorname{ExtBit}(x, K) = x$ .
- (15) Let us consider a non zero natural number K, K-tuples x, y of Boolean, and (K+1)-tuples  $x_1$ ,  $y_1$  of Boolean. Suppose  $x_1 = x^{\smallfrown}\langle 0 \rangle$  and  $y_1 = y^{\smallfrown}\langle 0 \rangle$ . Then  $x_1$  and  $y_1$  are summable.
- (16) Let us consider a non zero natural number K, and a K-tuple y of Boolean. Suppose  $y = \langle \underbrace{0, \dots, 0}_{K} \rangle$ . Let us consider a non zero natural number n. If  $n \leq K$ , then  $y_{/n} = 0$ .
- (17) Let us consider a non zero natural number K, and K-tuples x, y of Boolean. Then  $\operatorname{carry}(x,y) = \operatorname{carry}(y,x)$ .
- (18) Let us consider a non zero natural number K, and K-tuples x, y of Boolean. Suppose  $y = \langle \underbrace{0, \dots, 0}_{K} \rangle$ . Let us consider a non zero natural num-

ber n. Suppose  $n \leq K$ . Then

- (i)  $(\operatorname{carry}(x, y))_{/n} = 0$ , and
- (ii)  $(\operatorname{carry}(y, x))_{/n} = 0$ .

PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{if } 1 \leqslant \$_1 \leqslant K$ , then  $(\text{carry}(x,y))_{/\$_1} = 0$ . For every non zero natural number i such that  $\mathcal{P}[i]$  holds  $\mathcal{P}[i+1]$ . For every non zero natural number k,  $\mathcal{P}[k]$ .  $\square$ 

Let us consider a non zero natural number K and K-tuples x, y of Boolean. Now we state the propositions:

(19) x + y = y + x. The theorem is a consequence of (17).

(20) If 
$$y = \langle \underbrace{0, \dots, 0}_{K} \rangle$$
, then  $x + y = x$  and  $y + x = x$ .

PROOF: For every natural number  $i$  such that  $i \in \operatorname{Seg} K$  holds  $(x + y)(i) = x(i)$ .  $\square$ 

(21) Let us consider a non zero natural number K, and K-tuples x, y of Boolean. If  $x(\operatorname{len} x) = 1$  and  $y(\operatorname{len} y) = 1$ , then x and y are not summable.

Let us consider a non zero natural number K and K-tuples x, y of Boolean. Now we state the propositions:

- (22) If x and y are summable, then y and x are summable. The theorem is a consequence of (17).
- (23) If x and y are summable and  $(x(\ln x) = 1 \text{ or } y(\ln y) = 1)$ , then  $(x + y)(\ln(x + y)) = 1$ . The theorem is a consequence of (19) and (22).
- (24) Let us consider a non zero natural number K, K-tuples x, y of Boolean, and (K+1)-tuples  $x_1$ ,  $y_1$  of Boolean. Suppose x and y are not summable and  $x_1 = x \cap \langle 0 \rangle$  and  $y_1 = y \cap \langle 0 \rangle$ . Then  $(x_1 + y_1)(\operatorname{len}(x_1 + y_1)) = 1$ . PROOF: Set  $K_1 = K + 1$ . Reconsider  $S = \operatorname{carry}(x, y) \cap \langle 1 \rangle$  as a  $K_1$ -tuple of Boolean.  $S_{/1} = false$ . For every natural number i such that  $1 \leq i < K_1$  holds  $S_{/i+1} = (x_{1/i} \wedge y_{1/i} \vee x_{1/i} \wedge S_{/i}) \vee y_{1/i} \wedge S_{/i}$ .  $\square$

Let x, y be elements of  $Boolean^*$ . The functor x + y yielding an element of  $Boolean^*$  is defined by the term

```
 \begin{cases} y, \mathbf{if} & \operatorname{len} x = 0, \\ x, \mathbf{if} & \operatorname{len} y = 0, \\ \operatorname{ExtBit}(x, \operatorname{MaxLen}(x,y)) + \operatorname{ExtBit}(y, \operatorname{MaxLen}(x,y)), \\ & \mathbf{if} & \operatorname{ExtBit}(x, \operatorname{MaxLen}(x,y)) \text{ and } \operatorname{ExtBit}(y, \operatorname{MaxLen}(x,y)) \\ \operatorname{are summable and } \operatorname{len} x \neq 0 \text{ and } \operatorname{len} y \neq 0, \\ \operatorname{ExtBit}(x, \operatorname{MaxLen}(x,y) + 1) + \operatorname{ExtBit}(y, \operatorname{MaxLen}(x,y) + 1), \\ \mathbf{otherwise}. \end{cases}
```

Let F be a function from  $\mathbb{N}$  into  $Boolean^*$  and x be an element of  $\mathbb{N}$ . Let us note that the functor F(x) yields an element of  $Boolean^*$ . Now we state the propositions:

- (25) Let us consider an element x of  $Boolean^*$ . If  $x \in \text{rng Nat2BinLen}$ , then  $1 \leq \text{len } x$ .
- (26) Let us consider elements x, y of  $Boolean^*$ . Suppose  $x, y \in \text{rng Nat2BinLen}$ . Then  $x + y \in \text{rng Nat2BinLen}$ . The theorem is a consequence of (11), (25), (4), (18), (16), (20), (14), (21), (23), (13), and (24).
- (27) Let us consider a non zero natural number n, an n-tuple x of Boolean, natural numbers m, l, and an l-tuple y of Boolean. Suppose  $y = x \land \langle 0, \ldots, 0 \rangle$ . Then AbsVal(y) = AbsVal(x).

PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{for every natural number } l \text{ for every } l\text{-tuple } y \text{ of } Boolean \text{ such that } y = x \cap (\underbrace{0, \dots, 0}_{\$_1}) \text{ holds AbsVal}(y) =$ 

AbsVal(x). For every natural number m such that  $\mathcal{P}[m]$  holds  $\mathcal{P}[m+1]$ .  $\mathcal{P}[0]$ . For every natural number m,  $\mathcal{P}[m]$ .  $\square$ 

- (28) Let us consider a natural number n, an element x of  $\mathbb{N}$ , and an n-tuple y of Boolean. Suppose y = (Nat2BinLen)(x). Then
  - (i) n = LenBinSeq(x), and
  - (ii) AbsVal(y) = x, and
  - (iii) (Nat2BinLen)(AbsVal(y)) = y.

The theorem is a consequence of (6).

- (29) Let us consider elements x, y of  $\mathbb{N}$ . Then (Nat2BinLen)(x + y) = (Nat2BinLen)(x) + (Nat2BinLen)(y). The theorem is a consequence of (7), (27), (26), (28), (13), and (15).
- (30) Let us consider elements x, y of  $Boolean^*$ . If x,  $y \in \text{rng Nat2BinLen}$ , then x + y = y + x. The theorem is a consequence of (29).
- (31) Let us consider elements x, y, z of  $Boolean^*$ . If  $x, y, z \in \text{rng Nat2BinLen}$ , then (x + y) + z = x + (y + z). The theorem is a consequence of (29).

## 3. Homomorphism from the Bitstreams to the Natural Numbers

Let x be an element of  $Boolean^*$ . The functor ExtAbsVal(x) yielding a natural number is defined by

(Def. 6) there exists a natural number n and there exists an n-tuple y of Boolean such that y = x and it = AbsVal(y).

Now we state the proposition:

(32) There exists a function F from  $Boolean^*$  into  $\mathbb N$  such that for every element x of  $Boolean^*$ ,  $F(x) = \operatorname{ExtAbsVal}(x)$ .

PROOF: Define  $\mathcal{P}[\text{element of } Boolean^*, \text{object}] \equiv \$_2 = \text{ExtAbsVal}(\$_1)$ . For every element x of  $Boolean^*$ , there exists an element y of  $\mathbb{N}$  such that  $\mathcal{P}[x,y]$ . Consider f being a function from  $Boolean^*$  into  $\mathbb{N}$  such that for every element x of  $Boolean^*$ ,  $\mathcal{P}[x,f(x)]$ .  $\square$ 

The functor BinLen2Nat yielding a function from  $Boolean^*$  into  $\mathbb N$  is defined by

(Def. 7) for every element x of  $Boolean^*$ , it(x) = ExtAbsVal(x).

Let F be a function from  $Boolean^*$  into  $\mathbb{N}$  and x be an element of  $Boolean^*$ . Let us observe that the functor F(x) yields an element of  $\mathbb{N}$ . Observe that BinLen2Nat is onto.

Now we state the propositions:

- (33) Let us consider an element x of  $Boolean^*$ , and a natural number K. Suppose  $len x \neq 0$  and  $len x \leq K$ . Then ExtAbsVal(x) = AbsVal(ExtBit(x, K)). The theorem is a consequence of (27).
- (34) Let us consider elements x, y of  $Boolean^*$ . Then (BinLen2Nat)(x+y) = (BinLen2Nat)(x) + (BinLen2Nat)(y). The theorem is a consequence of (33), (13), and (15).

The functor EqBinLen2Nat yielding an equivalence relation of *Boolean\** is defined by

(Def. 8) for every objects  $x, y, \langle x, y \rangle \in it \text{ iff } x, y \in Boolean^* \text{ and } (BinLen2Nat)(x) = (BinLen2Nat)(y).$ 

The functor QuBinLen2Nat yielding a function from Classes EqBinLen2Nat into  $\mathbb N$  is defined by

(Def. 9) for every element A of Classes EqBinLen2Nat, there exists an object x such that  $x \in A$  and it(A) = (BinLen2Nat)(x).

Let us observe that QuBinLen2Nat is one-to-one and onto.

Now we state the proposition:

- (35) Let us consider an element x of  $Boolean^*$ . Then  $(QuBinLen2Nat)([x]_{EqBinLen2Nat}) = (BinLen2Nat)(x)$ .
- Let A, B be elements of Classes EqBinLen2Nat. The functor A+B yielding an element of Classes EqBinLen2Nat is defined by
- (Def. 10) there exist elements x, y of  $Boolean^*$  such that  $x \in A$  and  $y \in B$  and  $it = [x + y]_{\text{EqBinLen2Nat}}$ .

Now we state the proposition:

(36) Let us consider elements A, B of Classes EqBinLen2Nat, and elements x, y of  $Boolean^*$ . If  $x \in A$  and  $y \in B$ , then  $A + B = [x + y]_{EqBinLen2Nat}$ . The theorem is a consequence of (34).

Let us consider elements  $A,\,B$  of Classes EqBinLen2Nat. Now we state the propositions:

- (37) (QuBinLen2Nat)(A+B) = (QuBinLen2Nat)(A) + (QuBinLen2Nat)(B). The theorem is a consequence of (36), (35), and (34).
- (38) A + B = B + A. The theorem is a consequence of (36), (35), and (34).
- (39) Let us consider elements A, B, C of Classes EqBinLen2Nat. Then (A + B) + C = A + (B + C). The theorem is a consequence of (36), (35), and (34).

(40) Let us consider a natural number n, and elements z,  $z_1$  of  $Boolean^*$ . Suppose  $z = \varepsilon_{Boolean}$  and  $z_1 = \langle \underbrace{0, \dots, 0}_{n} \rangle$ .

Then  $[z]_{\text{EqBinLen2Nat}} = [z_1]_{\text{EqBinLen2Nat}}^n$ .

- (41) Let us consider elements A, Z of Classes EqBinLen2Nat, a natural number n, and an element z of  $Boolean^*$ . Suppose  $Z = [z]_{\text{EqBinLen2Nat}}$  and  $z = \langle \underbrace{0, \dots, 0}_{n} \rangle$ . Then
  - (i) A + Z = A, and
  - (ii) Z + A = A.

The theorem is a consequence of (40), (36), and (38).

#### References

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Čarette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8\_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms, Third Edition. Addison-Wesley, 1997.
- [4] Hisayoshi Kunimune and Yatsuka Nakamura. A representation of integers by binary arithmetics and addition of integers. *Formalized Mathematics*, 11(2):175–178, 2003.
- [5] Gottfried Wilhelm Leibniz. Explication de l'Arithmétique Binaire, volume 7. C. Gerhardt, Die Mathematische Schriften edition, 223 pages, 1879.
- [6] Robert Milewski. Binary arithmetics. Binary sequences. Formalized Mathematics, 7(1): 23–26, 1998.
- [7] Yasuho Mizuhara and Takaya Nishiyama. Binary arithmetics, addition and subtraction of integers. Formalized Mathematics, 5(1):27–29, 1996.
- [8] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4 (1):83–86, 1993.

Accepted September 29, 2018