
FORMALIZED MATHEMATICS

Vol. 26, No. 3, Pages 223–229, 2018
DOI: 10.2478/forma-2018-0020 https://www.sciendo.com/

Binary Representation of Natural Numbers

Hiroyuki Okazaki1

Shinshu University
Nagano, Japan

Summary. Binary representation of integers [5], [3] and arithmetic ope-
rations on them have already been introduced in Mizar Mathematical Library
[8, 7, 6, 4]. However, these articles formalize the notion of integers as mapped
into a certain length tuple of boolean values.

In this article we formalize, by means of Mizar system [2], [1], the binary
representation of natural numbers which maps N into bitstreams.

MSC: 68W01 68T99 03B35

Keywords: algorithms

MML identifier: BINARI 6, version: 8.1.08 5.53.1335

1. Preliminaries

Let us consider a natural number x. Now we state the propositions:

(1) There exists a natural number m such that x < 2m.

(2) If x 6= 0, then there exists a natural number n such that 2n ¬ x < 2n+1.
Proof: Define Q[natural number] ≡ x < 2$1 . There exists a natural num-
ber m such that Q[m]. Consider k being a natural number such that Q[k]
and for every natural number n such that Q[n] holds k ¬ n. Reconsider
k1 = k − 1 as a natural number. 2k1 ¬ x. �

(3) Let us consider a natural number x, and natural numbers n1, n2. If
2n1 ¬ x < 2n1+1 and 2n2 ¬ x < 2n2+1, then n1 = n2.

1This study was supported in part by JSPS KAKENHI Grant Numbers JP17K00182. The
author would also like to express gratitude to Prof. Yasunari Shidama for his support and
encouragement.

c© 2018 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)223

https://content.sciendo.com/view/journals/forma/forma-overview.xml
http://zbmath.org/classification/?q=cc:68W01
http://zbmath.org/classification/?q=cc:68T99
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/binari_6.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

224 hiroyuki okazaki

(4) 〈0〉 = 〈0, . . . , 0︸ ︷︷ ︸
1

〉.

(5) Let us consider natural numbers n1, n2. Then 〈0, . . . , 0︸ ︷︷ ︸
n1

〉 a 〈0, . . . , 0︸ ︷︷ ︸
n2

〉 =

〈0, . . . , 0︸ ︷︷ ︸
n1+n2

〉.

2. Homomorphism from the Natural Numbers to the Bitstreams

Let x be a natural number. The functor LenBinSeq(x) yielding a non zero
natural number is defined by

(Def. 1) (i) it = 1, if x = 0,

(ii) there exists a natural number n such that 2n ¬ x < 2n+1 and it =
n+ 1, otherwise.

Let us consider a natural number x. Now we state the propositions:

(6) x < 2LenBinSeq(x).

(7) x = AbsVal(LenBinSeq(x) -BinarySequence(x)). The theorem is a con-
sequence of (6).

(8) Let us consider a natural number n, and an (n+ 1)-tuple x of Boolean.
If x(n+ 1) = 1, then 2n ¬ AbsVal(x) < 2n+1.

(9) There exists a function F from Boolean∗ into N such that for every
element x of Boolean∗, there exists a (lenx)-tuple x0 of Boolean such that
x = x0 and F (x) = AbsVal(x0).
Proof: Define P[element of Boolean∗, object] ≡ there exists a (len $1)-
tuple x0 of Boolean such that $1 = x0 and $2 = AbsVal(x0). For every
element x of Boolean∗, there exists an element y of N such that P[x, y].
Consider f being a function from Boolean∗ into N such that for every
element x of Boolean∗, P[x, f(x)]. �

The functor Nat2BinLen yielding a function from N into Boolean∗ is defined
by

(Def. 2) for every element x of N, it(x) = LenBinSeq(x) -BinarySequence(x).

Now we state the propositions:

(10) Let us consider an element x of N, and a (LenBinSeq(x))-tuple y of
Boolean. If (Nat2BinLen)(x) = y, then AbsVal(y) = x. The theorem is
a consequence of (7).

(11) rng Nat2BinLen = {x, where x is an element of Boolean∗ : x(lenx) =
1} ∪ {〈0〉}.

Binary representation of natural numbers 225

Proof: For every object z, z ∈ rng Nat2BinLen iff z ∈ {x, where x is
an element of Boolean∗ : x(lenx) = 1} ∪ {〈0〉}. �

(12) Nat2BinLen is one-to-one.

Let x, y be elements of Boolean∗. Assume lenx 6= 0 and len y 6= 0. The
functor MaxLen(x, y) yielding a non zero natural number is defined by the term

(Def. 3) max(lenx, len y).

Let K be a natural number and x be an element of Boolean∗. The functor
ExtBit(x,K) yielding a K-tuple of Boolean is defined by the term

(Def. 4)


x a 〈0, . . . , 0︸ ︷︷ ︸

K−′lenx

〉, if lenx ¬ K,

x�K, otherwise.
Now we state the propositions:

(13) Let us consider a natural number K, and an element x of Boolean∗.
Suppose lenx ¬ K. Then ExtBit(x,K + 1) = ExtBit(x,K) a 〈0〉.

(14) Let us consider a non zero natural number K, and an element x of
Boolean∗. If lenx = K, then ExtBit(x,K) = x.

(15) Let us consider a non zero natural number K, K-tuples x, y of Boolean,
and (K+1)-tuples x1, y1 of Boolean. Suppose x1 = xa〈0〉 and y1 = ya〈0〉.
Then x1 and y1 are summable.

(16) Let us consider a non zero natural number K, and a K-tuple y of
Boolean. Suppose y = 〈0, . . . , 0︸ ︷︷ ︸

K

〉. Let us consider a non zero natural num-

ber n. If n ¬ K, then y/n = 0.

(17) Let us consider a non zero natural number K, and K-tuples x, y of
Boolean. Then carry(x, y) = carry(y, x).

(18) Let us consider a non zero natural number K, and K-tuples x, y of
Boolean. Suppose y = 〈0, . . . , 0︸ ︷︷ ︸

K

〉. Let us consider a non zero natural num-

ber n. Suppose n ¬ K. Then

(i) (carry(x, y))/n = 0, and

(ii) (carry(y, x))/n = 0.

Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ K, then (carry(x, y))/$1 =
0. For every non zero natural number i such that P[i] holds P[i+ 1]. For
every non zero natural number k, P[k]. �

Let us consider a non zero natural number K and K-tuples x, y of Boolean.
Now we state the propositions:

(19) x+ y = y + x. The theorem is a consequence of (17).

226 hiroyuki okazaki

(20) If y = 〈0, . . . , 0︸ ︷︷ ︸
K

〉, then x+ y = x and y + x = x.

Proof: For every natural number i such that i ∈ SegK holds (x+y)(i) =
x(i). �

(21) Let us consider a non zero natural number K, and K-tuples x, y of
Boolean. If x(lenx) = 1 and y(len y) = 1, then x and y are not summable.

Let us consider a non zero natural number K and K-tuples x, y of Boolean.
Now we state the propositions:

(22) If x and y are summable, then y and x are summable. The theorem is
a consequence of (17).

(23) If x and y are summable and (x(lenx) = 1 or y(len y) = 1), then (x +
y)(len(x+ y)) = 1. The theorem is a consequence of (19) and (22).

(24) Let us consider a non zero natural number K, K-tuples x, y of Boolean,
and (K + 1)-tuples x1, y1 of Boolean. Suppose x and y are not summable
and x1 = x a 〈0〉 and y1 = y a 〈0〉. Then (x1 + y1)(len(x1 + y1)) = 1.
Proof: Set K1 = K + 1. Reconsider S = carry(x, y) a 〈1〉 as a K1-tuple
of Boolean. S/1 = false. For every natural number i such that 1 ¬ i < K1
holds S/i+1 = (x1/i ∧ y1/i ∨ x1/i ∧ S/i) ∨ y1/i ∧ S/i. �

Let x, y be elements of Boolean∗. The functor x+ y yielding an element of
Boolean∗ is defined by the term

(Def. 5)



y, if lenx = 0,
x, if len y = 0,
ExtBit(x,MaxLen(x, y)) + ExtBit(y,MaxLen(x, y)),
if ExtBit(x,MaxLen(x, y)) and ExtBit(y,MaxLen(x, y))
are summable and lenx 6= 0 and len y 6= 0,

ExtBit(x,MaxLen(x, y) + 1) + ExtBit(y,MaxLen(x, y) + 1),
otherwise.

Let F be a function from N into Boolean∗ and x be an element of N. Let
us note that the functor F (x) yields an element of Boolean∗. Now we state the
propositions:

(25) Let us consider an element x of Boolean∗. If x ∈ rng Nat2BinLen, then
1 ¬ lenx.

(26) Let us consider elements x, y of Boolean∗. Suppose x, y ∈ rng Nat2BinLen.
Then x+y ∈ rng Nat2BinLen. The theorem is a consequence of (11), (25),
(4), (18), (16), (20), (14), (21), (23), (13), and (24).

(27) Let us consider a non zero natural number n, an n-tuple x of Boolean,
natural numbers m, l, and an l-tuple y of Boolean. Suppose y = x a

〈0, . . . , 0︸ ︷︷ ︸
m

〉. Then AbsVal(y) = AbsVal(x).

Binary representation of natural numbers 227

Proof: Define P[natural number] ≡ for every natural number l for eve-
ry l-tuple y of Boolean such that y = x a 〈0, . . . , 0︸ ︷︷ ︸

$1

〉 holds AbsVal(y) =

AbsVal(x). For every natural number m such that P[m] holds P[m + 1].
P[0]. For every natural number m, P[m]. �

(28) Let us consider a natural number n, an element x of N, and an n-tuple
y of Boolean. Suppose y = (Nat2BinLen)(x). Then

(i) n = LenBinSeq(x), and

(ii) AbsVal(y) = x, and

(iii) (Nat2BinLen)(AbsVal(y)) = y.

The theorem is a consequence of (6).

(29) Let us consider elements x, y of N. Then (Nat2BinLen)(x+ y) =
(Nat2BinLen)(x)+(Nat2BinLen)(y). The theorem is a consequence of (7),
(27), (26), (28), (13), and (15).

(30) Let us consider elements x, y of Boolean∗. If x, y ∈ rng Nat2BinLen,
then x+ y = y + x. The theorem is a consequence of (29).

(31) Let us consider elements x, y, z of Boolean∗. If x, y, z ∈ rng Nat2BinLen,
then (x+ y) + z = x+ (y + z). The theorem is a consequence of (29).

3. Homomorphism from the Bitstreams to the Natural Numbers

Let x be an element of Boolean∗. The functor ExtAbsVal(x) yielding a na-
tural number is defined by

(Def. 6) there exists a natural number n and there exists an n-tuple y of Boolean
such that y = x and it = AbsVal(y).

Now we state the proposition:

(32) There exists a function F from Boolean∗ into N such that for every
element x of Boolean∗, F (x) = ExtAbsVal(x).
Proof: Define P[element of Boolean∗, object] ≡ $2 = ExtAbsVal($1). For
every element x of Boolean∗, there exists an element y of N such that
P[x, y]. Consider f being a function from Boolean∗ into N such that for
every element x of Boolean∗, P[x, f(x)]. �

The functor BinLen2Nat yielding a function from Boolean∗ into N is defined
by

(Def. 7) for every element x of Boolean∗, it(x) = ExtAbsVal(x).

228 hiroyuki okazaki

Let F be a function from Boolean∗ into N and x be an element of Boolean∗.
Let us observe that the functor F (x) yields an element of N. Observe that
BinLen2Nat is onto.

Now we state the propositions:

(33) Let us consider an element x of Boolean∗, and a natural number K. Sup-
pose lenx 6= 0 and lenx ¬ K. Then ExtAbsVal(x) = AbsVal(ExtBit(x,K)).
The theorem is a consequence of (27).

(34) Let us consider elements x, y of Boolean∗. Then (BinLen2Nat)(x+ y) =
(BinLen2Nat)(x) + (BinLen2Nat)(y). The theorem is a consequence of
(33), (13), and (15).

The functor EqBinLen2Nat yielding an equivalence relation of Boolean∗ is
defined by

(Def. 8) for every objects x, y, 〈〈x, y〉〉 ∈ it iff x, y ∈ Boolean∗ and (BinLen2Nat)(x)
= (BinLen2Nat)(y).

The functor QuBinLen2Nat yielding a function from Classes EqBinLen2Nat
into N is defined by

(Def. 9) for every element A of Classes EqBinLen2Nat, there exists an object x
such that x ∈ A and it(A) = (BinLen2Nat)(x).

Let us observe that QuBinLen2Nat is one-to-one and onto.
Now we state the proposition:

(35) Let us consider an element x of Boolean∗.
Then (QuBinLen2Nat)([x]EqBinLen2Nat) = (BinLen2Nat)(x).

Let A, B be elements of Classes EqBinLen2Nat. The functor A+B yielding
an element of Classes EqBinLen2Nat is defined by

(Def. 10) there exist elements x, y of Boolean∗ such that x ∈ A and y ∈ B and
it = [x+ y]EqBinLen2Nat.

Now we state the proposition:

(36) Let us consider elements A, B of Classes EqBinLen2Nat, and elements
x, y of Boolean∗. If x ∈ A and y ∈ B, then A + B = [x+ y]EqBinLen2Nat.
The theorem is a consequence of (34).

Let us consider elements A, B of Classes EqBinLen2Nat. Now we state the
propositions:

(37) (QuBinLen2Nat)(A+B) = (QuBinLen2Nat)(A)+(QuBinLen2Nat)(B).
The theorem is a consequence of (36), (35), and (34).

(38) A+B = B +A. The theorem is a consequence of (36), (35), and (34).

(39) Let us consider elements A, B, C of Classes EqBinLen2Nat. Then (A+
B) + C = A + (B + C). The theorem is a consequence of (36), (35), and
(34).

Binary representation of natural numbers 229

(40) Let us consider a natural number n, and elements z, z1 of Boolean∗.
Suppose z = εBoolean and z1 = 〈0, . . . , 0︸ ︷︷ ︸

n

〉.

Then [z]EqBinLen2Nat = [z1]EqBinLen2Nat.

(41) Let us consider elements A, Z of Classes EqBinLen2Nat, a natural num-
ber n, and an element z of Boolean∗. Suppose Z = [z]EqBinLen2Nat and
z = 〈0, . . . , 0︸ ︷︷ ︸

n

〉. Then

(i) A+ Z = A, and

(ii) Z +A = A.

The theorem is a consequence of (40), (36), and (38).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[3] Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms,
Third Edition. Addison-Wesley, 1997.

[4] Hisayoshi Kunimune and Yatsuka Nakamura. A representation of integers by binary ari-
thmetics and addition of integers. Formalized Mathematics, 11(2):175–178, 2003.

[5] Gottfried Wilhelm Leibniz. Explication de l’Arithmétique Binaire, volume 7. C. Gerhardt,
Die Mathematische Schriften edition, 223 pages, 1879.

[6] Robert Milewski. Binary arithmetics. Binary sequences. Formalized Mathematics, 7(1):
23–26, 1998.

[7] Yasuho Mizuhara and Takaya Nishiyama. Binary arithmetics, addition and subtraction of
integers. Formalized Mathematics, 5(1):27–29, 1996.

[8] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4
(1):83–86, 1993.

Accepted September 29, 2018

http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://fm.mizar.org/2003-11/pdf11-2/binari_4.pdf
http://fm.mizar.org/2003-11/pdf11-2/binari_4.pdf
http://fm.mizar.org/1998-7/pdf7-1/binari_3.pdf
http://fm.mizar.org/1996-5/pdf5-1/binari_2.pdf
http://fm.mizar.org/1996-5/pdf5-1/binari_2.pdf
http://fm.mizar.org/1993-4/pdf4-1/binarith.pdf

	=0pt Binary Representation of Natural Numbers By Hiroyuki Okazaki

