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Fubini’s Theorem for Non-Negative or
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Summary. The goal of this article is to show Fubini’s theorem for non-
negative or non-positive measurable functions [10], [2], [3], using the Mizar system
[1], [9]. We formalized Fubini’s theorem in our previous article [5], but in that
case we showed the Fubini’s theorem for measurable sets and it was not enough
as the integral does not appear explicitly.

On the other hand, the theorems obtained in this paper are more general
and it can be easily extended to a general integrable function. Furthermore, it
also can be easy to extend to functional space Lp [12]. It should be mentioned
also that Hölzl and Heller [11] have introduced the Lebesgue integration theory
in Isabelle/HOL and have proved Fubini’s theorem there.
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1. Extended Real-Valued Characteristic Function

Let A, X be sets and e be an extended real. The functor χe,A,X yielding
a function from X into R is defined by

(Def. 1) for every object x such that x ∈ X holds if x ∈ A, then it(x) = e and if
x /∈ A, then it(x) = 0.

Now we state the propositions:

(1) Let us consider a non empty set X, a set A, and a real number r. Then
r · χA,X = χr,A,X .
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(2) Let us consider a non empty set X, and a set A. Then

(i) χ+∞,A,X = χA,X , and

(ii) χ−∞,A,X = −χA,X .

(3) Let us consider sets X, A. Then χA,X is without +∞ and without −∞.

(4) Let us consider a non empty set X, a set A, and a real number r. Then

(i) rngχr,A,X ⊆ {0, r}, and

(ii) χr,A,X is without +∞ and without −∞.

The theorem is a consequence of (3) and (1).

(5) Let us consider a non empty set X, a σ-field S of subsets of X, a non
empty partial function f from X to R, and a σ-measure M on S. Suppose
f is simple function in S. Then there exists a non empty finite sequence E
of separated subsets of S and there exists a finite sequence a of elements
of R and there exists a finite sequence r of elements of R such that E and
a are representation of f and for every natural number n, a(n) = r(n) and
f�E(n) = χ

r(n),E(n),X�E(n) and if E(n) = ∅, then r(n) = 0.
Proof: Consider E being a finite sequence of separated subsets of S, b be-
ing a finite sequence of elements of R such that E and b are representation
of f . For every natural number n such that E(n) 6= ∅ holds b(n) ∈ R by
[8, (32)]. Define Q[natural number, object] ≡ if E($1) 6= ∅, then $2 = b($1)
and if E($1) = ∅, then $2 = 0. For every natural number n such that
n ∈ Seg lenE there exists an element a of R such that Q[n, a]. Consider
a being a finite sequence of elements of R such that dom a = Seg lenE
and for every natural number n such that n ∈ Seg lenE holds Q[n, a(n)].
Define R[natural number, object] ≡ $2 = a($1). For every natural num-
ber n such that n ∈ Seg lenE there exists an element r of R such that
R[n, r]. Consider r being a finite sequence of elements of R such that
dom r = Seg lenE and for every natural number n such that n ∈ Seg lenE
holds R[n, r(n)]. For every natural number n such that n ∈ domE for
every object x such that x ∈ E(n) holds f(x) = a(n). For every natural
number n, a(n) = r(n) and f�E(n) = χ

r(n),E(n),X�E(n) and if E(n) = ∅,
then r(n) = 0. �

Let F be a finite sequence-like function. Let us observe that F is disjoint
valued if and only if the condition (Def. 2) is satisfied.

(Def. 2) for every natural numbers m, n such that m, n ∈ domF and m 6= n

holds F (m) misses F (n).

Now we state the propositions:
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(6) Let us consider a non empty set X, a σ-field S of subsets of X, and
elements E1, E2 of S. Suppose E1 misses E2. Then 〈E1, E2〉 is a finite
sequence of separated subsets of S.

(7) Let us consider a non empty setX, subsetsA1,A2 ofX, and real numbers
r1, r2. Then 〈χr1,A1,X , χr2,A2,X〉 is a summable finite sequence of elements

of RX
. The theorem is a consequence of (4).

(8) Let us consider a non empty set X, and a summable finite sequence F of
elements of RX

. Suppose lenF ­ 2. Then ((
∑κ
α=0 F (α))κ∈N)/2 = F/1+F/2.

(9) Let us consider a non empty set X, and a function f from X into R.
Then f + (X 7−→ 0R) = f .

(10) Let us consider a non empty set X, and a summable finite sequence F
of elements of RX

. Then

(i) domF = dom(
∑κ
α=0 F (α))κ∈N, and

(ii) for every natural number n such that n ∈ domF holds
((
∑κ
α=0 F (α))κ∈N)/n = (

∑κ
α=0 F (α))κ∈N(n), and

(iii) for every natural number n and for every element x ofX such that 1 ¬
n < lenF holds ((

∑κ
α=0 F (α))κ∈N)/n+1(x) = ((

∑κ
α=0 F (α))κ∈N)/n(x)+

F/n+1(x).

Proof: For every natural number n and for every element x ofX such that
1 ¬ n < lenF holds ((

∑κ
α=0 F (α))κ∈N)/n+1(x) = ((

∑κ
α=0 F (α))κ∈N)/n(x)+

F/n+1(x). �

(11) Let us consider a non empty set X, a σ-field S of subsets of X, a function
f from X into R, a finite sequence E of separated subsets of S, and
a summable finite sequence F of elements of RX

. Suppose domE = domF

and dom f =
⋃

rngE and for every natural number n such that n ∈
domF there exists a real number r such that F/n = r · χE(n),X and f =
((
∑κ
α=0 F (α))κ∈N)/ lenF . Then

(i) for every element x of X and for every natural numbers m, n such
that m, n ∈ domF and x ∈ E(m) and m 6= n holds F/n(x) = 0, and

(ii) for every element x of X and for every natural numbers m, n such
that m, n ∈ domF and x ∈ E(m) and n < m holds
((
∑κ
α=0 F (α))κ∈N)/n(x) = 0, and

(iii) for every element x of X and for every natural numbers m, n such
that m, n ∈ domF and x ∈ E(m) and n ­ m holds
((
∑κ
α=0 F (α))κ∈N)/n(x) = f(x), and

(iv) for every element x of X and for every natural number m such that
m ∈ domF and x ∈ E(m) holds F/m(x) = f(x), and
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(v) f is simple function in S.

Proof: For every element x of X and for every natural numbers m, n
such that m, n ∈ domF and x ∈ E(m) and m 6= n holds F/n(x) = 0. For
every element x of X and for every natural numbers m, n such that m,
n ∈ domF and x ∈ E(m) and n < m holds ((

∑κ
α=0 F (α))κ∈N)/n(x) = 0.

For every element x of X and for every natural numbers m, n such that
m, n ∈ domF and x ∈ E(m) and n ­ m holds ((

∑κ
α=0 F (α))κ∈N)/n(x) =

f(x). For every element x of X and for every natural number m such that
m ∈ domF and x ∈ E(m) holds F/m(x) = f(x). For every element x of
X such that x ∈ dom f holds |f(x)| < +∞ by [7, (41)]. For every natural
number n and for every elements x, y of X such that n ∈ domE and x,
y ∈ E(n) holds f(x) = f(y). �

(12) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and an element E of S. Then χE,X is simple function
in S.
Proof: Reconsider E2 = X \E as an element of S. Reconsider E3 = 〈E,
E2〉 as a finite sequence of separated subsets of S. 1 · χE,X = χ1,E,X and
0 · χE2,X = χ0,E2,X . Reconsider F = 〈1 · χE,X , 0 · χE2,X〉 as a summable

finite sequence of elements of RX
. For every natural number n such that

n ∈ domF there exists a real number r such that F/n = r · χE3(n),X .
((
∑κ
α=0 F (α))κ∈N)/ lenF = F/1 + F/2. ((

∑κ
α=0 F (α))κ∈N)/ lenF = χE,X . �

(13) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, elements A, B of S, and an extended real e. Then
χe,A,X is measurable on B. The theorem is a consequence of (2) and (1).

(14) Let us consider a set X, subsets A1, A2 of X, and an extended real e.
Then χe,A1,X�A2 = χe,A1∩A2,X�A2.

(15) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, elements A, B, C of S, and an extended real e. If
C ⊆ B, then χe,A,X�B is measurable on C. The theorem is a consequence
of (13).

(16) Let us consider a set X, subsets A1, A2 of X, an extended real e, and
an object x. If A1 misses A2, then (χe,A1,X�A2)(x) = 0.

(17) Let us consider a set X, a subset A of X, and an extended real e. Then

(i) if e ­ 0, then χe,A,X is non-negative, and

(ii) if e ¬ 0, then χe,A,X is non-positive.

(18) Let us consider sets A, X, and a subset B of X. Then dom(χA,X�B) = B.
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2. Some Properties of Integration

Now we state the propositions:

(19) Let us consider a non empty set X, a σ-field S of subsets of X, and
a partial function f from X to R. If f is empty, then f is simple function
in S.
Proof: Reconsider E4 = ∅ as an element of S. Reconsider F = 〈E4〉 as
a finite sequence of separated subsets of S. For every natural number n
and for every elements x, y of X such that n ∈ domF and x, y ∈ F (n)
holds f(x) = f(y). �

(20) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and elements E1, E2 of S. Then

∫
χE1,X�E2 dM =

M(E1 ∩ E2).
Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure

M on S, elements E1, E2 of S, and partial functions f , g from X to R. Now we
state the propositions:

(21) Suppose E1 = dom f and f is non-negative and f is measurable on E1
and E2 = dom g and g is non-negative and g is measurable on E2. Then∫
f + g dM =

∫
f� dom(f + g) dM +

∫
g� dom(f + g) dM .

(22) Suppose E1 = dom f and f is non-positive and f is measurable on E1
and E2 = dom g and g is non-positive and g is measurable on E2. Then∫
f + g dM =

∫
f� dom(f + g) dM +

∫
g� dom(f + g) dM . The theorem is

a consequence of (21).

(23) Suppose E1 = dom f and f is non-negative and f is measurable on E1
and E2 = dom g and g is non-positive and g is measurable on E2. Then

(i)
∫
f − g dM =

∫
f� dom(f − g) dM −

∫
g� dom(f − g) dM , and

(ii)
∫
g − f dM =

∫
g� dom(g − f) dM −

∫
f� dom(g − f) dM .

The theorem is a consequence of (21).

(24) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, a partial function f from X to
R, and a real number r. Suppose E = dom f and f is non-positive or
non-negative and f is measurable on E. Then

∫
r · f dM = r ·

∫
f dM .
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3. Sections of Partial Function

Now we state the proposition:

(25) Let us consider non empty sets X, Y, an element A of 2X×Y , and sets
x, y. Suppose x ∈ X and y ∈ Y. Then

(i) 〈〈x, y〉〉 ∈ A iff x ∈ Ysection(A, y), and

(ii) 〈〈x, y〉〉 ∈ A iff y ∈ Xsection(A, x).

Let X1, X2 be non empty sets, Y be a set, f be a partial function from X1×
X2 to Y, and x be an element of X1. The functor ProjPMap1(f, x) yielding
a partial function from X2 to Y is defined by

(Def. 3) dom it = Xsection(dom f, x) and for every element y of X2 such that 〈〈x,
y〉〉 ∈ dom f holds it(y) = f(x, y).

Let y be an element of X2. The functor ProjPMap2(f, y) yielding a partial
function from X1 to Y is defined by

(Def. 4) dom it = Ysection(dom f, y) and for every element x of X1 such that 〈〈x,
y〉〉 ∈ dom f holds it(x) = f(x, y).

Now we state the propositions:

(26) Let us consider non empty sets X1, X2, a set Y, a partial function f from
X1 ×X2 to Y, an element x of X1, and an element y of X2. Then

(i) if x ∈ dom ProjPMap2(f, y), then (ProjPMap2(f, y))(x) = f(x, y),
and

(ii) if y ∈ dom ProjPMap1(f, x), then (ProjPMap1(f, x))(y) = f(x, y).

(27) Let us consider non empty sets X1, X2, Y, a function f from X1 × X2
into Y, an element x of X1, and an element y of X2. Then

(i) ProjPMap1(f, x) = curry(f, x), and

(ii) ProjPMap2(f, y) = curry′(f, y).

The theorem is a consequence of (26).

(28) Let us consider non empty sets X, Y, Z, a partial function f from X ×
Y to Z, an element x of X, an element y of Y, and a set A. Then

(i) Xsection(f−1(A), x) = (ProjPMap1(f, x))−1(A), and

(ii) Ysection(f−1(A), y) = (ProjPMap2(f, y))−1(A).

(29) Let us consider non empty sets X1, X2, an element x of X1, an element
y of X2, a real number r, and a partial function f from X1 × X2 to R.
Then

(i) ProjPMap1(r · f, x) = r · ProjPMap1(f, x), and
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(ii) ProjPMap2(r · f, y) = r · ProjPMap2(f, y).

(30) Let us consider non empty sets X1, X2, a partial function f from X1 ×
X2 to R, an element x of X1, and an element y of X2. Suppose for every
element z of X1 ×X2 such that z ∈ dom f holds f(z) = 0. Then

(i) (ProjPMap2(f, y))(x) = 0, and

(ii) (ProjPMap1(f, x))(y) = 0.

(31) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, an element x of X1, an element y of X2, and
a partial function f from X1 ×X2 to R. Suppose f is simple function in
σ(MeasRect(S1, S2)). Then

(i) ProjPMap1(f, x) is simple function in S2, and

(ii) ProjPMap2(f, y) is simple function in S1.

Proof: Consider F being a finite sequence of separated subsets of σ(Meas−
Rect(S1, S2)) such that dom f =

⋃
rngF and for every natural num-

ber n and for every elements z1, z2 of X1 × X2 such that n ∈ domF

and z1, z2 ∈ F (n) holds f(z1) = f(z2). Define H(natural number) =
MeasurableXsection(F ($1), x). Consider H being a finite sequence of ele-
ments of S2 such that lenH = lenF and for every natural number n such
that n ∈ domH holds H(n) = H(n). Reconsider F1 = F as a finite se-
quence of elements of 2X1×X2 . Reconsider F2 = H as a finite sequence
of elements of 2X2 . For every natural number n such that n ∈ domF2
holds F2(n) = Xsection(F1(n), x). For every natural number n and for
every elements y1, y2 of X2 such that n ∈ domH and y1, y2 ∈ H(n)
holds (ProjPMap1(f, x))(y1) = (ProjPMap1(f, x))(y2). Define G(natural
number) = MeasurableYsection(F ($1), y). Consider G being a finite se-
quence of elements of S1 such that lenG = lenF and for every natural
number n such that n ∈ domG holds G(n) = G(n). Reconsider G1 = G

as a finite sequence of elements of 2X1 . For every natural number n such
that n ∈ domG1 holds G1(n) = Ysection(F1(n), y). For every natural
number n and for every elements x1, x2 of X1 such that n ∈ domG and
x1, x2 ∈ G(n) holds (ProjPMap2(f, y))(x1) = (ProjPMap2(f, y))(x2). �

Let us consider non empty sets X1, X2, an element x of X1, an element y of
X2, and a partial function f from X1×X2 to R. Now we state the propositions:

(32) If f is non-negative, then ProjPMap1(f, x) is non-negative and
ProjPMap2(f, y) is non-negative.
Proof: For every object q such that q ∈ dom ProjPMap1(f, x) holds
0 ¬ (ProjPMap1(f, x))(q). For every object p such that
p ∈ dom ProjPMap2(f, y) holds 0 ¬ (ProjPMap2(f, y))(p). �
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(33) If f is non-positive, then ProjPMap1(f, x) is non-positive and
ProjPMap2(f, y) is non-positive.
Proof: For every set q such that q ∈ dom ProjPMap1(f, x) holds 0 ­
(ProjPMap1(f, x))(q). For every set p such that p ∈ dom ProjPMap2(f, y)
holds 0 ­ (ProjPMap2(f, y))(p) by [6, (8)]. �

(34) Let us consider non empty sets X1, X2, an element x of X1, an element
y of X2, a subset A of X1×X2, and a partial function f from X1×X2 to
R. Then

(i) ProjPMap1(f�A, x) = ProjPMap1(f, x)� Xsection(A, x), and

(ii) ProjPMap2(f�A, y) = ProjPMap2(f, y)� Ysection(A, y).

The theorem is a consequence of (25).

(35) Let us consider non empty sets X1, X2, a subset A of X1×X2, an element
x of X1, and an element y of X2. Then

(i) ProjPMap1(χA,X1×X2 , x) = χXsection(A,x),X2 , and

(ii) ProjPMap2(χA,X1×X2 , y) = χYsection(A,y),X1 .

The theorem is a consequence of (27) and (25).

(36) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, partial functions f , g from X to R, and an element
E of S. Suppose f�E = g�E and E ⊆ dom f and E ⊆ dom g and f is
measurable on E. Then g is measurable on E.

(37) Let us consider non empty sets X1, X2, a subset A of X1×X2, a partial
function f from X1×X2 to R, an element x of X1, an element y of X2, and
a sequence F of partial functions from X1×X2 into R. Suppose A ⊆ dom f

and for every natural number n, dom(F (n)) = A and for every element z
of X1×X2 such that z ∈ A holds F#z is convergent and lim(F#z) = f(z).
Then

(i) there exists a sequence F1 of partial functions from X1 into R with the
same dom such that for every natural number n, F1(n) = ProjPMap2

(F (n), y) and for every element x of X1 such that x ∈ Ysection(A, y)
holds F1#x is convergent and (ProjPMap2(f, y))(x) = lim(F1#x),
and

(ii) there exists a sequence F2 of partial functions from X2 into R with the
same dom such that for every natural number n, F2(n) = ProjPMap1

(F (n), x) and for every element y of X2 such that y ∈ Xsection(A, x)
holds F2#y is convergent and (ProjPMap1(f, x))(y) = lim(F2#y).

Proof: Define R[element of N, object] ≡ $2 = ProjPMap2(F ($1), y). For
every element n of N, there exists an element f of X1→̇R such that
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R[n, f ]. There exists a sequence F1 of partial functions from X1 into
R with the same dom such that for every natural number n, F1(n) =
ProjPMap2(F (n), y) and for every element x of X1 such that x ∈ Ysection
(A, y) holds F1#x is convergent and (ProjPMap2(f, y))(x) = lim(F1#x).
Define Q[element of N, object] ≡ $2 = ProjPMap1(F ($1), x). For eve-
ry element n of N, there exists an element f of X2→̇R such that Q[n, f ].
Consider F2 being a sequence of X2→̇R such that for every element n of N,
Q[n, F2(n)]. For every natural number n, dom(F2(n)) = Xsection(A, x).
For every natural numbers m, n, dom(F2(m)) = dom(F2(n)). For eve-
ry natural number n, F2(n) = ProjPMap1(F (n), x). For every element
y of X2 such that y ∈ Xsection(A, x) holds F2#y is convergent and
(ProjPMap1(f, x))(y) = lim(F2#y). �

(38) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, an element E of σ(MeasRect(S1, S2)), a σ-
measure M2 on S2, an element A of S1, an element B of S2, and an ele-
ment x of X1. Then M2(B ∩ MeasurableXsection(E, x)) · (χA,X1(x)) =∫

ProjPMap1(χA×B,X1×X2�E, x) dM2.
Proof: Set C1 = χA×B,X1×X2�E. ProjPMap1(χA×B,X1×X2 , x) =
curry(χA×B,X1×X2 , x). ProjPMap1(C1, x) =
ProjPMap1(χA×B,X1×X2 , x)� Xsection(E, x). For every element y of X2,
(ProjPMap1(C1, x))(y) =
(χA,X1� MeasurableYsection(E, y))(x) · (χB,X2(y)). �

(39) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, an element E of σ(MeasRect(S1, S2)), a σ-
measure M1 on S1, an element A of S1, an element B of S2, and an ele-
ment y of X2. Then M1(A ∩ MeasurableYsection(E, y)) · (χB,X2(y)) =∫

ProjPMap2(χA×B,X1×X2�E, y) dM1.
Proof: Set C1 = χA×B,X1×X2�E. ProjPMap2(χA×B,X1×X2 , y) =
curry′(χA×B,X1×X2 , y). ProjPMap2(C1, y) =
ProjPMap2(χA×B,X1×X2 , y)� Ysection(E, y). For every element x of X1,
(ProjPMap2(C1, y))(x) =
(χB,X2� MeasurableXsection(E, x))(y) · (χA,X1(x)) by [4, (2)]. �

(40) Let us consider non empty sets X1, X2, an element x of X1, an element
y of X2, a partial function f from X1 ×X2 to R, and an extended real e.
Then

(i) 〈〈x, y〉〉 ∈ dom f and f(x, y) = e iff y ∈ dom ProjPMap1(f, x) and
(ProjPMap1(f, x))(y) = e, and

(ii) 〈〈x, y〉〉 ∈ dom f and f(x, y) = e iff x ∈ dom ProjPMap2(f, y) and
(ProjPMap2(f, y))(x) = e.
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The theorem is a consequence of (25) and (26).

(41) Let us consider non empty sets X1, X2, sets A, Z, a partial function f

from X1×X2 to Z, and an element x of X1. Then Xsection(f−1(A), x) =
(ProjPMap1(f, x))−1(A).

(42) Let us consider non empty sets X1, X2, sets A, Z, a partial function f

from X1 ×X2 to Z, and an element y of X2. Then Ysection(f−1(A), y) =
(ProjPMap2(f, y))−1(A).

(43) Let us consider non empty sets X1, X2, subsets A, B of X1 ×X2, and
a set p. Then

(i) Xsection(A \B, p) = Xsection(A, p) \Xsection(B, p), and

(ii) Ysection(A \B, p) = Ysection(A, p) \Ysection(B, p).

(44) Let us consider non empty sets X1, X2, an element x of X1, an element
y of X2, and partial functions f1, f2 from X1 ×X2 to R. Then

(i) ProjPMap1(f1+f2, x) = ProjPMap1(f1, x)+ProjPMap1(f2, x), and

(ii) ProjPMap1(f1−f2, x) = ProjPMap1(f1, x)−ProjPMap1(f2, x), and

(iii) ProjPMap2(f1+f2, y) = ProjPMap2(f1, y) +ProjPMap2(f2, y), and

(iv) ProjPMap2(f1 − f2, y) = ProjPMap2(f1, y)− ProjPMap2(f2, y).

The theorem is a consequence of (42), (41), (43), (26), and (40).

(45) Let us consider non empty sets X1, X2, a partial function f from X1 ×
X2 to R, and an element x of X1. Then

(i) ProjPMap1(max+(f), x) = max+(ProjPMap1(f, x)), and

(ii) ProjPMap1(max−(f), x) = max−(ProjPMap1(f, x)).

(46) Let us consider non empty sets X1, X2, a partial function f from X1 ×
X2 to R, and an element y of X2. Then

(i) ProjPMap2(max+(f), y) = max+(ProjPMap2(f, y)), and

(ii) ProjPMap2(max−(f), y) = max−(ProjPMap2(f, y)).

(47) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a partial function f from X1×X2 to R, an element
x of X1, an element y of X2, and an element E of σ(MeasRect(S1, S2)).
Suppose E ⊆ dom f and f is measurable on E. Then

(i) ProjPMap1(f, x) is measurable on MeasurableXsection(E, x), and

(ii) ProjPMap2(f, y) is measurable on MeasurableYsection(E, y).

The theorem is a consequence of (45) and (46).
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Let X1, X2, Y be non empty sets, F be a sequence of partial functions from
X1 × X2 into Y, and x be an element of X1. The functor ProjPMap1(F, x)
yielding a sequence of partial functions from X2 into Y is defined by

(Def. 5) for every natural number n, it(n) = ProjPMap1(F (n), x).

Let y be an element of X2. The functor ProjPMap2(F, y) yielding a sequence
of partial functions from X1 into Y is defined by

(Def. 6) for every natural number n, it(n) = ProjPMap2(F (n), y).

(48) Let us consider non empty sets X1, X2, a subset E of X1×X2, an element
x of X1, and an element y of X2. Then

(i) ProjPMap1(χE,X1×X2 , x) = χXsection(E,x),X2 , and

(ii) ProjPMap2(χE,X1×X2 , y) = χYsection(E,y),X1 .

The theorem is a consequence of (25) and (27).

Let us consider a non empty setX, a σ-field S of subsets ofX, a σ-measureM
on S, an element E of S, and an extended real e. Now we state the propositions:

(49)
∫
χe,E,X dM = e ·M(E). The theorem is a consequence of (2), (12), and

(1).

(50)
∫
χe,E,X�E dM = e ·M(E). The theorem is a consequence of (15), (2),

(13), (49), (16), (1), and (12).

(51) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, elements E1, E2 of S, and an extended real e. Then∫
χe,E1,X�E2 dM = e ·M(E1 ∩E2). The theorem is a consequence of (14),

(17), (13), (16), (15), and (50).

(52) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, an element x of X1,
and an element E of σ(MeasRect(S1, S2)). Suppose M2 is σ-finite. Then

(i) (Yvol(E,M2))(x) =
∫

ProjPMap1(χE,X1×X2 , x) dM2, and

(ii) (Yvol(E,M2))(x) =
∫+ ProjPMap1(χE,X1×X2 , x) dM2, and

(iii) (Yvol(E,M2))(x) =
∫ ′ ProjPMap1(χE,X1×X2 , x) dM2.

The theorem is a consequence of (48), (12), and (27).

(53) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, an element y of X2,
and an element E of σ(MeasRect(S1, S2)). Suppose M1 is σ-finite. Then

(i) (Xvol(E,M1))(y) =
∫

ProjPMap2(χE,X1×X2 , y) dM1, and

(ii) (Xvol(E,M1))(y) =
∫+ ProjPMap2(χE,X1×X2 , y) dM1, and

(iii) (Xvol(E,M1))(y) =
∫ ′ ProjPMap2(χE,X1×X2 , y) dM1.

The theorem is a consequence of (48), (12), and (27).
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(54) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, and a real number r. Then

∫
r ·

χE,X dM = r ·
∫
χE,X dM . The theorem is a consequence of (12).

(55) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, an element y of X2,
an element E of σ(MeasRect(S1, S2)), and a real number r. Suppose M1
is σ-finite. Then

(i) (r ·Xvol(E,M1))(y) =
∫

ProjPMap2(χr,E,X1×X2 , y) dM1, and

(ii) if r ­ 0, then (r·Xvol(E,M1))(y) =
∫+ ProjPMap2(χr,E,X1×X2 , y) dM1.

Proof: Set p2 = ProjPMap2(χE,X1×X2 , y). χr,E,X1×X2 = r · χE,X1×X2 .
ProjPMap2(χr,E,X1×X2 , y) = r · p2. p2 is non-negative. χE,X1×X2 is simple
function in σ(MeasRect(S1, S2)).

∫
ProjPMap2(χr,E,X1×X2 , y) dM1 = r ·

(
∫ ′ p2 dM1). If r ­ 0, then (r ·Xvol(E,M1))(y) =∫+ ProjPMap2(χr,E,X1×X2 , y) dM1. �

(56) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, an element x of X1,
an element E of σ(MeasRect(S1, S2)), and a real number r. Suppose M2
is σ-finite. Then

(i) (r ·Yvol(E,M2))(x) =
∫

ProjPMap1(χr,E,X1×X2 , x) dM2, and

(ii) if r ­ 0, then (r·Yvol(E,M2))(x) =
∫+ ProjPMap1(χr,E,X1×X2 , x) dM2.

Proof: Set p2 = ProjPMap1(χE,X1×X2 , x). χr,E,X1×X2 = r · χE,X1×X2 .
ProjPMap1(χr,E,X1×X2 , x) = r · p2. p2 is non-negative. χE,X1×X2 is simple
function in σ(MeasRect(S1, S2)).

∫
ProjPMap1(χr,E,X1×X2 , x) dM2 = r ·

(
∫ ′ p2 dM2). If r ­ 0, then (r ·Yvol(E,M2))(x) =∫+ ProjPMap1(χr,E,X1×X2 , x) dM2. �

(57) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measureM on S, and a partial function f fromX to R. Suppose dom f ∈ S
and for every element x of X such that x ∈ dom f holds 0 = f(x). Then

(i) for every element E of S such that E ⊆ dom f holds f is measurable
on E, and

(ii)
∫
f dM = 0.

The theorem is a consequence of (15) and (50).

(58) Let us consider non empty sets X1, X2, Y, a sequence F of partial func-
tions from X1 ×X2 into Y, an element x of X1, and an element y of X2.
Suppose F has the same dom. Then

(i) ProjPMap1(F, x) has the same dom, and

(ii) ProjPMap2(F, y) has the same dom.
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4. Fubini’s Theorem for Non-negative or Non-positive Functions

Let X1, X2 be non empty sets, S1 be a σ-field of subsets of X1, M1 be a σ-
measure on S1, and f be a partial function from X1 × X2 to R. The functor
Integral1(M1, f) yielding a function from X2 into R is defined by

(Def. 7) for every element y of X2, it(y) =
∫

ProjPMap2(f, y) dM1.

Let S2 be a σ-field of subsets of X2 and M2 be a σ-measure on S2. The
functor Integral2(M2, f) yielding a function from X1 into R is defined by

(Def. 8) for every element x of X1, it(x) =
∫

ProjPMap1(f, x) dM2.

Now we state the propositions:

(59) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a partial function f

from X1×X2 to R, an element E of σ(MeasRect(S1, S2)), and an element
V of S2. Suppose M1 is σ-finite and f is non-negative or non-positive and
E = dom f and f is measurable on E. Then Integral1(M1, f) is measurable
on V .

(60) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, a partial function f

from X1×X2 to R, an element E of σ(MeasRect(S1, S2)), and an element
U of S1. Suppose M2 is σ-finite and f is non-negative or non-positive and
E = dom f and f is measurable on E. Then Integral2(M2, f) is measurable
on U .

(61) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, an element y of X2,
and an element E of σ(MeasRect(S1, S2)). Suppose M1 is σ-finite. Then
(Xvol(E,M1))(y) =

∫
χMeasurableYsection(E,y),X1 dM1.

(62) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, an element x of X1,
and an element E of σ(MeasRect(S1, S2)). Suppose M2 is σ-finite. Then
(Yvol(E,M2))(x) =

∫
χMeasurableXsection(E,x),X2 dM2.

(63) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, an element E of σ(MeasRect(S1, S2)), an element
x of X1, and an element y of X2. Then

(i) ProjPMap1(χE,X1×X2 , x) = χMeasurableXsection(E,x),X2 , and

(ii) ProjPMap2(χE,X1×X2 , y) = χMeasurableYsection(E,y),X1 .

(64) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, and an element
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E of σ(MeasRect(S1, S2)). Suppose M1 is σ-finite. Then Xvol(E,M1) =
Integral1(M1, χE,X1×X2). The theorem is a consequence of (61) and (63).

(65) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, and an element
E of σ(MeasRect(S1, S2)). Suppose M2 is σ-finite. Then Yvol(E,M2) =
Integral2(M2, χE,X1×X2). The theorem is a consequence of (62) and (63).

Let X1, X2 be non empty sets, S1 be a σ-field of subsets of X1, S2 be a σ-
field of subsets of X2, M1 be a σ-measure on S1, and M2 be a σ-measure on S2.
The functor ProdMeas(M1,M2) yielding a σ-measure on σ(MeasRect(S1, S2))
is defined by the term

(Def. 9) Prodσ -Meas(M1,M2).

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-field
S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, a partial
function f from X1 × X2 to R, and elements E1, E2 of σ(MeasRect(S1, S2)).
Now we state the propositions:

(66) Suppose E1 = dom f and f is non-negative and f is measurable on E1.
Then

(i) Integral1(M1, f) is non-negative, and

(ii) Integral1(M1, f�E2) is non-negative, and

(iii) Integral2(M2, f) is non-negative, and

(iv) Integral2(M2, f�E2) is non-negative.

The theorem is a consequence of (47) and (32).

(67) Suppose E1 = dom f and f is non-positive and f is measurable on E1.
Then

(i) Integral1(M1, f) is non-positive, and

(ii) Integral1(M1, f�E2) is non-positive, and

(iii) Integral2(M2, f) is non-positive, and

(iv) Integral2(M2, f�E2) is non-positive.

The theorem is a consequence of (47) and (33).

(68) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a partial function f from
X1 × X2 to R, elements E1, E2 of σ(MeasRect(S1, S2)), and an element
V of S2. Suppose M1 is σ-finite and f is non-negative or non-positive
and E1 = dom f and f is measurable on E1. Then Integral1(M1, f�E2) is
measurable on V . The theorem is a consequence of (59).
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(69) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M2 on S2, a partial function f from
X1 × X2 to R, elements E1, E2 of σ(MeasRect(S1, S2)), and an element
U of S1. Suppose M2 is σ-finite and f is non-negative or non-positive
and E1 = dom f and f is measurable on E1. Then Integral2(M2, f�E2) is
measurable on U . The theorem is a consequence of (60).

(70) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a partial func-
tion f from X1 × X2 to R, an element E of σ(MeasRect(S1, S2)), and
an element y of X2. Suppose E = dom f and f is non-negative or non-
positive and f is measurable on E and for every element x of X1 such
that x ∈ dom ProjPMap2(f, y) holds (ProjPMap2(f, y))(x) = 0. Then
(Integral1(M1, f))(y) = 0. The theorem is a consequence of (47), (32),
and (33).

(71) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M2 on S2, a partial func-
tion f from X1 × X2 to R, an element E of σ(MeasRect(S1, S2)), and
an element x of X1. Suppose E = dom f and f is non-negative or non-
positive and f is measurable on E and for every element y of X2 such
that y ∈ dom ProjPMap1(f, x) holds (ProjPMap1(f, x))(y) = 0. Then
(Integral2(M2, f))(x) = 0. The theorem is a consequence of (47), (32),
and (33).

(72) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2,
elements E, E1, E2 of σ(MeasRect(S1, S2)), and a partial function f from
X1 ×X2 to R. Suppose E = dom f and f is non-negative or non-positive
and f is measurable on E and E1 misses E2. Then

(i) Integral1(M1, f�(E1 ∪ E2)) =

Integral1(M1, f�E1) + Integral1(M1, f�E2), and

(ii) Integral2(M2, f�(E1 ∪ E2)) =

Integral2(M2, f�E1) + Integral2(M2, f�E2).

(73) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2
on S2, a partial function f from X1 × X2 to R, and an element E of
σ(MeasRect(S1, S2)). Suppose E = dom f and f is measurable on E.
Then

(i) Integral1(M1,−f) = −Integral1(M1, f), and

(ii) Integral2(M2,−f) = −Integral2(M2, f).
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The theorem is a consequence of (29) and (47).

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, partial
functions f , g from X1×X2 to R, and elements E1, E2 of σ(MeasRect(S1, S2)).
Now we state the propositions:

(74) Suppose E1 = dom f and f is non-negative and f is measurable on E1
and E2 = dom g and g is non-negative and g is measurable on E2. Then

(i) Integral1(M1, f + g) =

Integral1(M1, f� dom(f + g)) + Integral1(M1, g� dom(f + g)), and

(ii) Integral2(M2, f + g) =

Integral2(M2, f� dom(f + g)) + Integral2(M2, g� dom(f + g)).

Proof: Set f1 = f�(A∩B). Set g1 = g�(A∩B). Integral1(M1, f1) is non-
negative and Integral1(M1, g1) is non-negative and Integral2(M2, f1) is
non-negative and Integral2(M2, g1) is non-negative. For every element y of
X2, (Integral1(M1, f1)+Integral1(M1, g1))(y) = (Integral1(M1, f+g))(y).
For every element x of X1, (Integral2(M2, f1) + Integral2(M2, g1))(x) =
(Integral2(M2, f + g))(x). �

(75) Suppose E1 = dom f and f is non-positive and f is measurable on E1
and E2 = dom g and g is non-positive and g is measurable on E2. Then

(i) Integral1(M1, f + g) =

Integral1(M1, f� dom(f + g)) + Integral1(M1, g� dom(f + g)), and

(ii) Integral2(M2, f + g) =

Integral2(M2, f� dom(f + g)) + Integral2(M2, g� dom(f + g)).

The theorem is a consequence of (73) and (74).

(76) Suppose E1 = dom f and f is non-negative and f is measurable on E1
and E2 = dom g and g is non-positive and g is measurable on E2. Then

(i) Integral1(M1, f − g) =

Integral1(M1, f� dom(f − g))− Integral1(M1, g� dom(f − g)), and

(ii) Integral1(M1, g − f) =

Integral1(M1, g� dom(g − f))− Integral1(M1, f� dom(g − f)), and

(iii) Integral2(M2, f − g) =

Integral2(M2, f� dom(f − g))− Integral2(M2, g� dom(f − g)), and

(iv) Integral2(M2, g − f) =

Integral2(M2, g� dom(g − f))− Integral2(M2, f� dom(g − f)).

The theorem is a consequence of (74) and (73).
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(77) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, and an element E of σ(MeasRect(S1, S2)). Suppose M1 is σ-finite and
M2 is σ-finite. Then

(i)
∫

Yvol(E,M2) dM1 =
∫
χE,X1×X2 d ProdMeas(M1,M2), and

(ii)
∫

Xvol(E,M1) dM2 =
∫
χE,X1×X2 d ProdMeas(M1,M2).

(78) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, an element E of σ(MeasRect(S1, S2)), a partial function f from X1 ×
X2 to R, and a real number r. Suppose E = dom f and f is non-negative
or non-positive and f is measurable on E. Then

(i) Integral1(M1, r · f) = r · Integral1(M1, f), and

(ii) Integral2(M2, r · f) = r · Integral2(M2, f).

The theorem is a consequence of (32), (33), (29), and (47).

Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2, and
an element E of σ(MeasRect(S1, S2)). Now we state the propositions:

(79) (i) Integral1(M1, χE,X1×X2�E) = Integral1(M1, χE,X1×X2), and

(ii) Integral2(M2, χE,X1×X2�E) = Integral2(M2, χE,X1×X2).
The theorem is a consequence of (34) and (48).

(80) (i) Integral1(M1, χE,X1×X2�E) = Integral1(M1, χE,X1×X2), and

(ii) Integral2(M2, χE,X1×X2�E) = Integral2(M2, χE,X1×X2).
The theorem is a consequence of (34), (35), (2), (50), and (49).

(81) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, an element E of σ(MeasRect(S1, S2)), and an extended real e. Then

(i) Integral1(M1, χe,E,X1×X2�E) = Integral1(M1, χe,E,X1×X2), and

(ii) Integral2(M2, χe,E,X1×X2�E) = Integral2(M2, χe,E,X1×X2).

The theorem is a consequence of (1), (78), (79), (2), and (80).

(82) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, and an element E of σ(MeasRect(S1, S2)). Suppose M1 is σ-finite and
M2 is σ-finite. Then

(i)
∫
χE,X1×X2 d ProdMeas(M1,M2) =

∫
Integral1(M1, χE,X1×X2) dM2,

and
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(ii)
∫
χE,X1×X2�E d ProdMeas(M1,M2) =∫
Integral1(M1, χE,X1×X2�E) dM2, and

(iii)
∫
χE,X1×X2 d ProdMeas(M1,M2) =

∫
Integral2(M2, χE,X1×X2) dM1,

and

(iv)
∫
χE,X1×X2�E d ProdMeas(M1,M2) =∫
Integral2(M2, χE,X1×X2�E) dM1.

The theorem is a consequence of (64), (77), (79), and (65).

(83) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1,
a σ-field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on
S2, an element E of σ(MeasRect(S1, S2)), and a real number r. Suppose
M1 is σ-finite and M2 is σ-finite. Then

(i)
∫
χr,E,X1×X2 d ProdMeas(M1,M2) =

∫
Integral1(M1, χr,E,X1×X2) dM2,

and

(ii)
∫
χr,E,X1×X2�E d ProdMeas(M1,M2) =∫
Integral1(M1, χr,E,X1×X2�E) dM2, and

(iii)
∫
χr,E,X1×X2 d ProdMeas(M1,M2) =

∫
Integral2(M2, χr,E,X1×X2) dM1,

and

(iv)
∫
χr,E,X1×X2�E d ProdMeas(M1,M2) =∫
Integral2(M2, χr,E,X1×X2�E) dM1.

The theorem is a consequence of (1), (12), (64), (82), (78), (81), and (65).

(84) Let us consider non empty sets X1, X2, a σ-field S1 of subsets of X1, a σ-
field S2 of subsets of X2, a σ-measure M1 on S1, a σ-measure M2 on S2,
an element A of σ(MeasRect(S1, S2)), and a partial function f from X1×
X2 to R. Suppose M1 is σ-finite and M2 is σ-finite and f is non-negative
or non-positive and A = dom f and f is measurable on A. Then

(i)
∫
f d ProdMeas(M1,M2) =

∫
Integral1(M1, f) dM2, and

(ii)
∫
f d ProdMeas(M1,M2) =

∫
Integral2(M2, f) dM1.
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