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Summary. In this article, we formalize in the Mizar system [I} [7] the Le-
besgue type integral and convergence theorems for non positive functions [§],[2].
Many theorems are based on our previous results [B], [6].
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1. PRELIMINARIES

Let X be a non empty set and f be a non-negative partial function from X
to R. Observe that —f is non-positive.
Let f be a non-positive partial function from X to R. One can check that
—f is non-negative.
Now we state the propositions:
(1) Let us consider a non empty set X, a non-positive partial function f
from X to R, and a set E. Then f|E is non-positive.
(2) Let us consider a non empty set X, a set A, a real number r, and a partial
function f from X to R. Then (r- f)[A =1 (flA).
(3) Let us consider a non empty set X, a set A, and a partial function f
from X to R. Then —f]A = (—f)] A. The theorem is a consequence of (2).
(4) Let us consider a non empty set X, a partial function f from X to R,
and a real number c. Suppose f is non-positive. Then
(i) if 0 < ¢, then c- f is non-positive, and
(i) if ¢ <0, then c¢- f is non-negative.
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(5) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and a partial function f from X to R. Then

(i) max4(f) is non-negative, and
(ii) max_(f) is non-negative, and
(iii) |f| is non-negative.

(6) Let us consider a non empty set X, a partial function f from X to R,
and an object x. Then

(i) f(x) < (maxy (f))(x), and
(i) f(z) > —(max_(f))(z).

(7) Let us consider a non empty set X, a partial function f from X to R,
and a positive real number r. Then LE-dom(f,r) = LE-dom(max (f), ).

(8) Let us consider a non empty set X, a partial function f from X to R, and
anon positive real number r. Then LE-dom( f,r) = GT-dom(max_(f), —r).

(9) Let us consider a non empty set X, partial functions f, g from X to R,
an extended real a, and a real number r. Suppose r # 0 and g = 7 - f.
Then EQ-dom(f,a) = EQ-dom(g,a - r).

(10) Let us consider a non empty set X, a o-field S of subsets of X, a partial
function f from X to R, and an element A of S. Suppose A C dom f.
Then f is measurable on A if and only if max(f) is measurable on A and
max_ (f) is measurable on A.

Let X be a non empty set, f be a function from X into R, and r be a real
number. Note that the functor r - f yields a function from X into R. Now we
state the proposition:

(11) Let us consider a non empty set X, a real number r, and a without 400

function f from X into R. If » > 0, then r - f is without +oo.
Let X be a non empty set, f be a without +oo function from X into R,

and r be a non negative real number. Let us note that r - f is without +o0o as

a function from X into R.
Now we state the proposition:

(12) Let us consider a non empty set X, a real number r, and a without +oo

function f from X into R. If » < 0, then r - f is without —oo.
Let X be a non empty set, f be a without +oco function from X into R, and
r be a non positive real number. One can check that r - f is without —oo.
Now we state the proposition:

(13) Let us consider a non empty set X, a real number r, and a without —oo
function f from X into R. If » > 0, then r - f is without —oo.



INTEGRAL OF NON POSITIVE FUNCTIONS

Let X be a non empty set, f be a without —oo function from X into R, and
r be a non negative real number. One can check that r - f is without —oo.
Now we state the proposition:

(14) Let us consider a non empty set X, a real number r, and a without —oo

function f from X into R. If r < 0, then r - f is without 4oc.
Let X be a non empty set, f be a without —oo function from X into R, and
r be a non positive real number. One can check that r - f is without +oo.
Now we state the proposition:

(15) Let us consider a non empty set X, a real number r, and a without —oo,
without +oo function f from X into R. Then r - f is without —oo and
without 4o00.

Let X be a non empty set, f be a without —oo, without 400 function from
X into R, and r be a real number. Note that 7 - f is without —oo and without
+00.

Now we state the propositions:

(16) Let us consider a non empty set X, a positive real number r, and a func-
tion f from X into R. Then f is without +ooc if and only if r- f is without
+00.

(17) Let us consider a non empty set X, a negative real number r, and a func-
tion f from X into R. Then f is without +oo if and only if 7 - f is without
—00.

(18) Let us consider a non empty set X, a positive real number r, and a func-
tion f from X into R. Then f is without —oo if and only if - f is without
—00.

(19) Let us consider a non empty set X, a negative real number r, and a func-
tion f from X into R. Then f is without —oo if and only if 7 - f is without
+00.

(20) Let us consider a non empty set X, a non zero real number r, and
a function f from X into R. Then f is without —oco and without +oo if and
only if r- f is without —oo and without +o0o. The theorem is a consequence
of (16), (18), (17), and (19).

(21) Let us consider non empty sets X, Y, a partial function f from X to R,
and a real number r. Suppose f =Y —— r. Then f is without —oo and
without +o0.

(22) Let us consider a non empty set X, and a function f from X into R.
Then

(i) 0-f=X+—0, and

(ii) 0- f is without —oo and without +oo.

229
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PROOF: For every element x of X, (0- f)(z) = (X — 0)(x). O
(23) Let us consider a non empty set X, and partial functions f, g from X
to R. Suppose f is without —oo and without 4+oc0. Then
(i) dom(f + ¢) = dom f Ndom g, and
(ii) dom(f — g) = dom f Ndom g, and
(iii) dom(g — f) = dom f Ndom g.
Let us consider a non empty set X and functions fi, fo from X into R. Now
we state the propositions:
(24) Suppose fo is without —oo and without +oo. Then
(i) fi+ f2 is a function from X into R, and
(ii) for every element x of X, (f1 + f2)(x) = fi(x) + fa(x).
The theorem is a consequence of (23).
(25) Suppose fi is without —oco and without +oo. Then
(i) fi — fo is a function from X into R, and
(i) for every element x of X, (f1 — f2)(x) = fi(z) — fa(z).
The theorem is a consequence of (23).
(26) Suppose fz is without —oo and without +oo. Then
(i) fi — fo is a function from X into R, and

(ii) for every element x of X, (f1 — f2)(x) = fi(x) — fa(x).
The theorem is a consequence of (23).

(27) Let us consider non empty sets X, Y, and partial functions fi, fo from
X to R. Suppose dom f; CY and fy =Y ~— 0. Then

(i) fi+ fe=fi, and
(ii) f — f2 = f1, and
(iii) fo — fi =—f.
The theorem is a consequence of (21) and (23).
Let us consider a non empty set X, a o-field S of subsets of X, a o-measure
M on S, and partial functions f, g from X to R. Now we state the propositions:
(28) If f is simple function in S and g is simple function in S, then f 4+ g is
simple function in S.
Proor: Consider F' being a finite sequence of separated subsets of S, a
being a finite sequence of elements of R such that F' and a are represen-
tation of f. Consider G being a finite sequence of separated subsets of S,

b being a finite sequence of elements of R such that G and b are repre-
sentation of g. Set I} = lena. Set Iy = lenb. Define H(natural number) =
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F(($1 —'1diviy)+1)NG(($1 —'1 mod I3) +1). Consider F; being a finite
sequence such that len F; = [y -l and for every natural number k such that
k € dom F} holds Fy(k) = H(k). For every natural numbers k, [ such that
k, 1 € dom F; and k # [ holds Fi(k) misses Fi(l). dom(f + g) = Urng F7.
For every natural number k& and for every elements x, y of X such that
k € dom Fy and z, y € Fi(k) holds (f + ¢)(z) = (f +9)(y). O

(29) If f is simple function in S and g is simple function in S, then f — g is
simple function in S. The theorem is a consequence of (28).

(30) Let us consider a non empty set X, a o-field S of subsets of X, and

a partial function f from X to R. If f is simple function in .S, then —f is
simple function in S.

(31) Let us consider a non empty set X, and a non-negative partial function
f from X to R. Then f = max(f).
PRrOOF: For every element x of X such that x € dom f holds f(x) =
(max, ())(z). O

(32) Let us consider a non empty set X, and a non-positive partial function
f from X to R. Then f = —max_(f).
PRrOOF: For every element x of X such that x € dom f holds f(x) =
(—max_(f))(z). O

(33) Let us consider a non empty set C, a partial function f from C to R,
and a real number c. Suppose ¢ < 0. Then

(1) maxs (- f) = (—¢) - max_(f), and
(i) max_(c- f) = (—c) - max, (f).
PROOF: For every element x of C such that z € dommax, (c- f) holds

(max4(c- f))(x) = ((—c) - max_(f))(x). For every element x of C such
that x € dommax_(c- f) holds (max_(c- f))(z) = ((—¢) - max4(f))(z). O

(34) Let us consider a non empty set X, and a partial function f from X to
R. Then max (f) = max_(—f). The theorem is a consequence of (33).

(35) Let us consider a non empty set X, a partial function f from X to R,
and real numbers 71, ro. Then ry - (ro - f) = (r1-72) - f.

(36) Let us consider a non empty set X, and partial functions f, g from X
to R. If f = —g, then g = —f. The theorem is a consequence of (35).

Let X be a non empty set, F' be a sequence of partial functions from X
into R, and r be a real number. The functor r - F' yielding a sequence of partial
functions from X into R is defined by

(Def. 1) for every natural number n, it(n) =r - F(n).

The functor —F yielding a sequence of partial functions from X into R is

defined by the term
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(Def. 2) (—1)-F.
Now we state the proposition:
(37) Let us consider a non empty set X, a sequence F' of partial functions
from X into R, and a natural number n. Then (—F)(n) = —F(n).
Let us consider a non empty set X, a sequence F' of partial functions from
X into R, and an element = of X. Now we state the propositions:
(38) (—F)#x = —F+#ua. The theorem is a consequence of (37).

(39) ) F#x is convergent to oo iff (—F')#x is convergent to —oo, and

(i
(ii) F#x is convergent to —oo iff (—F')#x is convergent to +oo, and
i)

(ii

F+#x is convergent to a finite limit iff (—F)#x is convergent to a
finite limit, and

(iv) F#ux is convergent iff (—F)#x is convergent, and
(v) if F#x is convergent, then lim((—F)#x) = —lim(F#z).
The theorem is a consequence of (38).
Let us consider a non empty set X and a sequence F of partial functions
from X into R. Now we state the propositions:

(40) If F has the same dom, then —F has the same dom. The theorem is
a consequence of (37).

(41) If F is additive, then —F is additive. The theorem is a consequence of
(37).

(42) Let us consider a non empty set X, a sequence F' of partial functions
from X into R, and a natural number n. Then (3-F_,(—F)(a))wen(n) =
(—=(Za=0 F(@))ren) (n)-

PROOF: Define P[natural number] = (325 _(—F)(a))xen($1) =
(—(>h—0 F(a))ken)($1). PJ0]. For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. O

(43) Let us consider a sequence s of extended reals, and a natural number n.
Then (Y5 (—s)(@))wen(n) = — (55 5(a))sen(n).
PROOF: Define P[natural number] = (35 _(—s)(a))ken($1) =
—(>25 g s(a))ken($1). For every natural number k such that P[k] holds
P[k + 1]. For every natural number k, P[k]. O

Let us consider a sequence s of extended reals. Now we state the propositions:

(44) Ch—o(=s)(@))ken = —(>on—0S(a))rken. The theorem is a consequence

of (43).
(45) If s is summable, then —s is summable. The theorem is a consequence
of (44).
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Let us consider a non empty set X and a sequence F of partial functions
from X into R. Now we state the propositions:

(46) If for every natural number n, F(n) is without +o0o, then F' is additive.
(47) If for every natural number n, F(n) is without —oo, then F' is additive.

(48) Let us consider a non empty set X, a sequence F' of partial functions

from X into R, and an element = of X. Suppose F'#x is summable. Then
(i) (=F)#x is summable, and
(i) S(—F)#e) = —S(F#ta).

The theorem is a consequence of (45), (38), and (44).

(49) Let us consider a non empty set X, a o-field S of subsets of X, and a se-
quence F of partial functions from X into R. Suppose F is additive and has
the same dom and for every element z of X such that z € dom(#'(0)) holds
F#x is summable. Then Im(}"5_(—F)(a))weny = —lIm(>-5_o F(a))ken-
PROOF: Set G = —F. For every element n of N, (38 _( G())ken(n) =
(—(>h—0 F(a))ken)(n). For every element z of X such that z € domlim
(Xo6=0 G(@))ren holds (im(3-5_g G(a))ren)(x) =
(—lim(3-5—0 F(a))ren)(z). O

(50) Let us consider a non empty set X, a o-field S of subsets of X, sequ-

ences F, G of partial functions from X into R, and an element E of S.
Suppose £ C dom(F'(0)) and F' is additive and has the same dom and
for every natural number n, G(n) = F(n)[E. Then im(}>°5_y G(a))ken =
Hm(3> "5 F(a))kenlE.
PROOF: For every element x of X such that z € F holds F#x = G#«x.
Set P = (3 n_o F(@))ken. Set Po = (3> _ G(a))ken- For every element
x of X such that z € domlim P, holds (lim P»)(z) = (lim P;)(z). For
every element z of X such that z € dom(lim P»[E) holds (lim P [E)(x) =
(lim P, [E)(x). O

2. INTEGRAL OF NON POSITIVE MEASURABLE FUNCTIONS

Now we state the propositions:

(51) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and a non-negative partial function f from X to R.
Then ["max_(—f)dM = [’ fdM. The theorem is a consequence of (32),
(36), and (35).

(52) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a partial function f from X to R, and an element A of S.
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Suppose A = dom f and f is measurable on A. Then [ —fdM = —[ fdM.
The theorem is a consequence of (36), (10), (5), and (34).

(53) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a non-negative partial function f from X to R, and
an element F of S. Suppose F = dom f and f is measurable on E. Then

(i) fmax_(f)dM =0, and

(i) [T max_(f)dM = 0.
PROOF: max_(f) is measurable on E. For every object = such that = €
dommax_(f) holds (max_(f))(z) =0. O

Let us consider a non empty set X, a o-field S of subsets of X, a o-measure
M on S, a partial function f from X to R, and an element E of S. Now we
state the propositions:

(54) If E = dom f and f is measurable on E, then [ fdM = [maxy(f)dM—
J max_(f)dM. The theorem is a consequence of (10) and (5).

(55) If E C dom f and f is measurable on E, then [(—f)[EdM = —[ f[EdM.
The theorem is a consequence of (3) and (52).

(56) Let us consider a non empty set X, a o-field S of subsets of X, and
a partial function f from X to R. Suppose there exists an element A of
S such that A = dom f and f is measurable on A and (f qua extended
real-valued function) is non-positive. Then there exists a sequence F' of
partial functions from X into R such that

(i) for every natural number n, F(n) is simple function in S and
dom(F(n)) = dom f, and

(ii) for every natural number n, F'(n) is non-positive, and

(iii) for every natural numbers n, m such that n < m for every element x
of X such that z € dom f holds F(n)(x) > F(m)(x), and

(iv) for every element x of X such that = € dom f holds F'#x is conver-
gent and lim(F#z) = f(z).
The theorem is a consequence of (37), (30), and (39).

(57) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, an element F of S, and a non-positive partial function f
from X to R. Suppose there exists an element A of S such that A = dom f
and f is measurable on A. Then

(i) [fdM = — [T max_(f)dM, and
(i) [ fdM = — [T —fdM, and
(iil) [fdM = —[ —fdM.
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PRrOOF: Consider A being an element of S such that A = dom f and f is
measurable on A. f = —max_(f). —f = max_(f). For every element x of
X such that € dommaxy (f) holds (max,(f))(z) =0. O

(58) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and a non-positive partial function f from X to R.
Suppose f is simple function in S. Then

(G) [fdM = —["—fdM, and
(ii) [ fdM = — [ max_(f)dM.
The theorem is a consequence of (30), (57), (32), and (36).
Let us consider a non empty set X, a o-field S of subsets of X, a o-measure
M on S, a partial function f from X to R, and a real number c. Now we state
the propositions:
(59) If f is simple function in S and f is non-negative, then [c¢- fdM =
c- ["fdM.
(60) Suppose f is simple function in S and f is non-positive. Then
Q) fc-fdM = —c- [ —fdM, and
(i) [c-fdM = —(c- ['—fdM).
The theorem is a consequence of (35), (30), and (59).

(61) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and a partial function f from X to R. Suppose there
exists an element A of S such that A = dom f and f is measurable on A
and f is non-positive. Then 0 > [ f dM. The theorem is a consequence of
(57).

(62) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a partial function f from X to R, and elements A, B, E
of S. Suppose E = dom f and f is measurable on E and f is non-positive
and A misses B. Then [ fl(AUB)dM = [ flAdM + [ f|BdM. The
theorem is a consequence of (3) and (52).

(63) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a partial function f from X to R, and elements A, E of
S. Suppose E = dom f and f is measurable on £ and f is non-positive.
Then 0 > [ flAdM. The theorem is a consequence of (61) and (1).

(64) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a partial function f from X to R, and elements A, B, E
of S. Suppose E = dom f and f is measurable on E and f is non-positive
and A C B. Then [ flAdM > [ fIBdM. The theorem is a consequence
of (3) and (52).
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3. CONVERGENCE THEOREMS FOR NON POSITIVE FUNCTION’S INTEGRATION

Now we state the propositions:

(65) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, an element E of S, and a partial function f from X to
R. Suppose E = dom f and f is measurable on E and f is non-positive
and M(E N EQ-dom(f, —c0)) # 0. Then [ fdM = —oo. The theorem is
a consequence of (9) and (52).

(66) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, an element F of S, and partial functions f, g from X to
R. Suppose E C dom f and E C dom g and f is measurable on E and g is
measurable on £ and f is non-positive and for every element x of X such
that « € F holds g(x) < f(z). Then [g]/EdM < [ f|EdM. The theorem
is a consequence of (3) and (52).

(67) Let us consider a non empty set X, a sequence F' of partial functions
from X into R, a o-field S of subsets of X, an element E of S, and
a natural number m. Suppose F' has the same dom and E = dom(F(0))
and for every natural number n, F(n) is measurable on F and F(n) is
without +o00. Then (35 _ F(a))ken(m) is measurable on E. The theorem
is a consequence of (37), (42), and (46).

(68) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a sequence F of partial functions from X into R,
an element E of S, a sequence I of extended reals, and a natural number
m. Suppose E = dom(F(0)) and F is additive and has the same dom
and for every natural number n, F(n) is measurable on E and F(n) is
non-positive and I(n) = [ F(n)dM. Then [(3F5_o F(«))ken(m)dM =
(S £(0)) weni(m).

PROOF: Set G = —F. Set J = —I. G(0) = —F(0). G has the same
dom. For every natural number n, F(n) is measurable on E and F(n) is
without 4+o00. For every natural number n, G(n) is measurable on E and
G(n) is non-negative and J(n) = [ G(n)dM. [(}1r_y G(a))ken(m)dM =
(5 () e (m)- [ (—(S—g () wert)(m) M = (g (@) wen(m).
(S0 Fl@))wen)(m) dM = —(55_y () nen(m).

[ = (55 Fe))nen(m) dM = —(S_q I(a))ren(m).

(g F(@))ren(m) AM = (3o I(a) wen(m). O

(69) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a sequence F of partial functions from X into R, an ele-
ment F of S, and a partial function f from X to R. Suppose E C dom f
and f is non-positive and f is measurable on E and for every natural
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number n, F(n) is simple function in S and F(n) is non-positive and
E C dom(F(n)) and for every element x of X such that x € E holds
F#x is summable and f(z) = Y (F#=x). Then there exists a sequence [
of extended reals such that

(i) for every natural number n, I(n) = [ F(n)[EdM, and

(ii) I is summable, and
(i) [fIEAM =>"1.
PROOF: Set ¢ = —f. Set G = —F. G is additive. For every natural
number n, G(n) is simple function in S and G(n) is non-negative and
E C dom(G(n)). For every element x of X such that z € E holds G#x
is summable and g(z) = Y_(G#x). Consider J being a sequence of exten-
ded reals such that for every natural number n, J(n) = [G(n)[EdM
and J is summable and [g[EdM = " J. For every natural number n,
I(n) = [F()[EdAM. [gIEAM = —[ fIEdAM. lim(35_oI(a))xen =
—[glEdM. O

(70) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, an element E of S, and a partial function f from X to
R. Suppose E C dom f and f is non-positive and f is measurable on E.
Then there exists a sequence F of partial functions from X into R such
that

(i) F is additive, and

(ii) for every natural number n, F'(n) is simple function in S and F'(n)
is non-positive and F'(n) is measurable on F, and

(iii) for every element z of X such that x € E holds F#zx is summable
and f(x) = Y (F#z), and

(iv) there exists a sequence I of extended reals such that for every natural
number n, I(n) = [ F(n)[EdM and I is summable and [ f[EdM =

I

PROOF: Set ¢ = — f. Consider GG being a sequence of partial functions from
X into R such that G is additive and for every natural number n, G(n) is
simple function in S and G(n) is non-negative and G(n) is measurable on
FE and for every element x of X such that x € E holds G#x is summable
and g(z) = > (G#x) and there exists a sequence J of extended reals
such that for every natural number n, J(n) = [G(n)[EdM and J is
summable and [g¢g[EdM = ) J. For every natural number n, F(n) is
simple function in S and F'(n) is non-positive and F'(n) is measurable on
E. For every element x of X such that x € F holds F#x is summable and
f(x) = S (F#x). There exists a sequence I of extended reals such that
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for every natural number n, I(n) = [ F(n)[EdM and I is summable and
JfIEAM =>1.0
Let us consider a non empty set X, a o-field .S of subsets of X, a o-measure
M on S, a sequence F of partial functions from X into R, and an element E of
S. Now we state the propositions:

(71) Suppose E = dom(F'(0)) and F has the same dom and for every natu-
ral number n, F(n) is non-positive and F(n) is measurable on E. Then
there exists a sequence Fy of (X-5R)N such that for every natural num-
ber n, for every natural number m, Fj(n)(m) is simple function in S and
dom(F(n)(m)) = dom(F(n)) and for every natural number m, Fj(n)(m)
is non-positive and for every natural numbers j, k such that j < k for every
element = of X such that = € dom(F'(n)) holds Fi(n)(j)(x) > Fi(n)(k)(z)
and for every element x of X such that x € dom(F'(n)) holds Fi(n)#z is
convergent and lim(Fy(n)#z) = F(n)(z).

PROOF: Define Qlelement of N,set] = for every sequence G of partial
functions from X into R such that $5 = G holds for every natural number
m, G(m) is simple function in S and dom(G(m)) = dom(F($;)) and
for every natural number m, G(m) is non-positive and for every natural
numbers j, k such that j < k for every element x of X such that = €
dom(F'($1)) holds G(j)(x) > G(k)(x) and for every element x of X such
that € dom(F'($1)) holds G#z is convergent and lim(G#x) = F($1)(z).
For every element n of N, there exists a sequence G of partial functions
from X into R such that for every natural number m, G(m) is simple
function in S and dom(G(m)) = dom(F'(n)) and for every natural number
m, G(m) is non-positive and for every natural numbers j, k such that
j < k for every element x of X such that z € dom(F(n)) holds G(j)(z) >
G(k)(x) and for every element = of X such that z € dom(F(n)) holds
G#ux is convergent and lim(G#x) = F(n)(x). For every element n of N,
there exists an element G of (X--R)N such that Q[n, G]. Consider F; being
a sequence of (X -R)N such that for every element n of N, Q[n, Fy(n)]. For
every natural number n, for every natural number m, Fj(n)(m) is simple
function in S and dom(Fi(n)(m)) = dom(F'(n)) and for every natural
number m, Fj(n)(m) is non-positive and for every natural numbers j, k
such that j < k for every element = of X such that € dom(F'(n)) holds
Fi(n)(j)(x) > Fi(n)(k)(x) and for every element x of X such that = €
dom(F'(n)) holds Fj(n)#x is convergent and lim(Fy(n)#zx) = F(n)(z). O

(72) Suppose E = dom(F'(0)) and F is additive and has the same dom and
for every natural number n, F(n) is measurable on E and F'(n) is non-
positive. Then there exists a sequence I of extended reals such that for eve-
ry natural number n, I(n) = [ F(n)dM and [(}r_y F(a))ken(n)dM =
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(5o I(@)eeni(n):

PROOF: Set G = —F. G(0) = —F(0). G has the same dom. For every natu-
ral number n, G(n) is measurable on £ and G(n) is non-negative. Consider
J being a sequence of extended reals such that for every natural number n,
J(n) = [ G(n)dM and [(S5_o G(a))wen(n) AM = (S J(a))wen(n).
For every natural number n, F'(n) is measurable on E and F'(n) is without
~+o00. U

(73) Suppose E C dom(F'(0)) and F' is additive and has the same dom and for
every natural number n, F(n) is non-positive and F'(n) is measurable on
FE and for every element x of X such that x € E holds F#ux is summable.
Then there exists a sequence I of extended reals such that

(i) for every natural number n, I(n) = [ F(n)[EdM, and
(ii) I is summable, and
(i) flim(SE_g F(a))enl EdM = S1.

PROOF: Set G = —F. G(0) = —F(0). G is additive. G has the same dom.
For every natural number n, G(n) is non-negative and G(n) is measu-
rable on E. For every element x of X such that x € FE holds G#z is
summable. Consider J being a sequence of extended reals such that for
every natural number n, J(n) = [G(n)|EdM and J is summable and
Jlm(Yr_ G(a))wen[EdAM = " J. For every natural number n, I(n) =
[ F(n)[EdM. Define H(natural number) = F($;)[E. Consider H being
a sequence of partial functions from X into R such that for every natural
number n, H(n) = H(n). im(>"5_o H(®))keny = Im(>h_o F(@))ken|E.
Define K(natural number) = G($;)[E. Consider K being a sequence of
partial functions from X into R such that for every natural number n,
K(n) = Kn). im(3h_o K())weny = Im(Yr_o G(a))wen|E. For every
element n of N, H(n) = (—K)(n). im(> 5 _o H(a))ken =
—lim(>°5_o K(a))ken. For every natural number n, K(n) is measura-
ble on E and K(n) is without —oo. [(=lim(>"5F_o K(@))ken)[EdAM =
—[Im(>h_g K(a))ken[EdM. O

(74) Suppose E = dom(F'(0)) and F(0) is non-positive and F' has the same
dom and for every natural number n, F(n) is measurable on E and for
every natural numbers n, m such that n < m for every element x of X
such that € E holds F'(n)(z) > F(m)(z) and for every element z of X
such that x € F holds F'#uz is convergent. Then there exists a sequence [
of extended reals such that

(i) for every natural number n, I(n) = [ F(n)dM, and

(ii) I is convergent, and
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(1]

2l
8]
(4]
[5]
(6]
(7]
(8]

(ifi) [lim FdM = limI.

PROOF: Set G = —F. G(0) = —F(0). For every natural number n, G(n)
is measurable on E by [4, (63)], (37). For every natural numbers n, m
such that n < m for every element z of X such that x € E holds
G(n)(z) < G(m)(z). For every element x of X such that x € E holds
G#x is convergent. Consider J being a sequence of extended reals such
that for every natural number n, J(n) = [ G(n)dM and J is convergent
and [limGdM =limJ. Set I = —J. For every natural number n, I(n) =
[ F(n)dM. For every element x of X such that z € domlim G holds
(lim G)(x) = (—lim F)(z) by (38), [8, (17)]. [limGdM = —[lim FdM.
U

REFERENCES

Grzegorz Bancerek, Czestaw Byliniski, Adam Grabowski, Artur Kornitowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8_17.

Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1.
Springer, 2007.

Noboru Endou. Extended real-valued double sequence and its convergence. Formalized
Mathematics, 23(3):253-277, 2015. doij10.1515/forma-2015-0021.

Noboru Endou. Fubini’s theorem on measure. Formalized Mathematics, 25(1):1-29, 2017.
doi:10.1515/forma-2017-0001.

Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Ma-
thematics, 14(2):53-70, 2006. doi:10.2478/v10037-006-0008-x..

Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence
theorem. Formalized Mathematics, 16(2):167-175, 2008. doij10.2478/v10037-008-0023-1,
Adam Grabowski, Artur Kornitowicz, and Adam Naumowicz. Four decades of Mizar.
Journal of Automated Reasoning, 55(3):191-198, 2015. doi:10.1007/s10817-015-9345-1.

P. R. Halmos. Measure Theory. Springer-Verlag, 1974.

Received September 3, 2017

under agreement 548/P-DUN/2016 with the funds from the Polish Minister

\ The English version of this volume of Formalized Mathematics was financed
of Science and Higher Education for the dissemination of science.


http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1515/forma-2015-0021
http://dx.doi.org/10.1515/forma-2017-0001
http://dx.doi.org/10.2478/v10037-006-0008-x
http://dx.doi.org/10.2478/v10037-008-0023-1
http://dx.doi.org/10.1007/s10817-015-9345-1

	=0pt Integral of Non Positive Functions  By Noboru Endou  

