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Integral of Non Positive Functions
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Summary. In this article, we formalize in the Mizar system [1, 7] the Le-
besgue type integral and convergence theorems for non positive functions [8],[2].
Many theorems are based on our previous results [5], [6].
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1. Preliminaries

Let X be a non empty set and f be a non-negative partial function from X

to R. Observe that −f is non-positive.
Let f be a non-positive partial function from X to R. One can check that

−f is non-negative.
Now we state the propositions:

(1) Let us consider a non empty set X, a non-positive partial function f

from X to R, and a set E. Then f�E is non-positive.

(2) Let us consider a non empty set X, a set A, a real number r, and a partial
function f from X to R. Then (r · f)�A = r · (f�A).

(3) Let us consider a non empty set X, a set A, and a partial function f

from X to R. Then −f�A = (−f)�A. The theorem is a consequence of (2).

(4) Let us consider a non empty set X, a partial function f from X to R,
and a real number c. Suppose f is non-positive. Then

(i) if 0 ¬ c, then c · f is non-positive, and

(ii) if c ¬ 0, then c · f is non-negative.
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(5) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. Then

(i) max+(f) is non-negative, and

(ii) max−(f) is non-negative, and

(iii) |f | is non-negative.

(6) Let us consider a non empty set X, a partial function f from X to R,
and an object x. Then

(i) f(x) ¬ (max+(f))(x), and

(ii) f(x) ­ −(max−(f))(x).

(7) Let us consider a non empty set X, a partial function f from X to R,
and a positive real number r. Then LE-dom(f, r) = LE-dom(max+(f), r).

(8) Let us consider a non empty set X, a partial function f from X to R, and
a non positive real number r. Then LE-dom(f, r) = GT-dom(max−(f),−r).

(9) Let us consider a non empty set X, partial functions f , g from X to R,
an extended real a, and a real number r. Suppose r 6= 0 and g = r · f .
Then EQ-dom(f, a) = EQ-dom(g, a · r).

(10) Let us consider a non empty set X, a σ-field S of subsets of X, a partial
function f from X to R, and an element A of S. Suppose A ⊆ dom f .
Then f is measurable on A if and only if max+(f) is measurable on A and
max−(f) is measurable on A.

Let X be a non empty set, f be a function from X into R, and r be a real
number. Note that the functor r · f yields a function from X into R. Now we
state the proposition:

(11) Let us consider a non empty set X, a real number r, and a without +∞
function f from X into R. If r ­ 0, then r · f is without +∞.

Let X be a non empty set, f be a without +∞ function from X into R,
and r be a non negative real number. Let us note that r · f is without +∞ as
a function from X into R.

Now we state the proposition:

(12) Let us consider a non empty set X, a real number r, and a without +∞
function f from X into R. If r ¬ 0, then r · f is without −∞.

Let X be a non empty set, f be a without +∞ function from X into R, and
r be a non positive real number. One can check that r · f is without −∞.

Now we state the proposition:

(13) Let us consider a non empty set X, a real number r, and a without −∞
function f from X into R. If r ­ 0, then r · f is without −∞.
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Let X be a non empty set, f be a without −∞ function from X into R, and
r be a non negative real number. One can check that r · f is without −∞.

Now we state the proposition:

(14) Let us consider a non empty set X, a real number r, and a without −∞
function f from X into R. If r ¬ 0, then r · f is without +∞.

Let X be a non empty set, f be a without −∞ function from X into R, and
r be a non positive real number. One can check that r · f is without +∞.

Now we state the proposition:

(15) Let us consider a non empty set X, a real number r, and a without −∞,
without +∞ function f from X into R. Then r · f is without −∞ and
without +∞.

Let X be a non empty set, f be a without −∞, without +∞ function from
X into R, and r be a real number. Note that r · f is without −∞ and without
+∞.

Now we state the propositions:

(16) Let us consider a non empty set X, a positive real number r, and a func-
tion f from X into R. Then f is without +∞ if and only if r ·f is without
+∞.

(17) Let us consider a non empty set X, a negative real number r, and a func-
tion f from X into R. Then f is without +∞ if and only if r ·f is without
−∞.

(18) Let us consider a non empty set X, a positive real number r, and a func-
tion f from X into R. Then f is without −∞ if and only if r ·f is without
−∞.

(19) Let us consider a non empty set X, a negative real number r, and a func-
tion f from X into R. Then f is without −∞ if and only if r ·f is without
+∞.

(20) Let us consider a non empty set X, a non zero real number r, and
a function f from X into R. Then f is without −∞ and without +∞ if and
only if r ·f is without −∞ and without +∞. The theorem is a consequence
of (16), (18), (17), and (19).

(21) Let us consider non empty sets X, Y, a partial function f from X to R,
and a real number r. Suppose f = Y 7−→ r. Then f is without −∞ and
without +∞.

(22) Let us consider a non empty set X, and a function f from X into R.
Then

(i) 0 · f = X 7−→ 0, and

(ii) 0 · f is without −∞ and without +∞.
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Proof: For every element x of X, (0 · f)(x) = (X 7−→ 0)(x). �

(23) Let us consider a non empty set X, and partial functions f , g from X

to R. Suppose f is without −∞ and without +∞. Then

(i) dom(f + g) = dom f ∩ dom g, and

(ii) dom(f − g) = dom f ∩ dom g, and

(iii) dom(g − f) = dom f ∩ dom g.

Let us consider a non empty set X and functions f1, f2 from X into R. Now
we state the propositions:

(24) Suppose f2 is without −∞ and without +∞. Then

(i) f1 + f2 is a function from X into R, and

(ii) for every element x of X, (f1 + f2)(x) = f1(x) + f2(x).

The theorem is a consequence of (23).

(25) Suppose f1 is without −∞ and without +∞. Then

(i) f1 − f2 is a function from X into R, and

(ii) for every element x of X, (f1 − f2)(x) = f1(x)− f2(x).

The theorem is a consequence of (23).

(26) Suppose f2 is without −∞ and without +∞. Then

(i) f1 − f2 is a function from X into R, and

(ii) for every element x of X, (f1 − f2)(x) = f1(x)− f2(x).

The theorem is a consequence of (23).

(27) Let us consider non empty sets X, Y, and partial functions f1, f2 from
X to R. Suppose dom f1 ⊆ Y and f2 = Y 7−→ 0. Then

(i) f1 + f2 = f1, and

(ii) f1 − f2 = f1, and

(iii) f2 − f1 = −f1.

The theorem is a consequence of (21) and (23).

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, and partial functions f , g from X to R. Now we state the propositions:

(28) If f is simple function in S and g is simple function in S, then f + g is
simple function in S.
Proof: Consider F being a finite sequence of separated subsets of S, a
being a finite sequence of elements of R such that F and a are represen-
tation of f . Consider G being a finite sequence of separated subsets of S,
b being a finite sequence of elements of R such that G and b are repre-
sentation of g. Set l1 = len a. Set l2 = len b. Define H(natural number) =
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F (($1−′ 1 div l2) + 1)∩G(($1−′ 1 mod l2) + 1). Consider F1 being a finite
sequence such that lenF1 = l1 ·l2 and for every natural number k such that
k ∈ domF1 holds F1(k) = H(k). For every natural numbers k, l such that
k, l ∈ domF1 and k 6= l holds F1(k) misses F1(l). dom(f + g) =

⋃
rngF1.

For every natural number k and for every elements x, y of X such that
k ∈ domF1 and x, y ∈ F1(k) holds (f + g)(x) = (f + g)(y). �

(29) If f is simple function in S and g is simple function in S, then f − g is
simple function in S. The theorem is a consequence of (28).

(30) Let us consider a non empty set X, a σ-field S of subsets of X, and
a partial function f from X to R. If f is simple function in S, then −f is
simple function in S.

(31) Let us consider a non empty set X, and a non-negative partial function
f from X to R. Then f = max+(f).
Proof: For every element x of X such that x ∈ dom f holds f(x) =
(max+(f))(x). �

(32) Let us consider a non empty set X, and a non-positive partial function
f from X to R. Then f = −max−(f).
Proof: For every element x of X such that x ∈ dom f holds f(x) =
(−max−(f))(x). �

(33) Let us consider a non empty set C, a partial function f from C to R,
and a real number c. Suppose c ¬ 0. Then

(i) max+(c · f) = (−c) ·max−(f), and

(ii) max−(c · f) = (−c) ·max+(f).

Proof: For every element x of C such that x ∈ dom max+(c · f) holds
(max+(c · f))(x) = ((−c) · max−(f))(x). For every element x of C such
that x ∈ dom max−(c · f) holds (max−(c · f))(x) = ((−c) ·max+(f))(x). �

(34) Let us consider a non empty set X, and a partial function f from X to
R. Then max+(f) = max−(−f). The theorem is a consequence of (33).

(35) Let us consider a non empty set X, a partial function f from X to R,
and real numbers r1, r2. Then r1 · (r2 · f) = (r1 · r2) · f .

(36) Let us consider a non empty set X, and partial functions f , g from X

to R. If f = −g, then g = −f . The theorem is a consequence of (35).

Let X be a non empty set, F be a sequence of partial functions from X

into R, and r be a real number. The functor r · F yielding a sequence of partial
functions from X into R is defined by

(Def. 1) for every natural number n, it(n) = r · F (n).

The functor −F yielding a sequence of partial functions from X into R is
defined by the term
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(Def. 2) (−1) · F .

Now we state the proposition:

(37) Let us consider a non empty set X, a sequence F of partial functions
from X into R, and a natural number n. Then (−F )(n) = −F (n).

Let us consider a non empty set X, a sequence F of partial functions from
X into R, and an element x of X. Now we state the propositions:

(38) (−F )#x = −F#x. The theorem is a consequence of (37).

(39) (i) F#x is convergent to +∞ iff (−F )#x is convergent to −∞, and

(ii) F#x is convergent to −∞ iff (−F )#x is convergent to +∞, and

(iii) F#x is convergent to a finite limit iff (−F )#x is convergent to a
finite limit, and

(iv) F#x is convergent iff (−F )#x is convergent, and

(v) if F#x is convergent, then lim((−F )#x) = −lim(F#x).
The theorem is a consequence of (38).

Let us consider a non empty set X and a sequence F of partial functions
from X into R. Now we state the propositions:

(40) If F has the same dom, then −F has the same dom. The theorem is
a consequence of (37).

(41) If F is additive, then −F is additive. The theorem is a consequence of
(37).

(42) Let us consider a non empty set X, a sequence F of partial functions
from X into R, and a natural number n. Then (

∑κ
α=0(−F )(α))κ∈N(n) =

(−(
∑κ
α=0 F (α))κ∈N)(n).

Proof: Define P[natural number] ≡ (
∑κ
α=0(−F )(α))κ∈N($1) =

(−(
∑κ
α=0 F (α))κ∈N)($1). P[0]. For every natural number k such that P[k]

holds P[k + 1]. For every natural number k, P[k]. �

(43) Let us consider a sequence s of extended reals, and a natural number n.
Then (

∑κ
α=0(−s)(α))κ∈N(n) = −(

∑κ
α=0 s(α))κ∈N(n).

Proof: Define P[natural number] ≡ (
∑κ
α=0(−s)(α))κ∈N($1) =

−(
∑κ
α=0 s(α))κ∈N($1). For every natural number k such that P[k] holds

P[k + 1]. For every natural number k, P[k]. �

Let us consider a sequence s of extended reals. Now we state the propositions:

(44) (
∑κ
α=0(−s)(α))κ∈N = −(

∑κ
α=0 s(α))κ∈N. The theorem is a consequence

of (43).

(45) If s is summable, then −s is summable. The theorem is a consequence
of (44).
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Let us consider a non empty set X and a sequence F of partial functions
from X into R. Now we state the propositions:

(46) If for every natural number n, F (n) is without +∞, then F is additive.

(47) If for every natural number n, F (n) is without −∞, then F is additive.

(48) Let us consider a non empty set X, a sequence F of partial functions
from X into R, and an element x of X. Suppose F#x is summable. Then

(i) (−F )#x is summable, and

(ii)
∑

((−F )#x) = −
∑

(F#x).

The theorem is a consequence of (45), (38), and (44).

(49) Let us consider a non empty set X, a σ-field S of subsets of X, and a se-
quence F of partial functions from X into R. Suppose F is additive and has
the same dom and for every element x of X such that x ∈ dom(F (0)) holds
F#x is summable. Then lim(

∑κ
α=0(−F )(α))κ∈N = −lim(

∑κ
α=0 F (α))κ∈N.

Proof: Set G = −F . For every element n of N, (
∑κ
α=0G(α))κ∈N(n) =

(−(
∑κ
α=0 F (α))κ∈N)(n). For every element x of X such that x ∈ dom lim

(
∑κ
α=0G(α))κ∈N holds (lim(

∑κ
α=0G(α))κ∈N)(x) =

(−lim(
∑κ
α=0 F (α))κ∈N)(x). �

(50) Let us consider a non empty set X, a σ-field S of subsets of X, sequ-
ences F , G of partial functions from X into R, and an element E of S.
Suppose E ⊆ dom(F (0)) and F is additive and has the same dom and
for every natural number n, G(n) = F (n)�E. Then lim(

∑κ
α=0G(α))κ∈N =

lim(
∑κ
α=0 F (α))κ∈N�E.

Proof: For every element x of X such that x ∈ E holds F#x = G#x.
Set P1 = (

∑κ
α=0 F (α))κ∈N. Set P2 = (

∑κ
α=0G(α))κ∈N. For every element

x of X such that x ∈ dom limP2 holds (limP2)(x) = (limP1)(x). For
every element x of X such that x ∈ dom(limP2�E) holds (limP2�E)(x) =
(limP1�E)(x). �

2. Integral of Non Positive Measurable Functions

Now we state the propositions:

(51) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a non-negative partial function f from X to R.
Then

∫ ′max−(−f) dM =
∫ ′ f dM . The theorem is a consequence of (32),

(36), and (35).

(52) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and an element A of S.
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Suppose A = dom f and f is measurable on A. Then
∫
−f dM = −

∫
f dM .

The theorem is a consequence of (36), (10), (5), and (34).

(53) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a non-negative partial function f from X to R, and
an element E of S. Suppose E = dom f and f is measurable on E. Then

(i)
∫

max−(f) dM = 0, and

(ii)
∫+ max−(f) dM = 0.

Proof: max−(f) is measurable on E. For every object x such that x ∈
dom max−(f) holds (max−(f))(x) = 0. �

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, a partial function f from X to R, and an element E of S. Now we
state the propositions:

(54) If E = dom f and f is measurable on E, then
∫
f dM =

∫
max+(f) dM−∫

max−(f) dM . The theorem is a consequence of (10) and (5).

(55) If E ⊆ dom f and f is measurable on E, then
∫

(−f)�E dM = −
∫
f�E dM .

The theorem is a consequence of (3) and (52).

(56) Let us consider a non empty set X, a σ-field S of subsets of X, and
a partial function f from X to R. Suppose there exists an element A of
S such that A = dom f and f is measurable on A and (f qua extended
real-valued function) is non-positive. Then there exists a sequence F of
partial functions from X into R such that

(i) for every natural number n, F (n) is simple function in S and

dom(F (n)) = dom f , and

(ii) for every natural number n, F (n) is non-positive, and

(iii) for every natural numbers n, m such that n ¬ m for every element x
of X such that x ∈ dom f holds F (n)(x) ­ F (m)(x), and

(iv) for every element x of X such that x ∈ dom f holds F#x is conver-
gent and lim(F#x) = f(x).

The theorem is a consequence of (37), (30), and (39).

(57) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, and a non-positive partial function f
from X to R. Suppose there exists an element A of S such that A = dom f

and f is measurable on A. Then

(i)
∫
f dM = −

∫+ max−(f) dM , and

(ii)
∫
f dM = −

∫+−f dM , and

(iii)
∫
f dM = −

∫
−f dM .
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Proof: Consider A being an element of S such that A = dom f and f is
measurable on A. f = −max−(f). −f = max−(f). For every element x of
X such that x ∈ dom max+(f) holds (max+(f))(x) = 0. �

(58) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a non-positive partial function f from X to R.
Suppose f is simple function in S. Then

(i)
∫
f dM = −

∫ ′−f dM , and

(ii)
∫
f dM = −

∫ ′max−(f) dM .

The theorem is a consequence of (30), (57), (32), and (36).

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, a partial function f from X to R, and a real number c. Now we state
the propositions:

(59) If f is simple function in S and f is non-negative, then
∫
c · f dM =

c ·
∫ ′ f dM .

(60) Suppose f is simple function in S and f is non-positive. Then

(i)
∫
c · f dM = −c ·

∫ ′−f dM , and

(ii)
∫
c · f dM = −(c ·

∫ ′−f dM).

The theorem is a consequence of (35), (30), and (59).

(61) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. Suppose there
exists an element A of S such that A = dom f and f is measurable on A

and f is non-positive. Then 0 ­
∫
f dM . The theorem is a consequence of

(57).

(62) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A, B, E
of S. Suppose E = dom f and f is measurable on E and f is non-positive
and A misses B. Then

∫
f�(A ∪ B) dM =

∫
f�AdM +

∫
f�B dM . The

theorem is a consequence of (3) and (52).

(63) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A, E of
S. Suppose E = dom f and f is measurable on E and f is non-positive.
Then 0 ­

∫
f�AdM . The theorem is a consequence of (61) and (1).

(64) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A, B, E
of S. Suppose E = dom f and f is measurable on E and f is non-positive
and A ⊆ B. Then

∫
f�AdM ­

∫
f�B dM . The theorem is a consequence

of (3) and (52).
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3. Convergence Theorems for Non Positive Function’s Integration

Now we state the propositions:

(65) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, and a partial function f from X to
R. Suppose E = dom f and f is measurable on E and f is non-positive
and M(E ∩ EQ-dom(f,−∞)) 6= 0. Then

∫
f dM = −∞. The theorem is

a consequence of (9) and (52).

(66) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, and partial functions f , g from X to
R. Suppose E ⊆ dom f and E ⊆ dom g and f is measurable on E and g is
measurable on E and f is non-positive and for every element x of X such
that x ∈ E holds g(x) ¬ f(x). Then

∫
g�E dM ¬

∫
f�E dM . The theorem

is a consequence of (3) and (52).

(67) Let us consider a non empty set X, a sequence F of partial functions
from X into R, a σ-field S of subsets of X, an element E of S, and
a natural number m. Suppose F has the same dom and E = dom(F (0))
and for every natural number n, F (n) is measurable on E and F (n) is
without +∞. Then (

∑κ
α=0 F (α))κ∈N(m) is measurable on E. The theorem

is a consequence of (37), (42), and (46).

(68) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a sequence F of partial functions from X into R,
an element E of S, a sequence I of extended reals, and a natural number
m. Suppose E = dom(F (0)) and F is additive and has the same dom
and for every natural number n, F (n) is measurable on E and F (n) is
non-positive and I(n) =

∫
F (n) dM . Then

∫
(
∑κ
α=0 F (α))κ∈N(m) dM =

(
∑κ
α=0 I(α))κ∈N(m).

Proof: Set G = −F . Set J = −I. G(0) = −F (0). G has the same
dom. For every natural number n, F (n) is measurable on E and F (n) is
without +∞. For every natural number n, G(n) is measurable on E and
G(n) is non-negative and J(n) =

∫
G(n) dM .

∫
(
∑κ
α=0G(α))κ∈N(m) dM =

(
∑κ
α=0 J(α))κ∈N(m).

∫
(−(
∑κ
α=0 F (α))κ∈N)(m) dM = (

∑κ
α=0 J(α))κ∈N(m).∫

(−(
∑κ
α=0 F (α))κ∈N)(m) dM = −(

∑κ
α=0 I(α))κ∈N(m).∫

−(
∑κ
α=0 F (α))κ∈N(m) dM = −(

∑κ
α=0 I(α))κ∈N(m).

−
∫

(
∑κ
α=0 F (α))κ∈N(m) dM = −(

∑κ
α=0 I(α))κ∈N(m). �

(69) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a sequence F of partial functions from X into R, an ele-
ment E of S, and a partial function f from X to R. Suppose E ⊆ dom f

and f is non-positive and f is measurable on E and for every natural
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number n, F (n) is simple function in S and F (n) is non-positive and
E ⊆ dom(F (n)) and for every element x of X such that x ∈ E holds
F#x is summable and f(x) =

∑
(F#x). Then there exists a sequence I

of extended reals such that

(i) for every natural number n, I(n) =
∫
F (n)�E dM , and

(ii) I is summable, and

(iii)
∫
f�E dM =

∑
I.

Proof: Set g = −f . Set G = −F . G is additive. For every natural
number n, G(n) is simple function in S and G(n) is non-negative and
E ⊆ dom(G(n)). For every element x of X such that x ∈ E holds G#x
is summable and g(x) =

∑
(G#x). Consider J being a sequence of exten-

ded reals such that for every natural number n, J(n) =
∫
G(n)�E dM

and J is summable and
∫
g�E dM =

∑
J . For every natural number n,

I(n) =
∫
F (n)�E dM .

∫
g�E dM = −

∫
f�E dM . lim(

∑κ
α=0 I(α))κ∈N =

−
∫
g�E dM . �

(70) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, and a partial function f from X to
R. Suppose E ⊆ dom f and f is non-positive and f is measurable on E.
Then there exists a sequence F of partial functions from X into R such
that

(i) F is additive, and

(ii) for every natural number n, F (n) is simple function in S and F (n)
is non-positive and F (n) is measurable on E, and

(iii) for every element x of X such that x ∈ E holds F#x is summable
and f(x) =

∑
(F#x), and

(iv) there exists a sequence I of extended reals such that for every natural
number n, I(n) =

∫
F (n)�E dM and I is summable and

∫
f�E dM =∑

I.

Proof: Set g = −f . Consider G being a sequence of partial functions from
X into R such that G is additive and for every natural number n, G(n) is
simple function in S and G(n) is non-negative and G(n) is measurable on
E and for every element x of X such that x ∈ E holds G#x is summable
and g(x) =

∑
(G#x) and there exists a sequence J of extended reals

such that for every natural number n, J(n) =
∫
G(n)�E dM and J is

summable and
∫
g�E dM =

∑
J . For every natural number n, F (n) is

simple function in S and F (n) is non-positive and F (n) is measurable on
E. For every element x of X such that x ∈ E holds F#x is summable and
f(x) =

∑
(F#x). There exists a sequence I of extended reals such that
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for every natural number n, I(n) =
∫
F (n)�E dM and I is summable and∫

f�E dM =
∑
I. �

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, a sequence F of partial functions from X into R, and an element E of
S. Now we state the propositions:

(71) Suppose E = dom(F (0)) and F has the same dom and for every natu-
ral number n, F (n) is non-positive and F (n) is measurable on E. Then
there exists a sequence F1 of (X→̇R)N such that for every natural num-
ber n, for every natural number m, F1(n)(m) is simple function in S and
dom(F1(n)(m)) = dom(F (n)) and for every natural number m, F1(n)(m)
is non-positive and for every natural numbers j, k such that j ¬ k for every
element x of X such that x ∈ dom(F (n)) holds F1(n)(j)(x) ­ F1(n)(k)(x)
and for every element x of X such that x ∈ dom(F (n)) holds F1(n)#x is
convergent and lim(F1(n)#x) = F (n)(x).
Proof: Define Q[element of N, set] ≡ for every sequence G of partial
functions from X into R such that $2 = G holds for every natural number
m, G(m) is simple function in S and dom(G(m)) = dom(F ($1)) and
for every natural number m, G(m) is non-positive and for every natural
numbers j, k such that j ¬ k for every element x of X such that x ∈
dom(F ($1)) holds G(j)(x) ­ G(k)(x) and for every element x of X such
that x ∈ dom(F ($1)) holds G#x is convergent and lim(G#x) = F ($1)(x).
For every element n of N, there exists a sequence G of partial functions
from X into R such that for every natural number m, G(m) is simple
function in S and dom(G(m)) = dom(F (n)) and for every natural number
m, G(m) is non-positive and for every natural numbers j, k such that
j ¬ k for every element x of X such that x ∈ dom(F (n)) holds G(j)(x) ­
G(k)(x) and for every element x of X such that x ∈ dom(F (n)) holds
G#x is convergent and lim(G#x) = F (n)(x). For every element n of N,
there exists an element G of (X→̇R)N such thatQ[n,G]. Consider F1 being
a sequence of (X→̇R)N such that for every element n of N, Q[n, F1(n)]. For
every natural number n, for every natural number m, F1(n)(m) is simple
function in S and dom(F1(n)(m)) = dom(F (n)) and for every natural
number m, F1(n)(m) is non-positive and for every natural numbers j, k
such that j ¬ k for every element x of X such that x ∈ dom(F (n)) holds
F1(n)(j)(x) ­ F1(n)(k)(x) and for every element x of X such that x ∈
dom(F (n)) holds F1(n)#x is convergent and lim(F1(n)#x) = F (n)(x). �

(72) Suppose E = dom(F (0)) and F is additive and has the same dom and
for every natural number n, F (n) is measurable on E and F (n) is non-
positive. Then there exists a sequence I of extended reals such that for eve-
ry natural number n, I(n) =

∫
F (n) dM and

∫
(
∑κ
α=0 F (α))κ∈N(n) dM =
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(
∑κ
α=0 I(α))κ∈N(n).

Proof: Set G = −F . G(0) = −F (0). G has the same dom. For every natu-
ral number n, G(n) is measurable on E and G(n) is non-negative. Consider
J being a sequence of extended reals such that for every natural number n,
J(n) =

∫
G(n) dM and

∫
(
∑κ
α=0G(α))κ∈N(n) dM = (

∑κ
α=0 J(α))κ∈N(n).

For every natural number n, F (n) is measurable on E and F (n) is without
+∞. �

(73) Suppose E ⊆ dom(F (0)) and F is additive and has the same dom and for
every natural number n, F (n) is non-positive and F (n) is measurable on
E and for every element x of X such that x ∈ E holds F#x is summable.
Then there exists a sequence I of extended reals such that

(i) for every natural number n, I(n) =
∫
F (n)�E dM , and

(ii) I is summable, and

(iii)
∫

lim(
∑κ
α=0 F (α))κ∈N�E dM =

∑
I.

Proof: Set G = −F . G(0) = −F (0). G is additive. G has the same dom.
For every natural number n, G(n) is non-negative and G(n) is measu-
rable on E. For every element x of X such that x ∈ E holds G#x is
summable. Consider J being a sequence of extended reals such that for
every natural number n, J(n) =

∫
G(n)�E dM and J is summable and∫

lim(
∑κ
α=0G(α))κ∈N�E dM =

∑
J . For every natural number n, I(n) =∫

F (n)�E dM . Define H(natural number) = F ($1)�E. Consider H being
a sequence of partial functions from X into R such that for every natural
number n, H(n) = H(n). lim(

∑κ
α=0H(α))κ∈N = lim(

∑κ
α=0 F (α))κ∈N�E.

Define K(natural number) = G($1)�E. Consider K being a sequence of
partial functions from X into R such that for every natural number n,
K(n) = K(n). lim(

∑κ
α=0K(α))κ∈N = lim(

∑κ
α=0G(α))κ∈N�E. For every

element n of N, H(n) = (−K)(n). lim(
∑κ
α=0H(α))κ∈N =

−lim(
∑κ
α=0K(α))κ∈N. For every natural number n, K(n) is measura-

ble on E and K(n) is without −∞.
∫

(−lim(
∑κ
α=0K(α))κ∈N)�E dM =

−
∫

lim(
∑κ
α=0K(α))κ∈N�E dM . �

(74) Suppose E = dom(F (0)) and F (0) is non-positive and F has the same
dom and for every natural number n, F (n) is measurable on E and for
every natural numbers n, m such that n ¬ m for every element x of X
such that x ∈ E holds F (n)(x) ­ F (m)(x) and for every element x of X
such that x ∈ E holds F#x is convergent. Then there exists a sequence I
of extended reals such that

(i) for every natural number n, I(n) =
∫
F (n) dM , and

(ii) I is convergent, and



240 noboru endou

(iii)
∫

limF dM = lim I.

Proof: Set G = −F . G(0) = −F (0). For every natural number n, G(n)
is measurable on E by [4, (63)], (37). For every natural numbers n, m
such that n ¬ m for every element x of X such that x ∈ E holds
G(n)(x) ¬ G(m)(x). For every element x of X such that x ∈ E holds
G#x is convergent. Consider J being a sequence of extended reals such
that for every natural number n, J(n) =

∫
G(n) dM and J is convergent

and
∫

limGdM = lim J . Set I = −J . For every natural number n, I(n) =∫
F (n) dM . For every element x of X such that x ∈ dom limG holds

(limG)(x) = (−limF )(x) by (38), [3, (17)].
∫

limGdM = −
∫

limF dM .
�
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