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Summary. In the article we formalized in the Mizar system [2] the Vieta
formula about the sum of roots of a polynomial anxn+an−1xn−1+ · · ·+a1x+a0
defined over an algebraically closed field. The formula says that x1 + x2 + · · ·+
xn−1 + xn = −an−1

an
, where x1, x2, . . . , xn are (not necessarily distinct) roots of

the polynomial [12]. In the article the sum is denoted by SumRoots.
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Let F be a finite sequence and f be a function from domF into domF .
Observe that F · f is finite sequence-like.

Now we state the propositions:

(1) Let us consider objects a, b. Suppose a 6= b. Then

(i) CFS({a, b}) = 〈a, b〉, or

(ii) CFS({a, b}) = 〈b, a〉.

(2) Let us consider a finite set X. Then CFS(X) is an enumeration of X.

Let A be a set and X be a finite subset of A. Observe that CFS(X) is
A-valued.

Now we state the proposition:

(3) Let us consider a right zeroed, non empty additive loop structure L, and
an element a of L. Then 2 · a = a+ a.
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Let L be an almost left invertible multiplicative loop with zero structure.
Let us note that every element of L which is non zero is also left invertible.

Let L be an almost right invertible multiplicative loop with zero structure.
Observe that every element of L which is non zero is also right invertible.

Let L be an almost left cancelable multiplicative loop with zero structure. Let
us observe that every element of L which is non zero is also left mult-cancelable.

Let L be an almost right cancelable multiplicative loop with zero structure.
One can verify that every element of L which is non zero is also right mult-
cancelable.

Now we state the proposition:

(4) Let us consider a right unital, associative, non trivial double loop struc-
ture L, and elements a, b of L. Suppose b is left invertible and right mult-
cancelable and b · 1

b = 1
b · b. Then a·bb = a.

Let L be a non degenerated zero-one structure, z0 be an element of L, and z1
be a non zero element of L. Note that 〈z0, z1〉 is non-zero and 〈z1, z0〉 is non-zero.

Let us consider a non trivial zero structure L and a polynomial p over L.
Now we state the propositions:

(5) If len p = 1, then there exists a non zero element a of L such that p = 〈a〉.
(6) If len p = 2, then there exists an element a of L and there exists a non

zero element b of L such that p = 〈a, b〉.
(7) If len p = 3, then there exist elements a, b of L and there exists a non

zero element c of L such that p = 〈a, b, c〉.
Now we state the propositions:

(8) Let us consider an add-associative, right zeroed, right complementable,
associative, commutative, left distributive, well unital, almost left in-
vertible, non empty double loop structure L, and elements a, b, x of L. If
b 6= 0L, then eval(〈a, b〉,−ab ) = 0L.

(9) Let us consider a field L, elements a, x of L, and a non zero element
b of L. Then x is a root of 〈a, b〉 if and only if x = −ab . The theorem is
a consequence of (4) and (8).

Let us consider a field L, an element a of L, and a non zero element b of L.
Now we state the propositions:

(10) Roots(〈a, b〉) = {−ab}. The theorem is a consequence of (9).

(11) multiplicity(〈a, b〉,−ab ) = 1. The theorem is a consequence of (9).

(12) BRoots(〈a, b〉) = ({−ab}, 1) -bag. The theorem is a consequence of (10)
and (11).

(13) Let us consider a field L, elements a, c of L, and non zero elements b, d of
L. Then Roots(〈a, b〉 ∗ 〈c, d〉) = {−ab ,−

c
d}. The theorem is a consequence
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of (10).

(14) Let us consider a field L, elements a, x of L, and a non zero element b of L.
If x 6= −ab , then multiplicity(〈a, b〉, x) = 0. The theorem is a consequence
of (10).

Let us consider a field L, a non-zero polynomial p over L, an element a of
L, and a non zero element b of L. Now we state the propositions:

(15) Suppose −ab /∈ Roots(p). Then Roots(〈a, b〉 ∗ p) = 1 + Roots(p). The
theorem is a consequence of (10).

(16) Suppose −ab /∈ Roots(p). Then CFS(Roots(p)) a 〈−ab 〉 is an enumeration
of Roots(〈a, b〉 ∗ p). The theorem is a consequence of (10).

(17) Let us consider a field L, a non-zero polynomial p over L, an element a
of L, a non zero element b of L, and an enumeration E of Roots(〈a, b〉 ∗p).
Suppose E = CFS(Roots(p)) a 〈−ab 〉. Then

(i) lenE = 1 + Roots(p), and

(ii) E(1 + Roots(p)) = −ab , and

(iii) for every natural number n such that 1 ¬ n ¬ Roots(p) holds E(n) =
(CFS(Roots(p)))(n).

Let L be a non empty double loop structure, B be a bag of the carrier of
L, and E be a (the carrier of L)-valued finite sequence. The functor B(++)E
yielding a finite sequence of elements of L is defined by

(Def. 1) len it = lenE and for every natural number n such that 1 ¬ n ¬ len it
holds it(n) = (B · E)(n) · En.

Now we state the propositions:

(18) Let us consider an integral domain L, a non-zero polynomial p over
L, a bag B of the carrier of L, and an enumeration E of Roots(p). If
Roots(p) = ∅, then B(++)E = ∅.

(19) Let us consider a left zeroed, add-associative, non empty double loop
structure L, bags B1, B2 of the carrier of L, and a (the carrier of L)-valued
finite sequence E. Then B1 +B2(++)E = (B1(++)E) + (B2(++)E).

(20) Let us consider a left zeroed, add-associative, non empty double loop
structure L, a bag B of the carrier of L, and (the carrier of L)-valued finite
sequences E, F . Then B(++)E a F = (B(++)E) a (B(++)F ).

(21) Let us consider a left zeroed, add-associative, non empty double lo-
op structure L, bags B1, B2 of the carrier of L, and (the carrier of L)-
valued finite sequences E, F . Then B1 + B2(++)E a F = (B1(++)E) a

(B1(++)F ) + (B2(++)E) a (B2(++)F ). The theorem is a consequence of
(19) and (20).
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(22) Let us consider a field L, a non-zero polynomial p over L, an element
a of L, a non zero element b of L, an enumeration E of Roots(〈a, b〉 ∗ p),
and a permutation P of domE. Then (BRoots(〈a, b〉 ∗ p)(++)E) · P =
BRoots(〈a, b〉 ∗ p)(++)(E · P ).
Proof: Set q = 〈a, b〉. Set B = BRoots(q ∗ p). Reconsider P1 = P as
a permutation of dom(B(++)E). (B(++)E) ·P1 = B(++)(E ·P ) by [13,
(27)], [11, (29), (25)], [4, (13)]. �

Let us consider a field L, a non-zero polynomial p over L, an element a of
L, a non zero element b of L, and an enumeration E of Roots(〈a, b〉 ∗ p). Now
we state the propositions:

(23) Suppose−ab /∈ Roots(p). Then suppose E = CFS(Roots(p))a〈−ab 〉. Then
(CFS(Roots(〈a, b〉 ∗ p)))−1 ·E is a permutation of domE. The theorem is
a consequence of (15) and (10).

(24) Suppose−ab /∈ Roots(p). Then suppose E = CFS(Roots(p))a〈−ab 〉. Then∑
(BRoots(〈a, b〉∗p)(++)E) =

∑
(BRoots(〈a, b〉∗p)(++) CFS(Roots(〈a, b〉∗

p))).
Proof: Set q = 〈a, b〉. Set B = BRoots(q ∗p). Set D = CFS(Roots(q ∗p)).
Reconsider P = D−1 · E as a permutation of domE. E · E−1 ·D = D by
[4, (37)], [13, (27)], [4, (35), (12)]. (B(++)E) ·P−1 = B(++)(E ·P−1). �

(25)
∑

(BRoots(〈a, b〉)(++)E) = −ab . The theorem is a consequence of (10),
(11), and (14).

Let L be an integral domain and p be a non-zero polynomial over L. The
functor SumRoots(p) yielding an element of L is defined by the term

(Def. 2)
∑

(BRoots(p)(++) CFS(Roots(p))).

Now we state the propositions:

(26) Let us consider an integral domain L, and a non-zero polynomial p over
L. If Roots(p) = ∅, then SumRoots(p) = 0L. The theorem is a consequence
of (2) and (18).

(27) Let us consider a field L, an element a of L, and a non zero element b of
L. Then SumRoots(〈a, b〉) = −ab . The theorem is a consequence of (10),
(2), and (11).

(28) Let us consider a field L, a non-zero polynomial p over L, an element
a of L, and a non zero element b of L. Then SumRoots(〈a, b〉 ∗ p) =
−ab + SumRoots(p). The theorem is a consequence of (16), (17), (24), (2),
(10), (11), (25), and (19).

(29) Let us consider a field L, elements a, c of L, and non zero elements
b, d of L. Then SumRoots(〈a, b〉 ∗ 〈c, d〉) = −ab + − cd . The theorem is
a consequence of (27) and (28).
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(30) Let us consider an algebraic closed field L, and non-zero polynomials
p, q over L. Suppose len p ­ 2. Then SumRoots(p ∗ q) = SumRoots(p) +
SumRoots(q).
Proof: Define P[natural number] ≡ for every non-zero polynomial f
over L such that $1 = len f holds SumRoots(f ∗ q) = SumRoots(f) +
SumRoots(q). P[2]. For every non trivial natural number k such that P[k]
holds P[k + 1] by [6, (29)], [1, (11)], [8, (17), (50)]. For every non trivial
natural number k, P[k] from [6, Sch. 2]. �

(31) Let us consider an algebraic closed integral domain L, a non-zero polyno-
mial p over L, and a finite sequence r of elements of L. Suppose r is one-to-
one and len r = len p−′1 and Roots(p) = rng r. Then

∑
r = SumRoots(p).

Proof: Set B = BRoots(p). Set s = supportB. Set L1 = len r 7→ 1.
Consider f being a finite sequence of elements of N such that degree(B) =∑
f and f = B · CFS(s). Reconsider E = CFS(s) as a finite sequence of

elements of L. For every natural number j such that j ∈ Seg len r holds
f(j) ­ L1(j) by [8, (52)], [4, (12)], [3, (57)]. For every natural number j
such that 1 ¬ j ¬ lenE holds (B(++)E)(j) = E(j) by [5, (83)], [3, (57)],
[9, (13)]. �

(32) Vieta’s formula about the sum of roots:
Let us consider an algebraic closed field L, and a non-zero polynomial p
over L. Suppose len p ­ 2. Then SumRoots(p) = −p(len p−′2)

p(len p−′1) .

Proof: Define P[natural number] ≡ for every non-zero polynomial p over
L such that $1 = len p holds SumRoots(p) = −p($1−

′2)
p($1−′1) . P[2] by (6), [7,

(38)], (27). For every non trivial natural number k such that P[k] holds
P[k + 1] by [6, (29)], [1, (11)], [8, (17)], [10, (5)]. For every non trivial
natural number k, P[k] from [6, Sch. 2]. �
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