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Differentiability of Polynomials over Reals

Artur Korniłowicz
Institute of Informatics
University of Białystok

Poland

Summary. In this article, we formalize in the Mizar system [3] the notion
of the derivative of polynomials over the field of real numbers [4]. To define it,
we use the derivative of functions between reals and reals [9].
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1. Preliminaries

From now on c denotes a complex, r denotes a real number, m, n denote
natural numbers, and f denotes a complex-valued function.

Now we state the propositions:

(1) 0 + f = f .

(2) f − 0 = f .

Let f be a complex-valued function. Observe that 0 + f reduces to f and
f − 0 reduces to f .

Now we state the propositions:

(3) c+ f = (dom f 7−→ c) + f .

(4) f − c = f − (dom f 7−→ c).
(5) c · f = (dom f 7−→ c) · f .
(6) f + (dom f 7−→ 0) = f . The theorem is a consequence of (3).

(7) f − (dom f 7−→ 0) = f . The theorem is a consequence of (4).
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(8) �0 = R 7−→ 1.
Proof: Reconsider s = 1 as an element of R. �0 = R 7−→ s by [8, (34)],
[10, (7)]. �

2. Differentiability of Real Functions

One can check that every function from R into R which is differentiable is
also continuous.

Let f be a differentiable function from R into R. The functor f ′ yielding
a function from R into R is defined by the term

(Def. 1) f ′�R.

Now we state the propositions:

(9) Let us consider a function f from R into R. Then f is differentiable if
and only if for every r, f is differentiable in r.

(10) Let us consider a differentiable function f from R into R. Then f ′(r) =
f ′(r)1.

Let f be a function from R into R. Observe that f is differentiable if and
only if the condition (Def. 2) is satisfied.

(Def. 2) for every r, f is differentiable in r.

Let us note that every function from R into R which is constant is also
differentiable.

Now we state the proposition:

(11) Let us consider a constant function f from R into R. Then f ′ = R 7−→ 0.
Proof: Reconsider z = 0 as an element of R. f ′ = R 7−→ z by [9, (22)],
[10, (7)]. �

One can verify that idR is differentiable as a function from R into R.
Now we state the proposition:

(12) id′R = R 7−→ 1.
Proof: Set f = idR. Reconsider z = 1 as an element of R. f ′ = R 7−→ z
by [9, (17)], [10, (7)]. �

Let us consider n. One can verify that �n is differentiable.
Now we state the proposition:

(13) (�n)′ = n · (�n−1).
From now on f , g denote differentiable functions from R into R.

1Left-side f ′(r) is the value of the derivative defined in this article for differentiable functions
f : R 7→ R, and right-side f ′(r) is the value of the derivative defined for partial functions in [9].
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Let us consider f and g. Let us observe that f + g is differentiable as a func-
tion from R into R and f − g is differentiable as a function from R into R and
f · g is differentiable as a function from R into R.

Let us consider r. One can verify that r + f is differentiable as a function
from R into R and r · f is differentiable as a function from R into R and f − r is
differentiable as a function from R into R and −f is differentiable as a function
from R into R and f2 is differentiable as a function from R into R.

Now we state the propositions:

(14) (f + g)′ = f ′ + g′. The theorem is a consequence of (9) and (10).

(15) (f − g)′ = f ′ − g′. The theorem is a consequence of (9) and (10).

(16) (f · g)′ = g · f ′ + f · g′. The theorem is a consequence of (9) and (10).

(17) (r + f)′ = f ′. The theorem is a consequence of (11), (3), (14), and (6).

(18) (f − r)′ = f ′. The theorem is a consequence of (11), (4), (15), and (7).

(19) (r · f)′ = r · f ′. The theorem is a consequence of (9) and (10).

(20) (−f)′ = −f ′.

3. Polynomials

In the sequel L denotes a non empty zero structure and x denotes an element
of L.

Now we state the proposition:

(21) Let us consider a (the carrier of L)-valued function f , and an object a.
Then Support(f +· (a, x)) ⊆ Support f ∪ {a}.
Proof: a = z or z ∈ Support f by [2, (32), (30)]. �

Let us consider L and x. Let f be a finite-Support sequence of L and a be
an object. Observe that f +· (a, x) is finite-Support as a sequence of L.

Now we state the proposition:

(22) Let us consider a polynomial p over L. If p 6= 0.L, then len p −′ 1 =
len p− 1.

Let L be a non empty zero structure and x be an element of L. Let us note
that 〈x〉 is constant and 〈x, 0L〉 is constant.

Now we state the proposition:

(23) Let us consider a non empty zero structure L, and a constant polynomial
p over L. Then

(i) p = 0.L, or

(ii) p = 〈p(0)〉.
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Let us consider L, x, and n. The functor seq(n, x) yielding a sequence of L
is defined by the term

(Def. 3) 0.L+· (n, x).
Observe that seq(n, x) is finite-Support.
Now we state the propositions:

(24) (seq(n, x))(n) = x.

(25) If m 6= n, then (seq(n, x))(m) = 0L.

(26) the length of seq(n, x) is at most n+ 1.

(27) If x 6= 0L, then len seq(n, x) = n+ 1.
Proof: Set p = seq(n, x). For every m such that the length of p is at most
m holds n+ 1 ¬ m by (24), [1, (13)]. �

(28) seq(n, 0L) = 0.L. The theorem is a consequence of (24).

(29) Let us consider a right zeroed, non empty additive loop structure L, and
elements x, y of L. Then seq(n, x)+seq(n, y) = seq(n, x+y). The theorem
is a consequence of (24) and (25).

(30) Let us consider an add-associative, right zeroed, right complementa-
ble, non empty additive loop structure L, and an element x of L. Then
−seq(n, x) = seq(n,−x). The theorem is a consequence of (24) and (25).

(31) Let us consider an add-associative, right zeroed, right complementa-
ble, non empty additive loop structure L, and elements x, y of L. Then
seq(n, x)− seq(n, y) = seq(n, x− y). The theorem is a consequence of (30)
and (29).

Let L be a non empty zero structure and p be a sequence of L. Let us
consider n. The functor p � n yielding a sequence of L is defined by the term

(Def. 4) p+· (n, 0L).

Let p be a polynomial over L. Let us note that p � n is finite-Support.
Let us consider a non empty zero structure L and a sequence p of L. Now

we state the propositions:

(32) (p � n)(n) = 0L.

(33) If m 6= n, then (p � n)(m) = p(m).

Now we state the proposition:

(34) Let us consider a non empty zero structure L. Then 0.L � n = 0.L. The
theorem is a consequence of (32).

Let L be a non empty zero structure. Let us consider n. One can verify that
0.L � n reduces to 0.L.

Let us consider a non empty zero structure L and a polynomial p over L.
Now we state the propositions:
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(35) If n > len p−′ 1, then p � n = p. The theorem is a consequence of (32).

(36) If p 6= 0.L, then len(p � (len p−′ 1)) < len p.
Proof: Set m = len p−′ 1. m = len p− 1. the length of p � m is at most
len p by [2, (32)], [7, (8)]. �

Now we state the proposition:

(37) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, and a polynomial p over L. Then
p � (len p−′ 1) + Leading-Monomial p = p. The theorem is a consequence
of (32).

Let L be a non empty zero structure and p be a constant polynomial over
L. Observe that Leading-Monomial p is constant.

Now we state the proposition:

(38) Let us consider an add-associative, right zeroed, right complementable,
distributive, unital, non empty double loop structure L, and elements x,
y of L. Then eval(seq(n, x), y) = (seq(n, x))(n) · power(y, n). The theorem
is a consequence of (28), (27), and (25).

4. Differentiability of Polynomials over Reals

In the sequel p, q denote polynomials over RF.
Now we state the propositions:

(39) Let us consider an element r of RF. Then power(r, n) = rn.
Proof: Define P[natural number] ≡ power(r, $1) = r$1 . For every natural
number n, P[n] from [1, Sch. 2]. �

(40) �n = FPower(1RF , n).
Proof: Reconsider f = FPower(1RF , n) as a function from R into R.
�n = f by [8, (36)], (39). �

Let us consider an element r of RF. Now we state the propositions:

(41) FPower(r, n+ 1) = FPower(r, n) · idR.

(42) FPower(r, n) is a differentiable function from R into R.
Proof: Define P[natural number] ≡ FPower(r, $1) is a differentiable func-
tion from R into R. P[0] by [6, (66)]. For every natural number n such that
P[n] holds P[n+ 1]. For every natural number n, P[n] from [1, Sch. 2]. �

(43) power(r, n) = (�n)(r). The theorem is a consequence of (40).

Let us consider p. The functor p′ yielding a sequence of RF is defined by

(Def. 5) for every natural number n, it(n) = p(n+ 1) · (n+ 1).

Note that p′ is finite-Support.
Now we state the propositions:
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(44) If p 6= 0.RF, then len p′ = len p− 1.
Proof: Set x = len p − 1. Set d = p′. the length of d is at most x by [7,
(8)]. For every n such that the length of d is at most n holds x ¬ n by
[11, (7)], [7, (10)], [1, (21)]. �

(45) If p 6= 0.RF, then len p = len p′ + 1. The theorem is a consequence of
(44).

(46) Let us consider a constant polynomial p over RF. Then p′ = 0.RF. The
theorem is a consequence of (45).

(47) (p+ q)′ = p′ + q′.

(48) (−p)′ = −p′.
(49) (p− q)′ = p′ − q′. The theorem is a consequence of (47) and (48).

(50) Leading-Monomial p′ = 0.RF +· (len p−′ 2, p(len p−′ 1) · (len p−′ 1)).
Proof: Set l = Leading-Monomial p. Set m = len p−′ 1. Set k = len p−′ 2.
Reconsider a = p(m) ·m as an element of RF. Set f = 0.F +· (k, a). l′ = f
by [1, (53)], [2, (31), (32)], [10, (7)]. �

(51) Let us consider elements r, s of RF. Then 〈r, s〉′ = 〈s〉.
Let us consider p. The functor Eval(p) yielding a function from R into R is

defined by the term

(Def. 6) Polynomial-Function(RF, p).
Let us note that Eval(p) is differentiable.
Now we state the propositions:

(52) Eval(0.RF) = R 7−→ 0.
Proof: Eval(0.F ) = R 7−→ 0(∈ R) by [5, (17)], [10, (7)]. �

(53) Let us consider an element r of RF. Then Eval(〈r〉) = R 7−→ r.
Proof: Eval(〈r〉) = R 7−→ r(∈ R) by [6, (37)], [10, (7)]. �

(54) If p is constant, then Eval(p)′ = R 7−→ 0. The theorem is a consequence
of (23), (52), and (11).

(55) Eval(p+ q) = Eval(p) + Eval(q).

(56) Eval(−p) = −Eval(p).

(57) Eval(p − q) = Eval(p) − Eval(q). The theorem is a consequence of (55)
and (56).

(58) Eval(Leading-Monomial p) = FPower(p(len p−′ 1), len p−′ 1).
Proof: Set l = Leading-Monomial p. Set m = len p−′ 1. Reconsider f =
FPower(p(m),m) as a function from R into R. Eval(l) = f by [5, (22)]. �

(59) Eval(Leading-Monomial p) = p(len p−′ 1) · (�len p−′1).
Proof: Set l = Leading-Monomial p. Set m = len p −′ 1. Set f = p(m) ·
(�m). Eval(l) = f by (39), [8, (36)], [5, (22)]. �
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(60) Let us consider an element r of RF. Then Eval(seq(n, r)) = r · (�n). The
theorem is a consequence of (24), (43), and (38).

(61) Eval(p)′ = Eval(p′).
Proof: Define P[natural number] ≡ for every p such that len p ¬ $1 holds
Eval(p)′ = Eval(p′). P[0] by [5, (5)], (46), (52), (54). If P[n], then P[n+ 1]
by (36), [5, (3)], [1, (13)], (37). P[n] from [1, Sch. 2]. �

Let us consider p. Let us observe that Eval(p)′ is differentiable.
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