

Differentiability of Polynomials over Reals

Artur Korniłowicz Institute of Informatics University of Białystok Poland

Summary. In this article, we formalize in the Mizar system [3] the notion of the derivative of polynomials over the field of real numbers [4]. To define it, we use the derivative of functions between reals and reals [9].

MSC: 26A24 03B35

Keywords: differentiation of real polynomials; derivative of real polynomials

MML identifier: POLYDIFF, version: 8.1.05 5.40.1286

1. Preliminaries

From now on c denotes a complex, r denotes a real number, m, n denote natural numbers, and f denotes a complex-valued function.

Now we state the propositions:

(1) 0+f=f.

$$(2) \quad f - 0 = f.$$

Let f be a complex-valued function. Observe that 0 + f reduces to f and f - 0 reduces to f.

Now we state the propositions:

- (3) $c+f = (\operatorname{dom} f \longmapsto c) + f.$
- (4) $f c = f (\operatorname{dom} f \longmapsto c).$
- (5) $c \cdot f = (\operatorname{dom} f \longmapsto c) \cdot f.$
- (6) $f + (\operatorname{dom} f \longmapsto 0) = f$. The theorem is a consequence of (3).
- (7) $f (\operatorname{dom} f \longmapsto 0) = f$. The theorem is a consequence of (4).

(8) $\square^0 = \mathbb{R} \longmapsto 1.$

PROOF: Reconsider s = 1 as an element of \mathbb{R} . $\Box^0 = \mathbb{R} \longmapsto s$ by [8, (34)], [10, (7)]. \Box

2. DIFFERENTIABILITY OF REAL FUNCTIONS

One can check that every function from \mathbb{R} into \mathbb{R} which is differentiable is also continuous.

Let f be a differentiable function from \mathbb{R} into \mathbb{R} . The functor f' yielding a function from \mathbb{R} into \mathbb{R} is defined by the term

(Def. 1)
$$f'_{\upharpoonright \mathbb{R}}$$
.

Now we state the propositions:

- (9) Let us consider a function f from \mathbb{R} into \mathbb{R} . Then f is differentiable if and only if for every r, f is differentiable in r.
- (10) Let us consider a differentiable function f from \mathbb{R} into \mathbb{R} . Then $f'(r) = f'(r)^1$.

Let f be a function from \mathbb{R} into \mathbb{R} . Observe that f is differentiable if and only if the condition (Def. 2) is satisfied.

(Def. 2) for every r, f is differentiable in r.

Let us note that every function from \mathbb{R} into \mathbb{R} which is constant is also differentiable.

Now we state the proposition:

(11) Let us consider a constant function f from \mathbb{R} into \mathbb{R} . Then $f' = \mathbb{R} \mapsto 0$. PROOF: Reconsider z = 0 as an element of \mathbb{R} . $f' = \mathbb{R} \mapsto z$ by [9, (22)], [10, (7)]. \Box

One can verify that $id_{\mathbb{R}}$ is differentiable as a function from \mathbb{R} into \mathbb{R} . Now we state the proposition:

(12) $\operatorname{id}_{\mathbb{R}}^{\prime} = \mathbb{R} \longmapsto 1.$

PROOF: Set $f = id_{\mathbb{R}}$. Reconsider z = 1 as an element of \mathbb{R} . $f' = \mathbb{R} \mapsto z$ by [9, (17)], [10, (7)]. \Box

Let us consider n. One can verify that \Box^n is differentiable.

Now we state the proposition:

(13)
$$(\Box^n)' = n \cdot (\Box^{n-1}).$$

From now on f, g denote differentiable functions from \mathbb{R} into \mathbb{R} .

¹Left-side f'(r) is the value of the derivative defined in this article for differentiable functions $f : \mathbb{R} \to \mathbb{R}$, and right-side f'(r) is the value of the derivative defined for partial functions in [9].

Let us consider f and g. Let us observe that f + g is differentiable as a function from \mathbb{R} into \mathbb{R} and f - g is differentiable as a function from \mathbb{R} into \mathbb{R} and $f \cdot g$ is differentiable as a function from \mathbb{R} into \mathbb{R} .

Let us consider r. One can verify that r + f is differentiable as a function from \mathbb{R} into \mathbb{R} and $r \cdot f$ is differentiable as a function from \mathbb{R} into \mathbb{R} and f - r is differentiable as a function from \mathbb{R} into \mathbb{R} and -f is differentiable as a function from \mathbb{R} into \mathbb{R} and f^2 is differentiable as a function from \mathbb{R} into \mathbb{R} .

Now we state the propositions:

- (14) (f+g)' = f' + g'. The theorem is a consequence of (9) and (10).
- (15) (f-g)' = f' g'. The theorem is a consequence of (9) and (10).
- (16) $(f \cdot g)' = g \cdot f' + f \cdot g'$. The theorem is a consequence of (9) and (10).
- (17) (r+f)' = f'. The theorem is a consequence of (11), (3), (14), and (6).
- (18) (f-r)' = f'. The theorem is a consequence of (11), (4), (15), and (7).
- (19) $(r \cdot f)' = r \cdot f'$. The theorem is a consequence of (9) and (10).
- $(20) \quad (-f)' = -f'.$

3. Polynomials

In the sequel L denotes a non empty zero structure and x denotes an element of L.

Now we state the proposition:

(21) Let us consider a (the carrier of L)-valued function f, and an object a. Then Support $(f + (a, x)) \subseteq$ Support $f \cup \{a\}$.

PROOF: a = z or $z \in \text{Support } f$ by [2, (32), (30)]. \Box

Let us consider L and x. Let f be a finite-Support sequence of L and a be an object. Observe that f + (a, x) is finite-Support as a sequence of L.

Now we state the proposition:

(22) Let us consider a polynomial p over L. If $p \neq 0.L$, then $\operatorname{len} p - 1 = \operatorname{len} p - 1$.

Let L be a non empty zero structure and x be an element of L. Let us note that $\langle x \rangle$ is constant and $\langle x, 0_L \rangle$ is constant.

Now we state the proposition:

- (23) Let us consider a non empty zero structure L, and a constant polynomial p over L. Then
 - (i) p = 0.L, or
 - (ii) $p = \langle p(0) \rangle$.

Let us consider L, x, and n. The functor seq(n, x) yielding a sequence of L is defined by the term

(Def. 3) **0**.L + (n, x).

Observe that seq(n, x) is finite-Support. Now we state the propositions:

- (24) (seq(n, x))(n) = x.
- (25) If $m \neq n$, then $(\operatorname{seq}(n, x))(m) = 0_L$.
- (26) the length of seq(n, x) is at most n + 1.
- (27) If $x \neq 0_L$, then len seq(n, x) = n + 1. PROOF: Set p = seq(n, x). For every m such that the length of p is at most m holds $n + 1 \leq m$ by (24), [1, (13)]. \Box
- (28) $\operatorname{seq}(n, 0_L) = \mathbf{0}.L$. The theorem is a consequence of (24).
- (29) Let us consider a right zeroed, non empty additive loop structure L, and elements x, y of L. Then seq(n, x) + seq(n, y) = seq(n, x+y). The theorem is a consequence of (24) and (25).
- (30) Let us consider an add-associative, right zeroed, right complementable, non empty additive loop structure L, and an element x of L. Then $-\operatorname{seq}(n, x) = \operatorname{seq}(n, -x)$. The theorem is a consequence of (24) and (25).
- (31) Let us consider an add-associative, right zeroed, right complementable, non empty additive loop structure L, and elements x, y of L. Then seq(n, x) - seq(n, y) = seq(n, x - y). The theorem is a consequence of (30) and (29).

Let L be a non empty zero structure and p be a sequence of L. Let us consider n. The functor $p \upharpoonright n$ yielding a sequence of L is defined by the term

(Def. 4) $p + (n, 0_L)$.

Let p be a polynomial over L. Let us note that $p \upharpoonright n$ is finite-Support.

Let us consider a non empty zero structure L and a sequence p of L. Now we state the propositions:

- $(32) \quad (p \upharpoonright n)(n) = 0_L.$
- (33) If $m \neq n$, then $(p \upharpoonright n)(m) = p(m)$.

Now we state the proposition:

(34) Let us consider a non empty zero structure L. Then $\mathbf{0}.L \upharpoonright n = \mathbf{0}.L$. The theorem is a consequence of (32).

Let *L* be a non empty zero structure. Let us consider *n*. One can verify that $\mathbf{0}.L \upharpoonright n$ reduces to $\mathbf{0}.L$.

Let us consider a non empty zero structure L and a polynomial p over L. Now we state the propositions:

- (35) If n > len p 1, then $p \upharpoonright n = p$. The theorem is a consequence of (32).
- (36) If $p \neq \mathbf{0}.L$, then $\operatorname{len}(p \upharpoonright (\operatorname{len} p '1)) < \operatorname{len} p$.
 - PROOF: Set m = len p 1. m = len p 1. the length of $p \upharpoonright m$ is at most len p by $[2, (32)], [7, (8)]. \square$

Now we state the proposition:

(37) Let us consider an add-associative, right zeroed, right complementable, non empty additive loop structure L, and a polynomial p over L. Then $p \upharpoonright (\ln p - 1) + \text{Leading-Monomial } p = p$. The theorem is a consequence of (32).

Let L be a non empty zero structure and p be a constant polynomial over L. Observe that Leading-Monomial p is constant.

Now we state the proposition:

(38) Let us consider an add-associative, right zeroed, right complementable, distributive, unital, non empty double loop structure L, and elements x, y of L. Then $eval(seq(n, x), y) = (seq(n, x))(n) \cdot power(y, n)$. The theorem is a consequence of (28), (27), and (25).

4. DIFFERENTIABILITY OF POLYNOMIALS OVER REALS

In the sequel p, q denote polynomials over \mathbb{R}_{F} . Now we state the propositions:

- (39) Let us consider an element r of \mathbb{R}_{F} . Then power $(r, n) = r^n$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{power}(r, \$_1) = r^{\$_1}$. For every natural number $n, \mathcal{P}[n]$ from [1, Sch. 2]. \Box
- (40) $\square^n = \text{FPower}(1_{\mathbb{R}_F}, n).$ PROOF: Reconsider $f = \text{FPower}(1_{\mathbb{R}_F}, n)$ as a function from \mathbb{R} into \mathbb{R} . $\square^n = f$ by [8, (36)], (39). \square

Let us consider an element r of \mathbb{R}_{F} . Now we state the propositions:

- (41) $\operatorname{FPower}(r, n+1) = \operatorname{FPower}(r, n) \cdot \operatorname{id}_{\mathbb{R}}.$
- (42) FPower(r, n) is a differentiable function from \mathbb{R} into \mathbb{R} . PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{FPower}(r, \$_1)$ is a differentiable function from \mathbb{R} into \mathbb{R} . $\mathcal{P}[0]$ by [6, (66)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number n, $\mathcal{P}[n]$ from [1, Sch. 2]. \Box

(43) power $(r, n) = (\Box^n)(r)$. The theorem is a consequence of (40).

Let us consider p. The functor p' yielding a sequence of \mathbb{R}_{F} is defined by

(Def. 5) for every natural number n, $it(n) = p(n+1) \cdot (n+1)$.

Note that p' is finite-Support.

Now we state the propositions:

- (44) If $p \neq \mathbf{0}.\mathbb{R}_{\mathrm{F}}$, then $\operatorname{len} p' = \operatorname{len} p 1$. PROOF: Set $x = \operatorname{len} p - 1$. Set d = p'. the length of d is at most x by [7, (8)]. For every n such that the length of d is at most n holds $x \leq n$ by [11, (7)], [7, (10)], [1, (21)]. \Box
- (45) If $p \neq \mathbf{0}.\mathbb{R}_{\mathrm{F}}$, then $\operatorname{len} p = \operatorname{len} p' + 1$. The theorem is a consequence of (44).
- (46) Let us consider a constant polynomial p over \mathbb{R}_{F} . Then $p' = \mathbf{0}.\mathbb{R}_{\mathrm{F}}$. The theorem is a consequence of (45).
- $(47) \quad (p+q)' = p' + q'.$
- $(48) \quad (-p)' = -p'.$
- (49) (p-q)' = p' q'. The theorem is a consequence of (47) and (48).
- (50) Leading-Monomial $p' = \mathbf{0}.\mathbb{R}_{\mathrm{F}} + \cdot (\operatorname{len} p 2, p(\operatorname{len} p 1)) \cdot (\operatorname{len} p 1)).$ PROOF: Set $l = \operatorname{Leading-Monomial} p$. Set $m = \operatorname{len} p - 1$. Set $k = \operatorname{len} p - 2$. Reconsider $a = p(m) \cdot m$ as an element of \mathbb{R}_{F} . Set $f = \mathbf{0}.F + (k, a)$. l' = fby $[1, (53)], [2, (31), (32)], [10, (7)]. \square$
- (51) Let us consider elements r, s of \mathbb{R}_{F} . Then $\langle r, s \rangle' = \langle s \rangle$.

Let us consider p. The functor Eval(p) yielding a function from \mathbb{R} into \mathbb{R} is defined by the term

(Def. 6) Polynomial-Function $(\mathbb{R}_{\mathrm{F}}, p)$.

Let us note that Eval(p) is differentiable.

Now we state the propositions:

- (52) Eval $(\mathbf{0}.\mathbb{R}_{\mathrm{F}}) = \mathbb{R} \longmapsto 0.$ PROOF: Eval $(\mathbf{0}.F) = \mathbb{R} \longmapsto 0 \in \mathbb{R}$ by [5, (17)], [10, (7)]. \Box
- (53) Let us consider an element r of \mathbb{R}_{F} . Then $\mathrm{Eval}(\langle r \rangle) = \mathbb{R} \longmapsto r$. PROOF: $\mathrm{Eval}(\langle r \rangle) = \mathbb{R} \longmapsto r \in \mathbb{R}$ by [6, (37)], [10, (7)]. \Box
- (54) If p is constant, then $\text{Eval}(p)' = \mathbb{R} \mapsto 0$. The theorem is a consequence of (23), (52), and (11).
- (55) $\operatorname{Eval}(p+q) = \operatorname{Eval}(p) + \operatorname{Eval}(q).$

(56)
$$\operatorname{Eval}(-p) = -\operatorname{Eval}(p).$$

- (57) $\operatorname{Eval}(p-q) = \operatorname{Eval}(p) \operatorname{Eval}(q)$. The theorem is a consequence of (55) and (56).
- (58) Eval(Leading-Monomial p) = FPower($p(\ln p 1), \ln p 1$). PROOF: Set l = Leading-Monomial p. Set $m = \ln p - 1$. Reconsider f = FPower(p(m), m) as a function from \mathbb{R} into \mathbb{R} . Eval(l) = f by [5, (22)]. \Box
- (59) Eval(Leading-Monomial p) = $p(\operatorname{len} p 1) \cdot (\Box^{\operatorname{len} p 1})$. PROOF: Set l = Leading-Monomial p. Set $m = \operatorname{len} p - 1$. Set $f = p(m) \cdot (\Box^m)$. Eval(l) = f by (39), [8, (36)], [5, (22)]. \Box

- (60) Let us consider an element r of \mathbb{R}_{F} . Then $\mathrm{Eval}(\mathrm{seq}(n, r)) = r \cdot (\Box^n)$. The theorem is a consequence of (24), (43), and (38).
- (61) $\operatorname{Eval}(p)' = \operatorname{Eval}(p').$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every } p \text{ such that len } p \leq \$_1 \text{ holds}$ Eval(p)' = Eval(p'). $\mathcal{P}[0]$ by [5, (5)], (46), (52), (54). If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$ by (36), [5, (3)], [1, (13)], (37). $\mathcal{P}[n]$ from [1, Sch. 2]. \Box

Let us consider p. Let us observe that Eval(p)' is differentiable.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [3] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.
- Kazimierz Kuratowski. Rachunek różniczkowy i całkowy funkcje jednej zmiennej. Biblioteka Matematyczna. PWN – Warszawa (in polish), 1964.
- [5] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391–395, 2001.
- [6] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461– 470, 2001.
- [7] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. *Formalized Mathematics*, 2(1):97–104, 1991.
- [8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125– 130, 1991.
- Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [11] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.

Received February 23, 2017