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Summary. This article introduces propositional logic as a formal system
([I4), [1I0], [I1]). The formulae of the language are as follows ¢ ::== L |p|¢p — ¢.
Other connectives are introduced as abbrevations. The notions of model and
satisfaction in model are defined. The axioms are all the formulae of the following
schemes

e a= (= a),
e (a= (B=17))= (a=p) = (a=1)),
* (B=a)= ((-8=a)=p).

Modus ponens is the only derivation rule. The soundness theorem and the strong
completeness theorem are proved. The proof of the completeness theorem is car-
ried out by a counter-model existence method. In order to prove the completeness
theorem, Lindenbaum’s Lemma is proved. Some most widely used tautologies are
presented.
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1. PRELIMINARIES

Now we state the propositions:

(1) Let us consider functions f, g. Suppose dom f C dom g and for every set
x such that = € dom f holds f(x) = g(x). Then rng f C rngg.

(2) Let us consider Boolean objects p, q. Then p A ¢ = p = true.
(3) Let us consider a Boolean object p. Then ——p < p = true.
Let us consider Boolean objects p, q. Now we state the propositions:
(4) —(pAq) < —pV g = true.
(5) —(pVaq) < —pA-q= true.
(6) p=q= (—q= —p) = true.
Let us consider Boolean objects p, q, r. Now we state the propositions:
(7) p=q={p=>r= (p=qAr)) = true.
8) p=r=(@=r=(PVqg=r)) = true.
Let us consider Boolean objects p, q. Now we state the propositions:
(9) pAqg< qAp=true.
(10) pVg< qVp=true.
Let us consider Boolean objects p, q, r. Now we state the propositions:
(11) (pAg@) AT < pA(gAT) = true.
(12) (pVvq)Vr<pVi(gVr)=true.
(13) Let us consider Boolean objects p, ¢. Then ¢ = —p = (-¢ = p = q) =
true.
Let us consider Boolean objects p, q, r. Now we state the propositions:
(14) pA(gVr)epAqgVpAr=true.
(15) pVagAr<s (pVag) N(pVr)=true.
(16) Let us consider a finite set X, and a set Y. Suppose Y is C-linear and
X CUY and Y # ). Then there exists a set Z such that
(i) X € Z, and
(ii) Z €Y.

2. THE SYNTAX

Let D be a set. We say that D has propositional variables if and only if
(Def. 1) for every element n of N, (3+n) € D.

We say that D is PL-closed if and only if
(Def. 2) D C N* and D has FALSUM, implication and propositional variables.
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Let us note that every set which is PL-closed is also non empty and has
also FALSUM, implication, and propositional variables and every subset of N*
which has FALSUM, implication, and propositional variables is also PL-closed.

The functor PL-WFF yielding a set is defined by
(Def. 3) itis PL-closed and for every set D such that D is PL-closed holds it C D.

Observe that PL-WFF is PL-closed and there exists a set which is PL-closed
and non empty and PL-WFF is functional and every element of PL-WFF is finite
sequence-like.

The functor Lpy, yielding an element of PL-WFF is defined by the term
(Def. 4) (0).

Let p, ¢ be elements of PL-WFF. The functor p = ¢ yielding an element of
PL-WFF is defined by the term

(Def. 5)  ((1) "p) "¢

Let n be an element of N. The functor Prop n yielding an element of PL-WFF
is defined by the term
(Def. 6) (34 n).

The functor AP yielding a subset of PL-WFF is defined by
(Def. 7) for every set x, x € it iff there exists an element n of N such that
x = Propn.

From now on p, q, r, s, A, B denote elements of PL-WFF, F', G, H denote
subsets of PL-WFF, k, n denote elements of N, and f, fi, fo denote finite
sequences of elements of PL-WFF.

Let D be a subset of PL-WFF. Observe that D has implication if and only
if the condition (Def. 8) is satisfied.

(Def. 8) for every p and ¢ such that p, ¢ € D holds p = ¢ € D.
The scheme PLInd deals with a unary predicate P and states that

(Sch. 1) For every r, P[r]

provided

e P[lpy] and

e for every n, P[Propn] and

e for every r and s such that P[r] and P[s| holds P[r = s].

Now we state the proposition:
(17) PL-WFF C HP-WFF.
PRrROOF: Define Plelement of PL-WFF| = §; € HP-WFF. For every n,

P[Propn]. For every r and s such that P[r] and P]s| holds P[r = s]. For
every A, P[A] from PLInd. O
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Let us consider p. The functor —p yielding an element of PL-WFF is defined
by the term

(Def. 9) p = Lpr.
The functor Tpy, yielding an element of PL-WFF is defined by the term
(Def. 10) _‘J—PL'

Let us consider p and q. The functors: p A ¢ and p V ¢ yielding elements of
PL-WFF are defined by terms

(Def. 11) —=(p = —q),

(Def. 12) —p =g,
respectively. The functor p < ¢ yielding an element of PL-WFF is defined by
the term

(Def. 13) (p=q) A (¢ = D).

3. THE SEMANTICS

A PL-model is a subset of AP. From now on M denotes a PL-model.
Let M be a PL-model. The functor SAT; yielding a function from PL-WFF
into Boolean is defined by
(Def. 14) it(Lpy) = 0 and for every k, it(Prop k) = 1 iff Prop k € M and for every
p and q, it(p = q) = it(p) = it(q).
Now we state the propositions:
(18) SATp (A= B)=1if and only if SAT»;(A) =0 or SATy,(B) = 1.
(19)  SAT(=p) = ~(SATwm(p))-
(20) SATjp;(—A) =1 if and only if SAT3;(A) = 0. The theorem is a consequ-
ence of (19).
(21) SATp (AN B) = SATp(A) ASATp(B). The theorem is a consequence
of (19).
(22) SATu(AA B) = 1if and only if SAT);(A) = 1 and SATy(B) = 1. The
theorem is a consequence of (21).
(23) SATp(AV B) = SAT ) (A) V SAT;(B). The theorem is a consequence
of (19).
(24) SATp(AV B) =1 if and only if SAT(A) =1 or SAT )y, (B) = 1. The
theorem is a consequence of (23).
(25) SAT) (A < B) = SATp(A) & SAT)(B). The theorem is a consequ-
ence of (21).
(26) SATp (A< B) =1 if and only if SAT/(A) = SAT;(B). The theorem
is a consequence of (25).
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Let us consider M and p. We say that M = p if and only if
(Def. 15) SAT(p) = 1.
Let us consider F'. We say that M |= F' if and only if
(Def. 16) for every p such that p € F holds M = p.
Let us consider p. We say that F' = p if and only if
(Def. 17) for every M such that M = F holds M = p.
Let us consider A. We say that A is a tautology if and only if
(Def. 18) for every M, SAT(A) = 1.
Now we state the propositions:
(27) A is a tautology if and only if fpr-wrr = A.
(28) p= (¢ = p) is a tautology.
(29) p=(¢g=r)=(p=q= (p=r)) is a tautology.
(30)

30) —q = —p= (—q = p=q) is a tautology. The theorem is a consequence

of (19) and (13).
(31) p = q= (—q = —p) is a tautology. The theorem is a consequence of
(19) and (6).

(32) pAq= pis a tautology. The theorem is a consequence of (21) and (2).

(33) pAq= qis a tautology. The theorem is a consequence of (21) and (2).

(34) p= pVqis a tautology. The theorem is a consequence of (23).

(35) ¢ = pVqis a tautology. The theorem is a consequence of (23).

(36) pAg< qApis atautology. The theorem is a consequence of (25), (21),
and (9).

(37) pVq< qVpis atautology. The theorem is a consequence of (25), (23),
and (10).

(38) (pAq)AT < pA(gAT)is atautology. The theorem is a consequence of
(25), (21), and (11).

(39) (pVq)Vr<pV(gVr)isatautology. The theorem is a consequence of
(25), (23), and (12).

(40) pA(gVr)<pAqVpArisa tautology. The theorem is a consequence
of (25), (21), (23), and (14).

(41) pVgAr< (pVag) A(pVr) is a tautology. The theorem is a consequence
of (25), (23), (21), and (15).

(42) ——p & pis a tautology. The theorem is a consequence of (25), (19), and
(3)-

(43) —(pAq) < —pV g is a tautology. The theorem is a consequence of (25),
(19), (21), (23), and (4).
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(44) —(pVq) & —pA—qis a tautology. The theorem is a consequence of (25),
(19), (23), (21), and (5).

(45) p=q= (p=1= (p = qAr)) is a tautology. The theorem is
a consequence of (21) and (7).

(46) p=r = (¢ = r = (pVq = r)) is a tautology. The theorem is
a consequence of (23) and (8).

(47) If Fl=EAand F = A= B, then F |= B.

4. THE AXioMS. DERIVABILITY.

Let D be a set. We say that D is with axioms of PL if and only if
(Def. 19) for every p, ¢, and r holds p = (¢ = p), p= (¢=1)= (p=q= (p=
r), 2¢=p=(2q=p=q)€D.
The functor PL-axioms yielding a subset of PL-WFF is defined by
(Def. 20) it is with axioms of PL and for every subset D of PL-WFF such that D
is with axioms of PL holds it C D.
One can check that PL-axioms is with axioms of PL.
Let us consider p, ¢, and r. We say that MP(p, ¢, r) if and only if
(Def. 21) g=p=r.
Observe that PL-axioms is non empty.
Let us consider A. We say that A is the simplification axiom if and only if
(Def. 22) there exists p and there exists g such that A =p = (¢ = p).
We say that A is Frege axiom if and only if
(Def. 23) there exists p and there exists ¢ and there exists r such that A = p =
(g=r)={=q9=@=r)).
We say that A is the explosion axiom if and only if
(Def. 24) there exists p and there exists ¢ such that A = ¢ = —p= (-¢=p=
q)-
Now we state the propositions:
(48) Every element of PL-axioms is the simplification axiom or Frege axiom
or the explosion axiom.
(49) If A is the simplification axiom or Frege axiom or the explosion axiom,
then F' = A. The theorem is a consequence of (28), (29), and (30).
Let i be a natural number. Let us consider f and F. We say that prc(f, F,1)
if and only if
(Def. 25)  f(i) € PL-axioms or f(i) € F or there exist natural numbers j, k such
that 1 <j <iand 1 <k <iand MP(fj, fx, fi)-
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Let us consider p. We say that F' - p if and only if

(Def. 26) there exists f such that f(len f) = p and 1 < len f and for every natural
number ¢ such that 1 < i <len f holds pre(f, F,1).

Now we state the propositions:

(50) Let us consider natural numbers i, n. Suppose n +len f < len fs and for
every natural number k such that 1 < k < len f holds f(k) = fa(k +n)
and 1 <i <len f. If pre(f, F, i), then prc(fa, Fyi+ n).

(51) Suppose fo = f " f1 and 1 <len f and 1 < len f; and for every natural
number ¢ such that 1 < ¢ < len f holds prc(f, F,i) and for every natural

i < len f; holds pre(fi, F,i). Let us consider

number ¢ such that 1 <
1 < i < len fo, then pre(fa, F,i). The theorem is

a natural number 7. If
a consequence of (50).

(52) Suppose f = f1~(p) and 1 < len f; and for every natural number i such
that 1 < ¢ <len f1 holds pre(fi, F,¢) and pre(f, F,len f). Then

(i) for every natural number i such that 1 < ¢ < len f holds pre(f, F, i),
and

(ii) F+p.
The theorem is a consequence of (50).

(53) If p € PL-axioms or p € F, then F | p.
PROOF: Define P(set,set] = $2 = p. Consider f such that dom f = Seg 1
and for every natural number k such that k € Seg1 holds Pk, f(k)] from
[3, Sch. 5]. For every natural number j such that 1 < j < len f holds
pre(f, F, 7). O

(54) If FFpand FF p=gq, then F I q.
ProoOF: Consider f such that f(len f) = p and 1 < len f and for every
natural number i such that 1 < ¢ < len f holds prc(f, F,i). Consider f;
such that fi(len fi) = p = ¢ and 1 < len f; and for every natural number
i such that 1 < ¢ < len f; holds pre(fi, F,i). Set g = (f = f1) ~ (¢). For
every natural number 7 such that 1 <+ <len f; holds g(len f +1i) = fi(4)
by [3 (22), (39)], [ (12)], [3} (65), (64)]. For every natural number i such
that 1 <4 <len(f ™ f1) holds pre(f ™ f1, F,i). O

(55) If F C G, then if F'+ p, then G | p.
ProOOF: Consider f such that f(len f) = p and 1 < len f and for eve-
ry natural number & such that 1 < k& < len f holds prc(f, F, k). Define
Pnatural number| = if 1 < §; < len f, then G F fg,. For every natural
number k, P[k] from [I], Sch. 4]. O
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5. SOUNDNESS THEOREM. DEDUCTION THEOREM.

Now we state the propositions:

(56) If FF A, then F = A.
PROOF: Consider f such that f(len f) = A and 1 < len f and for every na-
tural number i such that 1 < < len f holds prc(f, F, 7). Define P[natural
number| = if 1 < $§; < len f, then F' = fg,. For every natural number i
such that for every natural number j such that j < i holds P[j] holds P[i]
by [I, (14)], [9, (1)], (48), (49). For every natural number 7, P[i| from [I,
Sch. 4]. O

(57) FF A= A. The theorem is a consequence of (53) and (54).

(58) DEDUCTION THEOREM:
If FU{A}F B, then F - A = B.
ProOOF: Consider f such that f(len f) = B and 1 < len f and for every
natural number 7 such that 1 < i < len f holds pre(f, F U {A},i). Define
Plnatural number] = if 1 < $; < len f, then F - A = f5,. For every
natural number ¢ such that for every natural number j such that j < 4
holds P[j] holds P[i] by [I, (14)], (53), [9, (1)], (54). For every natural
number ¢, P[i] from [T, Sch. 4]. O

(59) If F+ A= B, then FU{A} - B. The theorem is a consequence of (53),
(55), and (54).

(60) FF —=A = (A = B). The theorem is a consequence of (53), (54), and
(58).

(61) F+ -A = A = A. The theorem is a consequence of (53), (57), and
(54).

6. STRONG COMPLETENESS THEOREM

Let us consider F. We say that F' is consistent if and only if
(Def. 27) there exists no p such that F' - p and F F —p.
Now we state the propositions:

(62) F'is consistent if and only if there exists A such that F' ¥ A. The theorem
is a consequence of (60) and (54).

(63) If F¥ A, then FFU{=A} is consistent. The theorem is a consequence of
(58), (62), (61), and (54).

(64) FF Aif and only if there exists G such that G C F and G is finite and
G + A. The theorem is a consequence of (55).
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(65) If F' is not consistent, then there exists G such that G is finite and G is
not consistent and G C F. The theorem is a consequence of (64) and (55).

Let us consider F. We say that F' is maximal if and only if
(Def. 28) for every p holds p € F or —p € F.
Now we state the propositions:

(66) If FF C G and F is not consistent, then G is not consistent. The theorem
is a consequence of (55).

(67) If F is consistent and F U {A} is not consistent, then F' U {-A} is
consistent. The theorem is a consequence of (58), (62), (61), and (54).

In the sequel z, y denote sets. Now we state the propositions:

(68) LINDENBAUM’S LEMMA:
If F' is consistent, then there exists G such that F' C G and G is consistent
and maximal.
Proor: Set L = PL-WFF. Consider R being a binary relation such
that R well orders L. Reconsider Ry = R |? L as a binary relation on
L. Reconsider Ry = (L,R») as a non empty relational structure. Set
¢ = the carrier of R;. Define H[object, object, object] = for every p for
every partial function f from ¢ to 2 such that $; = p and $5 = f
holds if (Jrng(f qua (2F)-valued binary relation) U F') U {p} is consistent,
then $3 = (Urng f U F) U {p} and if (Urng(f qua (2¥)-valued binary
relation) U F') U {p} is not consistent, then $3 = (Jrng f U F'. For every
objects x, y such that z € ¢ and y € ¢—2 there exists an object z such
that z € 2L and H|[xz,y, 2] by [8, (46)]. Consider h being a function from
¢ x (c2%) into 2° such that for every objects z, y such that = € ¢ and
y € c>2% holds H|x,y, h(z,y)] from [5, Sch. 1]. Consider f being a func-
tion from ¢ into 2% such that f is recursively expressed by h. Reconsider
G = Urng(f qua (2%)-valued binary relation) as a subset of PL-WFF. Set
i1 = the internal relation of R;. For every A and B such that (A, B) € Ry
holds f(A) C f(B) by [4, (1)], 2} (4), (29), (9)]. rng f is C-linear. Define
Slelement of Ry] = f($1) is consistent. For every element = of R; such
that for every element y of R; such that y # x and (y, z) € i; holds S[y]
holds S[z] by [2, (9)], [7, (32)], [2, (1)], [15, (42)]. For every element A of
Ry, S[A] from [12] Sch. 3]. FF C G by [0, (3)]. G is consistent by (65), (16),
[15, (42)], (66). G is maximal by [6], (3)], (17), [13, (16)], (66). O

(69) If F' is maximal and consistent, then for every p, F' F p iff p € F. The
theorem is a consequence of (53).

(70) If F |= A, then F F A.
ProOF: Consider G such that FF U {—-A} C G and G is consistent and G
is maximal. Set M = {Propn, where n is an element of N : Propn € G}.
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M C AP. Define Plelement of PL-WFF] = §; € G iff M |= $;. P[Lpy].
For every n, P[Propn|. For every r and s such that P[r] and P[s] holds
Plr = s]. For every B, P[B] from PLInd. M £~ A. O

(71) A is a tautology if and only if Opr-wrr - A.
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