

The Axiomatization of Propositional Logic¹

Mariusz Giero
Faculty of Economics and Informatics
University of Białystok
Kalvariju 135, LT-08221 Vilnius
Lithuania

Summary. This article introduces propositional logic as a formal system ([14], [10], [11]). The formulae of the language are as follows $\phi := \bot \mid p \mid \phi \to \phi$. Other connectives are introduced as abbrevations. The notions of model and satisfaction in model are defined. The axioms are all the formulae of the following schemes

- $\alpha \Rightarrow (\beta \Rightarrow \alpha)$,
- $(\alpha \Rightarrow (\beta \Rightarrow \gamma)) \Rightarrow ((\alpha \Rightarrow \beta) \Rightarrow (\alpha \Rightarrow \gamma)),$
- $(\neg \beta \Rightarrow \neg \alpha) \Rightarrow ((\neg \beta \Rightarrow \alpha) \Rightarrow \beta).$

Modus ponens is the only derivation rule. The soundness theorem and the strong completeness theorem are proved. The proof of the completeness theorem is carried out by a counter-model existence method. In order to prove the completeness theorem, Lindenbaum's Lemma is proved. Some most widely used tautologies are presented.

MSC: 03B05 03B35

Keywords: completeness; formal system; Lindenbaum's lemma

MML identifier: PL_AXIOM, version: 8.1.05 5.39.1282

¹This work was supported by the University of Bialystok grants: BST447 Formalization of temporal logics in a proof-assistant. Application to System Verification, and BST225 Database of mathematical texts checked by computer.

1. Preliminaries

Now we state the propositions:

- (1) Let us consider functions f, g. Suppose dom $f \subseteq \text{dom } g$ and for every set x such that $x \in \text{dom } f$ holds f(x) = g(x). Then $\text{rng } f \subseteq \text{rng } g$.
- (2) Let us consider Boolean objects p, q. Then $p \wedge q \Rightarrow p = true$.
- (3) Let us consider a Boolean object p. Then $\neg \neg p \Leftrightarrow p = true$.

Let us consider Boolean objects p, q. Now we state the propositions:

- $(4) \quad \neg (p \land q) \Leftrightarrow \neg p \lor \neg q = true.$
- (5) $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q = true.$
- (6) $p \Rightarrow q \Rightarrow (\neg q \Rightarrow \neg p) = true$.

Let us consider Boolean objects p, q, r. Now we state the propositions:

- (7) $p \Rightarrow q \Rightarrow (p \Rightarrow r \Rightarrow (p \Rightarrow q \land r)) = true.$
- (8) $p \Rightarrow r \Rightarrow (q \Rightarrow r \Rightarrow (p \lor q \Rightarrow r)) = true.$

Let us consider Boolean objects p, q. Now we state the propositions:

- (9) $p \wedge q \Leftrightarrow q \wedge p = true$.
- $(10) \quad p \lor q \Leftrightarrow q \lor p = true.$

Let us consider Boolean objects p, q, r. Now we state the propositions:

- (11) $(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r) = true.$
- $(12) \quad (p \lor q) \lor r \Leftrightarrow p \lor (q \lor r) = true.$
- (13) Let us consider Boolean objects p, q. Then $\neg q \Rightarrow \neg p \Rightarrow (\neg q \Rightarrow p \Rightarrow q) = true$.

Let us consider Boolean objects p, q, r. Now we state the propositions:

- $(14) \quad p \wedge (q \vee r) \Leftrightarrow p \wedge q \vee p \wedge r = true.$
- $(15) \quad p \vee q \wedge r \Leftrightarrow (p \vee q) \wedge (p \vee r) = true.$
- (16) Let us consider a finite set X, and a set Y. Suppose Y is \subseteq -linear and $X \subseteq \bigcup Y$ and $Y \neq \emptyset$. Then there exists a set Z such that
 - (i) $X \subseteq Z$, and
 - (ii) $Z \in Y$.

2. The Syntax

Let D be a set. We say that D has propositional variables if and only if (Def. 1) for every element n of \mathbb{N} , $\langle 3+n\rangle \in D$.

We say that D is PL-closed if and only if

(Def. 2) $D \subseteq \mathbb{N}^*$ and D has FALSUM, implication and propositional variables.

Let us note that every set which is PL-closed is also non empty and has also FALSUM, implication, and propositional variables and every subset of \mathbb{N}^* which has FALSUM, implication, and propositional variables is also PL-closed.

The functor PL-WFF yielding a set is defined by

(Def. 3) it is PL-closed and for every set D such that D is PL-closed holds $it \subseteq D$.

Observe that PL-WFF is PL-closed and there exists a set which is PL-closed and non empty and PL-WFF is functional and every element of PL-WFF is finite sequence-like.

The functor $\perp_{\rm PL}$ yielding an element of PL-WFF is defined by the term (Def. 4) $\langle 0 \rangle$.

Let p, q be elements of PL-WFF. The functor $p \Rightarrow q$ yielding an element of PL-WFF is defined by the term

(Def. 5) $(\langle 1 \rangle \cap p) \cap q$.

Let n be an element of \mathbb{N} . The functor Prop n yielding an element of PL-WFF is defined by the term

(Def. 6) $\langle 3+n \rangle$.

The functor AP yielding a subset of PL-WFF is defined by

(Def. 7) for every set $x, x \in it$ iff there exists an element n of \mathbb{N} such that $x = \operatorname{Prop} n$.

From now on p, q, r, s, A, B denote elements of PL-WFF, F, G, H denote subsets of PL-WFF, k, n denote elements of \mathbb{N} , and f, f_1 , f_2 denote finite sequences of elements of PL-WFF.

Let D be a subset of PL-WFF. Observe that D has implication if and only if the condition (Def. 8) is satisfied.

(Def. 8) for every p and q such that $p, q \in D$ holds $p \Rightarrow q \in D$.

The scheme PLInd deals with a unary predicate $\mathcal P$ and states that

(Sch. 1) For every r, $\mathcal{P}[r]$ provided

- $\mathcal{P}[\perp_{\mathrm{PL}}]$ and
- for every n, $\mathcal{P}[\text{Prop } n]$ and
- for every r and s such that $\mathcal{P}[r]$ and $\mathcal{P}[s]$ holds $\mathcal{P}[r \Rightarrow s]$.

Now we state the proposition:

(17) $PL\text{-WFF} \subseteq HP\text{-WFF}$.

PROOF: Define $\mathcal{P}[\text{element of PL-WFF}] \equiv \$_1 \in \text{HP-WFF}$. For every n, $\mathcal{P}[\text{Prop } n]$. For every r and s such that $\mathcal{P}[r]$ and $\mathcal{P}[s]$ holds $\mathcal{P}[r \Rightarrow s]$. For every A, $\mathcal{P}[A]$ from PLInd. \square

Let us consider p. The functor $\neg p$ yielding an element of PL-WFF is defined by the term

(Def. 9) $p \Rightarrow \perp_{PL}$.

The functor \top_{PL} yielding an element of PL-WFF is defined by the term

(Def. 10) $\neg \bot_{PL}$.

Let us consider p and q. The functors: $p \wedge q$ and $p \vee q$ yielding elements of PL-WFF are defined by terms

- (Def. 11) $\neg (p \Rightarrow \neg q)$,
- (Def. 12) $\neg p \Rightarrow q$,

respectively. The functor $p \Leftrightarrow q$ yielding an element of PL-WFF is defined by the term

(Def. 13) $(p \Rightarrow q) \land (q \Rightarrow p)$.

3. The Semantics

A PL-model is a subset of AP. From now on M denotes a PL-model.

Let M be a PL-model. The functor SAT_M yielding a function from PL-WFF into Boolean is defined by

(Def. 14) $it(\perp_{PL}) = 0$ and for every k, $it(\operatorname{Prop} k) = 1$ iff $\operatorname{Prop} k \in M$ and for every p and q, $it(p \Rightarrow q) = it(p) \Rightarrow it(q)$.

Now we state the propositions:

- (18) $SAT_M(A \Rightarrow B) = 1$ if and only if $SAT_M(A) = 0$ or $SAT_M(B) = 1$.
- (19) $SAT_M(\neg p) = \neg(SAT_M(p)).$
- (20) $SAT_M(\neg A) = 1$ if and only if $SAT_M(A) = 0$. The theorem is a consequence of (19).
- (21) $SAT_M(A \wedge B) = SAT_M(A) \wedge SAT_M(B)$. The theorem is a consequence of (19).
- (22) $SAT_M(A \wedge B) = 1$ if and only if $SAT_M(A) = 1$ and $SAT_M(B) = 1$. The theorem is a consequence of (21).
- (23) $SAT_M(A \vee B) = SAT_M(A) \vee SAT_M(B)$. The theorem is a consequence of (19).
- (24) $SAT_M(A \vee B) = 1$ if and only if $SAT_M(A) = 1$ or $SAT_M(B) = 1$. The theorem is a consequence of (23).
- (25) $SAT_M(A \Leftrightarrow B) = SAT_M(A) \Leftrightarrow SAT_M(B)$. The theorem is a consequence of (21).
- (26) $SAT_M(A \Leftrightarrow B) = 1$ if and only if $SAT_M(A) = SAT_M(B)$. The theorem is a consequence of (25).

Let us consider M and p. We say that $M \models p$ if and only if

(Def. 15) $SAT_M(p) = 1$.

Let us consider F. We say that $M \models F$ if and only if

(Def. 16) for every p such that $p \in F$ holds $M \models p$.

Let us consider p. We say that $F \models p$ if and only if

(Def. 17) for every M such that $M \models F$ holds $M \models p$.

Let us consider A. We say that A is a tautology if and only if

(Def. 18) for every M, $SAT_M(A) = 1$.

Now we state the propositions:

- (27) A is a tautology if and only if $\emptyset_{PL\text{-WFF}} \models A$.
- (28) $p \Rightarrow (q \Rightarrow p)$ is a tautology.
- (29) $p \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow q \Rightarrow (p \Rightarrow r))$ is a tautology.
- (30) $\neg q \Rightarrow \neg p \Rightarrow (\neg q \Rightarrow p \Rightarrow q)$ is a tautology. The theorem is a consequence of (19) and (13).
- (31) $p \Rightarrow q \Rightarrow (\neg q \Rightarrow \neg p)$ is a tautology. The theorem is a consequence of (19) and (6).
- (32) $p \wedge q \Rightarrow p$ is a tautology. The theorem is a consequence of (21) and (2).
- (33) $p \wedge q \Rightarrow q$ is a tautology. The theorem is a consequence of (21) and (2).
- (34) $p \Rightarrow p \lor q$ is a tautology. The theorem is a consequence of (23).
- (35) $q \Rightarrow p \lor q$ is a tautology. The theorem is a consequence of (23).
- (36) $p \wedge q \Leftrightarrow q \wedge p$ is a tautology. The theorem is a consequence of (25), (21), and (9).
- (37) $p \lor q \Leftrightarrow q \lor p$ is a tautology. The theorem is a consequence of (25), (23), and (10).
- (38) $(p \land q) \land r \Leftrightarrow p \land (q \land r)$ is a tautology. The theorem is a consequence of (25), (21), and (11).
- (39) $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ is a tautology. The theorem is a consequence of (25), (23), and (12).
- (40) $p \wedge (q \vee r) \Leftrightarrow p \wedge q \vee p \wedge r$ is a tautology. The theorem is a consequence of (25), (21), (23), and (14).
- (41) $p \lor q \land r \Leftrightarrow (p \lor q) \land (p \lor r)$ is a tautology. The theorem is a consequence of (25), (23), (21), and (15).
- (42) $\neg \neg p \Leftrightarrow p$ is a tautology. The theorem is a consequence of (25), (19), and (3).
- (43) $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$ is a tautology. The theorem is a consequence of (25), (19), (21), (23), and (4).

- (44) $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$ is a tautology. The theorem is a consequence of (25), (19), (23), (21), and (5).
- (45) $p \Rightarrow q \Rightarrow (p \Rightarrow r \Rightarrow (p \Rightarrow q \land r))$ is a tautology. The theorem is a consequence of (21) and (7).
- (46) $p \Rightarrow r \Rightarrow (q \Rightarrow r \Rightarrow (p \lor q \Rightarrow r))$ is a tautology. The theorem is a consequence of (23) and (8).
- (47) If $F \models A$ and $F \models A \Rightarrow B$, then $F \models B$.

4. The Axioms. Derivability.

Let D be a set. We say that D is with axioms of PL if and only if

(Def. 19) for every p, q, and r holds $p \Rightarrow (q \Rightarrow p)$, $p \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow q \Rightarrow (p \Rightarrow r))$, $\neg q \Rightarrow \neg p \Rightarrow (\neg q \Rightarrow p \Rightarrow q) \in D$.

The functor PL-axioms yielding a subset of PL-WFF is defined by

(Def. 20) it is with axioms of PL and for every subset D of PL-WFF such that D is with axioms of PL holds $it \subseteq D$.

One can check that PL-axioms is with axioms of PL.

Let us consider p, q, and r. We say that MP(p,q,r) if and only if

(Def. 21) $q = p \Rightarrow r$.

Observe that PL-axioms is non empty.

Let us consider A. We say that A is the simplification axiom if and only if

(Def. 22) there exists p and there exists q such that $A = p \Rightarrow (q \Rightarrow p)$.

We say that A is Frege axiom if and only if

(Def. 23) there exists p and there exists q and there exists r such that $A = p \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow q \Rightarrow (p \Rightarrow r))$.

We say that A is the explosion axiom if and only if

(Def. 24) there exists p and there exists q such that $A = \neg q \Rightarrow \neg p \Rightarrow (\neg q \Rightarrow p \Rightarrow q)$.

Now we state the propositions:

- (48) Every element of PL-axioms is the simplification axiom or Frege axiom or the explosion axiom.
- (49) If A is the simplification axiom or Frege axiom or the explosion axiom, then $F \models A$. The theorem is a consequence of (28), (29), and (30).

Let i be a natural number. Let us consider f and F. We say that prc(f, F, i) if and only if

(Def. 25) $f(i) \in \text{PL-axioms or } f(i) \in F \text{ or there exist natural numbers } j, k \text{ such that } 1 \leq j < i \text{ and } 1 \leq k < i \text{ and } \text{MP}(f_j, f_k, f_i).$

Let us consider p. We say that $F \vdash p$ if and only if

(Def. 26) there exists f such that $f(\operatorname{len} f) = p$ and $1 \leq \operatorname{len} f$ and for every natural number i such that $1 \leq i \leq \operatorname{len} f$ holds $\operatorname{prc}(f, F, i)$.

Now we state the propositions:

- (50) Let us consider natural numbers i, n. Suppose $n + \text{len } f \leq \text{len } f_2$ and for every natural number k such that $1 \leq k \leq \text{len } f$ holds $f(k) = f_2(k+n)$ and $1 \leq i \leq \text{len } f$. If prc(f, F, i), then $\text{prc}(f_2, F, i+n)$.
- (51) Suppose $f_2 = f \cap f_1$ and $1 \leq \text{len } f$ and $1 \leq \text{len } f_1$ and for every natural number i such that $1 \leq i \leq \text{len } f$ holds prc(f, F, i) and for every natural number i such that $1 \leq i \leq \text{len } f_1$ holds $\text{prc}(f_1, F, i)$. Let us consider a natural number i. If $1 \leq i \leq \text{len } f_2$, then $\text{prc}(f_2, F, i)$. The theorem is a consequence of (50).
- (52) Suppose $f = f_1 \cap \langle p \rangle$ and $1 \leq \text{len } f_1$ and for every natural number i such that $1 \leq i \leq \text{len } f_1$ holds $\text{prc}(f_1, F, i)$ and prc(f, F, len f). Then
 - (i) for every natural number i such that $1 \le i \le \text{len } f$ holds prc(f, F, i), and
 - (ii) $F \vdash p$.

The theorem is a consequence of (50).

- (53) If $p \in \text{PL-axioms}$ or $p \in F$, then $F \vdash p$.

 PROOF: Define $\mathcal{P}[\text{set}, \text{set}] \equiv \$_2 = p$. Consider f such that dom f = Seg 1 and for every natural number k such that $k \in \text{Seg 1}$ holds $\mathcal{P}[k, f(k)]$ from [3, Sch. 5]. For every natural number j such that $1 \leqslant j \leqslant \text{len } f$ holds prc(f, F, j). \square
- (54) If $F \vdash p$ and $F \vdash p \Rightarrow q$, then $F \vdash q$. PROOF: Consider f such that $f(\operatorname{len} f) = p$ and $1 \leqslant \operatorname{len} f$ and for every natural number i such that $1 \leqslant i \leqslant \operatorname{len} f$ holds $\operatorname{prc}(f, F, i)$. Consider f_1 such that $f_1(\operatorname{len} f_1) = p \Rightarrow q$ and $1 \leqslant \operatorname{len} f_1$ and for every natural number i such that $1 \leqslant i \leqslant \operatorname{len} f_1$ holds $\operatorname{prc}(f_1, F, i)$. Set $g = (f \cap f_1) \cap \langle q \rangle$. For every natural number i such that $1 \leqslant i \leqslant \operatorname{len} f_1$ holds $g(\operatorname{len} f + i) = f_1(i)$ by [3, (22), (39)], [1, (12)], [3, (65), (64)]. For every natural number i such that $1 \leqslant i \leqslant \operatorname{len}(f \cap f_1)$ holds $\operatorname{prc}(f \cap f_1, F, i)$. \square
- (55) If $F \subseteq G$, then if $F \vdash p$, then $G \vdash p$. PROOF: Consider f such that $f(\operatorname{len} f) = p$ and $1 \leqslant \operatorname{len} f$ and for every natural number k such that $1 \leqslant k \leqslant \operatorname{len} f$ holds $\operatorname{prc}(f, F, k)$. Define $\mathcal{P}[\operatorname{natural number}] \equiv \operatorname{if} 1 \leqslant \$_1 \leqslant \operatorname{len} f$, then $G \vdash f_{\$_1}$. For every natural number k, $\mathcal{P}[k]$ from $[1, \operatorname{Sch}. 4]$. \square

5. Soundness Theorem. Deduction Theorem.

Now we state the propositions:

- (56) If $F \vdash A$, then $F \models A$. PROOF: Consider f such that $f(\operatorname{len} f) = A$ and $1 \leq \operatorname{len} f$ and for every natural number i such that $1 \leq i \leq \operatorname{len} f$ holds $\operatorname{prc}(f, F, i)$. Define $\mathcal{P}[\operatorname{natural} \operatorname{number}] \equiv \operatorname{if} 1 \leq \$_1 \leq \operatorname{len} f$, then $F \models f_{\$_1}$. For every natural number i such that for every natural number j such that j < i holds $\mathcal{P}[j]$ holds $\mathcal{P}[i]$ by [1, (14)], [9, (1)], (48), (49). For every natural number $i, \mathcal{P}[i]$ from $[1, \operatorname{Sch.} 4]$. \square
- (57) $F \vdash A \Rightarrow A$. The theorem is a consequence of (53) and (54).
- (58) DEDUCTION THEOREM:

If $F \cup \{A\} \vdash B$, then $F \vdash A \Rightarrow B$.

PROOF: Consider f such that $f(\operatorname{len} f) = B$ and $1 \leq \operatorname{len} f$ and for every natural number i such that $1 \leq i \leq \operatorname{len} f$ holds $\operatorname{prc}(f, F \cup \{A\}, i)$. Define $\mathcal{P}[\operatorname{natural number}] \equiv \operatorname{if } 1 \leq \$_1 \leq \operatorname{len} f$, then $F \vdash A \Rightarrow f_{\$_1}$. For every natural number i such that for every natural number j such that j < i holds $\mathcal{P}[j]$ holds $\mathcal{P}[i]$ by [1, (14)], (53), [9, (1)], (54). For every natural number i, $\mathcal{P}[i]$ from $[1, \operatorname{Sch.} 4]$. \square

- (59) If $F \vdash A \Rightarrow B$, then $F \cup \{A\} \vdash B$. The theorem is a consequence of (53), (55), and (54).
- (60) $F \vdash \neg A \Rightarrow (A \Rightarrow B)$. The theorem is a consequence of (53), (54), and (58).
- (61) $F \vdash \neg A \Rightarrow A \Rightarrow A$. The theorem is a consequence of (53), (57), and (54).

6. Strong Completeness Theorem

Let us consider F. We say that F is consistent if and only if

(Def. 27) there exists no p such that $F \vdash p$ and $F \vdash \neg p$.

Now we state the propositions:

- (62) F is consistent if and only if there exists A such that $F \not\vdash A$. The theorem is a consequence of (60) and (54).
- (63) If $F \nvDash A$, then $F \cup \{\neg A\}$ is consistent. The theorem is a consequence of (58), (62), (61), and (54).
- (64) $F \vdash A$ if and only if there exists G such that $G \subseteq F$ and G is finite and $G \vdash A$. The theorem is a consequence of (55).

(65) If F is not consistent, then there exists G such that G is finite and G is not consistent and $G \subseteq F$. The theorem is a consequence of (64) and (55).

Let us consider F. We say that F is maximal if and only if

(Def. 28) for every p holds $p \in F$ or $\neg p \in F$.

Now we state the propositions:

- (66) If $F \subseteq G$ and F is not consistent, then G is not consistent. The theorem is a consequence of (55).
- (67) If F is consistent and $F \cup \{A\}$ is not consistent, then $F \cup \{\neg A\}$ is consistent. The theorem is a consequence of (58), (62), (61), and (54).

In the sequel x, y denote sets. Now we state the propositions:

(68) LINDENBAUM'S LEMMA:

If F is consistent, then there exists G such that $F \subseteq G$ and G is consistent and maximal.

PROOF: Set L = PL-WFF. Consider R being a binary relation such that R well orders L. Reconsider $R_2 = R \mid^2 L$ as a binary relation on L. Reconsider $R_1 = \langle L, R_2 \rangle$ as a non empty relational structure. Set $c = \text{the carrier of } R_1$. Define $\mathcal{H}[\text{object}, \text{object}, \text{object}] \equiv \text{for every } p$ for every partial function f from c to 2^L such that $\$_1 = p$ and $\$_2 = f$ holds if $(\bigcup \operatorname{rng}(f \operatorname{\mathbf{qua}}(2^L)\operatorname{-valued binary relation}) \cup F) \cup \{p\}$ is consistent, then $\$_3 = (\bigcup \operatorname{rng} f \cup F) \cup \{p\}$ and if $(\bigcup \operatorname{rng} (f \operatorname{\mathbf{qua}} (2^L) \operatorname{-valued binary}))$ relation) $\cup F$) $\cup \{p\}$ is not consistent, then $\$_3 = \bigcup \operatorname{rng} f \cup F$. For every objects x, y such that $x \in c$ and $y \in c \rightarrow 2^L$ there exists an object z such that $z \in 2^L$ and $\mathcal{H}[x,y,z]$ by [8, (46)]. Consider h being a function from $c \times (c \rightarrow 2^L)$ into 2^L such that for every objects x, y such that $x \in c$ and $y \in c \rightarrow 2^L$ holds $\mathcal{H}[x, y, h(x, y)]$ from [5, Sch. 1]. Consider f being a function from c into 2^L such that f is recursively expressed by h. Reconsider $G = \bigcup \operatorname{rng}(f \operatorname{\mathbf{qua}}(2^L))$ -valued binary relation) as a subset of PL-WFF. Set i_1 = the internal relation of R_1 . For every A and B such that $\langle A, B \rangle \in R_2$ holds $f(A) \subseteq f(B)$ by [4, (1)], [2, (4), (29), (9)]. rng f is \subseteq -linear. Define $\mathcal{S}[\text{element of } R_1] \equiv f(\$_1)$ is consistent. For every element x of R_1 such that for every element y of R_1 such that $y \neq x$ and $\langle y, x \rangle \in i_1$ holds $\mathcal{S}[y]$ holds S[x] by [2, (9)], [7, (32)], [2, (1)], [15, (42)]. For every element A of $R_1, S[A]$ from [12, Sch. 3]. $F \subseteq G$ by [6, (3)]. G is consistent by (65), (16), [15, (42)], (66). G is maximal by [6, (3)], (17), [13, (16)], (66).

- (69) If F is maximal and consistent, then for every $p, F \vdash p$ iff $p \in F$. The theorem is a consequence of (53).
- (70) If $F \models A$, then $F \vdash A$. PROOF: Consider G such that $F \cup \{\neg A\} \subseteq G$ and G is consistent and G is maximal. Set $M = \{\text{Prop } n, \text{ where } n \text{ is an element of } \mathbb{N} : \text{Prop } n \in G\}$.

 $M \subseteq AP$. Define $\mathcal{P}[\text{element of PL-WFF}] \equiv \$_1 \in G \text{ iff } M \models \$_1. \mathcal{P}[\bot_{\text{PL}}].$ For every n, $\mathcal{P}[\text{Prop } n]$. For every r and s such that $\mathcal{P}[r]$ and $\mathcal{P}[s]$ holds $\mathcal{P}[r \Rightarrow s]$. For every B, $\mathcal{P}[B]$ from PLInd. $M \not\models A$. \square

(71) A is a tautology if and only if $\emptyset_{PL\text{-WFF}} \vdash A$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Leszek Borys. On paracompactness of metrizable spaces. Formalized Mathematics, 3(1): 81–84, 1992.
- [5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [9] Mariusz Giero. Propositional linear temporal logic with initial validity semantics. Formalized Mathematics, 23(4):379–386, 2015. doi:10.1515/forma-2015-0030.
- [10] Witold Pogorzelski. Dictionary of Formal Logic. Wydawnictwo UwB Bialystok, 1992.
- [11] Witold Pogorzelski. Notions and theorems of elementary formal logic. Wydawnictwo UwB Bialystok, 1994.
- [12] Piotr Rudnicki and Andrzej Trybulec. On same equivalents of well-foundedness. Formalized Mathematics, 6(3):339–343, 1997.
- [13] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics, 8(1):133–137, 1999.
- [14] Anita Wasilewska. An Introduction to Classical and Non-Classical Logics. SUNY Stony Brook, 2005.
- [15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.

Received October 18, 2016