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Summary. This article introduces propositional logic as a formal system
([14], [10], [11]). The formulae of the language are as follows φ ::= ⊥ | p |φ→ φ.
Other connectives are introduced as abbrevations. The notions of model and
satisfaction in model are defined. The axioms are all the formulae of the following
schemes

• α⇒ (β ⇒ α),

• (α⇒ (β ⇒ γ))⇒ ((α⇒ β)⇒ (α⇒ γ)),

• (¬β ⇒ ¬α)⇒ ((¬β ⇒ α)⇒ β).

Modus ponens is the only derivation rule. The soundness theorem and the strong
completeness theorem are proved. The proof of the completeness theorem is car-
ried out by a counter-model existence method. In order to prove the completeness
theorem, Lindenbaum’s Lemma is proved. Some most widely used tautologies are
presented.
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1. Preliminaries

Now we state the propositions:

(1) Let us consider functions f , g. Suppose dom f ⊆ dom g and for every set
x such that x ∈ dom f holds f(x) = g(x). Then rng f ⊆ rng g.

(2) Let us consider Boolean objects p, q. Then p ∧ q ⇒ p = true.
(3) Let us consider a Boolean object p. Then ¬¬p⇔ p = true.
Let us consider Boolean objects p, q. Now we state the propositions:

(4) ¬(p ∧ q)⇔ ¬p ∨ ¬q = true.
(5) ¬(p ∨ q)⇔ ¬p ∧ ¬q = true.
(6) p⇒ q ⇒ (¬q ⇒ ¬p) = true.
Let us consider Boolean objects p, q, r. Now we state the propositions:

(7) p⇒ q ⇒ (p⇒ r ⇒ (p⇒ q ∧ r)) = true.
(8) p⇒ r ⇒ (q ⇒ r ⇒ (p ∨ q ⇒ r)) = true.
Let us consider Boolean objects p, q. Now we state the propositions:

(9) p ∧ q ⇔ q ∧ p = true.
(10) p ∨ q ⇔ q ∨ p = true.

Let us consider Boolean objects p, q, r. Now we state the propositions:

(11) (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r) = true.
(12) (p ∨ q) ∨ r ⇔ p ∨ (q ∨ r) = true.
(13) Let us consider Boolean objects p, q. Then ¬q ⇒ ¬p⇒ (¬q ⇒ p⇒ q) =
true.

Let us consider Boolean objects p, q, r. Now we state the propositions:

(14) p ∧ (q ∨ r)⇔ p ∧ q ∨ p ∧ r = true.
(15) p ∨ q ∧ r ⇔ (p ∨ q) ∧ (p ∨ r) = true.
(16) Let us consider a finite set X, and a set Y. Suppose Y is ⊆-linear and
X ⊆

⋃
Y and Y 6= ∅. Then there exists a set Z such that

(i) X ⊆ Z, and

(ii) Z ∈ Y.

2. The Syntax

Let D be a set. We say that D has propositional variables if and only if

(Def. 1) for every element n of N, 〈3 + n〉 ∈ D.

We say that D is PL-closed if and only if

(Def. 2) D ⊆ N∗ and D has FALSUM, implication and propositional variables.
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Let us note that every set which is PL-closed is also non empty and has
also FALSUM, implication, and propositional variables and every subset of N∗
which has FALSUM, implication, and propositional variables is also PL-closed.

The functor PL-WFF yielding a set is defined by

(Def. 3) it is PL-closed and for every set D such that D is PL-closed holds it ⊆ D.

Observe that PL-WFF is PL-closed and there exists a set which is PL-closed
and non empty and PL-WFF is functional and every element of PL-WFF is finite
sequence-like.

The functor ⊥PL yielding an element of PL-WFF is defined by the term

(Def. 4) 〈0〉.
Let p, q be elements of PL-WFF. The functor p ⇒ q yielding an element of
PL-WFF is defined by the term

(Def. 5) (〈1〉 a p) a q.

Let n be an element of N. The functor Propn yielding an element of PL-WFF
is defined by the term

(Def. 6) 〈3 + n〉.
The functor AP yielding a subset of PL-WFF is defined by

(Def. 7) for every set x, x ∈ it iff there exists an element n of N such that
x = Propn.

From now on p, q, r, s, A, B denote elements of PL-WFF, F , G, H denote
subsets of PL-WFF, k, n denote elements of N, and f , f1, f2 denote finite
sequences of elements of PL-WFF.

Let D be a subset of PL-WFF. Observe that D has implication if and only
if the condition (Def. 8) is satisfied.

(Def. 8) for every p and q such that p, q ∈ D holds p⇒ q ∈ D.

The scheme PLInd deals with a unary predicate P and states that

(Sch. 1) For every r, P[r]

provided

• P[⊥PL] and

• for every n, P[Propn] and

• for every r and s such that P[r] and P[s] holds P[r ⇒ s].

Now we state the proposition:

(17) PL-WFF ⊆ HP-WFF.
Proof: Define P[element of PL-WFF] ≡ $1 ∈ HP-WFF. For every n,
P[Propn]. For every r and s such that P[r] and P[s] holds P[r ⇒ s]. For
every A, P[A] from PLInd. �
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Let us consider p. The functor ¬p yielding an element of PL-WFF is defined
by the term

(Def. 9) p⇒ ⊥PL.
The functor >PL yielding an element of PL-WFF is defined by the term

(Def. 10) ¬⊥PL.
Let us consider p and q. The functors: p ∧ q and p ∨ q yielding elements of

PL-WFF are defined by terms

(Def. 11) ¬(p⇒ ¬q),
(Def. 12) ¬p⇒ q,

respectively. The functor p ⇔ q yielding an element of PL-WFF is defined by
the term

(Def. 13) (p⇒ q) ∧ (q ⇒ p).

3. The Semantics

A PL-model is a subset of AP . From now on M denotes a PL-model.
LetM be a PL-model. The functor SATM yielding a function from PL-WFF

into Boolean is defined by

(Def. 14) it(⊥PL) = 0 and for every k, it(Prop k) = 1 iff Prop k ∈M and for every
p and q, it(p⇒ q) = it(p)⇒ it(q).

Now we state the propositions:

(18) SATM (A⇒ B) = 1 if and only if SATM (A) = 0 or SATM (B) = 1.

(19) SATM (¬p) = ¬(SATM (p)).

(20) SATM (¬A) = 1 if and only if SATM (A) = 0. The theorem is a consequ-
ence of (19).

(21) SATM (A ∧ B) = SATM (A) ∧ SATM (B). The theorem is a consequence
of (19).

(22) SATM (A∧B) = 1 if and only if SATM (A) = 1 and SATM (B) = 1. The
theorem is a consequence of (21).

(23) SATM (A ∨ B) = SATM (A) ∨ SATM (B). The theorem is a consequence
of (19).

(24) SATM (A ∨ B) = 1 if and only if SATM (A) = 1 or SATM (B) = 1. The
theorem is a consequence of (23).

(25) SATM (A ⇔ B) = SATM (A) ⇔ SATM (B). The theorem is a consequ-
ence of (21).

(26) SATM (A⇔ B) = 1 if and only if SATM (A) = SATM (B). The theorem
is a consequence of (25).
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Let us consider M and p. We say that M |= p if and only if

(Def. 15) SATM (p) = 1.

Let us consider F . We say that M |= F if and only if

(Def. 16) for every p such that p ∈ F holds M |= p.
Let us consider p. We say that F |= p if and only if

(Def. 17) for every M such that M |= F holds M |= p.
Let us consider A. We say that A is a tautology if and only if

(Def. 18) for every M , SATM (A) = 1.

Now we state the propositions:

(27) A is a tautology if and only if ∅PL-WFF |= A.

(28) p⇒ (q ⇒ p) is a tautology.

(29) p⇒ (q ⇒ r)⇒ (p⇒ q ⇒ (p⇒ r)) is a tautology.

(30) ¬q ⇒ ¬p⇒ (¬q ⇒ p⇒ q) is a tautology. The theorem is a consequence
of (19) and (13).

(31) p ⇒ q ⇒ (¬q ⇒ ¬p) is a tautology. The theorem is a consequence of
(19) and (6).

(32) p ∧ q ⇒ p is a tautology. The theorem is a consequence of (21) and (2).

(33) p ∧ q ⇒ q is a tautology. The theorem is a consequence of (21) and (2).

(34) p⇒ p ∨ q is a tautology. The theorem is a consequence of (23).

(35) q ⇒ p ∨ q is a tautology. The theorem is a consequence of (23).

(36) p∧ q ⇔ q ∧ p is a tautology. The theorem is a consequence of (25), (21),
and (9).

(37) p∨ q ⇔ q ∨ p is a tautology. The theorem is a consequence of (25), (23),
and (10).

(38) (p∧ q)∧ r ⇔ p∧ (q ∧ r) is a tautology. The theorem is a consequence of
(25), (21), and (11).

(39) (p∨ q)∨ r ⇔ p∨ (q ∨ r) is a tautology. The theorem is a consequence of
(25), (23), and (12).

(40) p ∧ (q ∨ r)⇔ p ∧ q ∨ p ∧ r is a tautology. The theorem is a consequence
of (25), (21), (23), and (14).

(41) p∨ q ∧ r ⇔ (p∨ q)∧ (p∨ r) is a tautology. The theorem is a consequence
of (25), (23), (21), and (15).

(42) ¬¬p⇔ p is a tautology. The theorem is a consequence of (25), (19), and
(3).

(43) ¬(p∧ q)⇔ ¬p∨¬q is a tautology. The theorem is a consequence of (25),
(19), (21), (23), and (4).
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(44) ¬(p∨ q)⇔ ¬p∧¬q is a tautology. The theorem is a consequence of (25),
(19), (23), (21), and (5).

(45) p ⇒ q ⇒ (p ⇒ r ⇒ (p ⇒ q ∧ r)) is a tautology. The theorem is
a consequence of (21) and (7).

(46) p ⇒ r ⇒ (q ⇒ r ⇒ (p ∨ q ⇒ r)) is a tautology. The theorem is
a consequence of (23) and (8).

(47) If F |= A and F |= A⇒ B, then F |= B.

4. The Axioms. Derivability.

Let D be a set. We say that D is with axioms of PL if and only if

(Def. 19) for every p, q, and r holds p⇒ (q ⇒ p), p⇒ (q ⇒ r)⇒ (p⇒ q ⇒ (p⇒
r)), ¬q ⇒ ¬p⇒ (¬q ⇒ p⇒ q) ∈ D.

The functor PL-axioms yielding a subset of PL-WFF is defined by

(Def. 20) it is with axioms of PL and for every subset D of PL-WFF such that D
is with axioms of PL holds it ⊆ D.

One can check that PL-axioms is with axioms of PL.
Let us consider p, q, and r. We say that MP(p, q, r) if and only if

(Def. 21) q = p⇒ r.
Observe that PL-axioms is non empty.
Let us consider A. We say that A is the simplification axiom if and only if

(Def. 22) there exists p and there exists q such that A = p⇒ (q ⇒ p).
We say that A is Frege axiom if and only if

(Def. 23) there exists p and there exists q and there exists r such that A = p ⇒
(q ⇒ r)⇒ (p⇒ q ⇒ (p⇒ r)).

We say that A is the explosion axiom if and only if

(Def. 24) there exists p and there exists q such that A = ¬q ⇒ ¬p⇒ (¬q ⇒ p⇒
q).

Now we state the propositions:

(48) Every element of PL-axioms is the simplification axiom or Frege axiom
or the explosion axiom.

(49) If A is the simplification axiom or Frege axiom or the explosion axiom,
then F |= A. The theorem is a consequence of (28), (29), and (30).

Let i be a natural number. Let us consider f and F . We say that prc(f, F, i)
if and only if

(Def. 25) f(i) ∈ PL-axioms or f(i) ∈ F or there exist natural numbers j, k such
that 1 ¬ j < i and 1 ¬ k < i and MP(fj , fk, fi).
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Let us consider p. We say that F ` p if and only if

(Def. 26) there exists f such that f(len f) = p and 1 ¬ len f and for every natural
number i such that 1 ¬ i ¬ len f holds prc(f, F, i).

Now we state the propositions:

(50) Let us consider natural numbers i, n. Suppose n+ len f ¬ len f2 and for
every natural number k such that 1 ¬ k ¬ len f holds f(k) = f2(k + n)
and 1 ¬ i ¬ len f . If prc(f, F, i), then prc(f2, F, i+ n).

(51) Suppose f2 = f a f1 and 1 ¬ len f and 1 ¬ len f1 and for every natural
number i such that 1 ¬ i ¬ len f holds prc(f, F, i) and for every natural
number i such that 1 ¬ i ¬ len f1 holds prc(f1, F, i). Let us consider
a natural number i. If 1 ¬ i ¬ len f2, then prc(f2, F, i). The theorem is
a consequence of (50).

(52) Suppose f = f1 a 〈p〉 and 1 ¬ len f1 and for every natural number i such
that 1 ¬ i ¬ len f1 holds prc(f1, F, i) and prc(f, F, len f). Then

(i) for every natural number i such that 1 ¬ i ¬ len f holds prc(f, F, i),
and

(ii) F ` p.

The theorem is a consequence of (50).

(53) If p ∈ PL-axioms or p ∈ F , then F ` p.
Proof: Define P[set, set] ≡ $2 = p. Consider f such that dom f = Seg 1
and for every natural number k such that k ∈ Seg 1 holds P[k, f(k)] from
[3, Sch. 5]. For every natural number j such that 1 ¬ j ¬ len f holds
prc(f, F, j). �

(54) If F ` p and F ` p⇒ q, then F ` q.
Proof: Consider f such that f(len f) = p and 1 ¬ len f and for every
natural number i such that 1 ¬ i ¬ len f holds prc(f, F, i). Consider f1
such that f1(len f1) = p⇒ q and 1 ¬ len f1 and for every natural number
i such that 1 ¬ i ¬ len f1 holds prc(f1, F, i). Set g = (f a f1) a 〈q〉. For
every natural number i such that 1 ¬ i ¬ len f1 holds g(len f + i) = f1(i)
by [3, (22), (39)], [1, (12)], [3, (65), (64)]. For every natural number i such
that 1 ¬ i ¬ len(f a f1) holds prc(f a f1, F, i). �

(55) If F ⊆ G, then if F ` p, then G ` p.
Proof: Consider f such that f(len f) = p and 1 ¬ len f and for eve-
ry natural number k such that 1 ¬ k ¬ len f holds prc(f, F, k). Define
P[natural number] ≡ if 1 ¬ $1 ¬ len f , then G ` f$1 . For every natural
number k, P[k] from [1, Sch. 4]. �
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5. Soundness Theorem. Deduction Theorem.

Now we state the propositions:

(56) If F ` A, then F |= A.
Proof: Consider f such that f(len f) = A and 1 ¬ len f and for every na-
tural number i such that 1 ¬ i ¬ len f holds prc(f, F, i). Define P[natural
number] ≡ if 1 ¬ $1 ¬ len f , then F |= f$1 . For every natural number i
such that for every natural number j such that j < i holds P[j] holds P[i]
by [1, (14)], [9, (1)], (48), (49). For every natural number i, P[i] from [1,
Sch. 4]. �

(57) F ` A⇒ A. The theorem is a consequence of (53) and (54).

(58) Deduction theorem:
If F ∪ {A} ` B, then F ` A⇒ B.
Proof: Consider f such that f(len f) = B and 1 ¬ len f and for every
natural number i such that 1 ¬ i ¬ len f holds prc(f, F ∪ {A}, i). Define
P[natural number] ≡ if 1 ¬ $1 ¬ len f , then F ` A ⇒ f$1 . For every
natural number i such that for every natural number j such that j < i
holds P[j] holds P[i] by [1, (14)], (53), [9, (1)], (54). For every natural
number i, P[i] from [1, Sch. 4]. �

(59) If F ` A⇒ B, then F ∪{A} ` B. The theorem is a consequence of (53),
(55), and (54).

(60) F ` ¬A ⇒ (A ⇒ B). The theorem is a consequence of (53), (54), and
(58).

(61) F ` ¬A ⇒ A ⇒ A. The theorem is a consequence of (53), (57), and
(54).

6. Strong Completeness Theorem

Let us consider F . We say that F is consistent if and only if

(Def. 27) there exists no p such that F ` p and F ` ¬p.
Now we state the propositions:

(62) F is consistent if and only if there exists A such that F 0 A. The theorem
is a consequence of (60) and (54).

(63) If F 0 A, then F ∪ {¬A} is consistent. The theorem is a consequence of
(58), (62), (61), and (54).

(64) F ` A if and only if there exists G such that G ⊆ F and G is finite and
G ` A. The theorem is a consequence of (55).
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(65) If F is not consistent, then there exists G such that G is finite and G is
not consistent and G ⊆ F . The theorem is a consequence of (64) and (55).

Let us consider F . We say that F is maximal if and only if

(Def. 28) for every p holds p ∈ F or ¬p ∈ F .

Now we state the propositions:

(66) If F ⊆ G and F is not consistent, then G is not consistent. The theorem
is a consequence of (55).

(67) If F is consistent and F ∪ {A} is not consistent, then F ∪ {¬A} is
consistent. The theorem is a consequence of (58), (62), (61), and (54).

In the sequel x, y denote sets. Now we state the propositions:

(68) Lindenbaum’s lemma:
If F is consistent, then there exists G such that F ⊆ G and G is consistent
and maximal.
Proof: Set L = PL-WFF. Consider R being a binary relation such
that R well orders L. Reconsider R2 = R |2 L as a binary relation on
L. Reconsider R1 = 〈L,R2〉 as a non empty relational structure. Set
c = the carrier of R1. Define H[object, object, object] ≡ for every p for
every partial function f from c to 2L such that $1 = p and $2 = f
holds if (

⋃
rng(f qua (2L)-valued binary relation)∪F )∪{p} is consistent,

then $3 = (
⋃

rng f ∪ F ) ∪ {p} and if (
⋃

rng(f qua (2L)-valued binary
relation) ∪ F ) ∪ {p} is not consistent, then $3 =

⋃
rng f ∪ F . For every

objects x, y such that x ∈ c and y ∈ c→̇2L there exists an object z such
that z ∈ 2L and H[x, y, z] by [8, (46)]. Consider h being a function from
c × (c→̇2L) into 2L such that for every objects x, y such that x ∈ c and
y ∈ c→̇2L holds H[x, y, h(x, y)] from [5, Sch. 1]. Consider f being a func-
tion from c into 2L such that f is recursively expressed by h. Reconsider
G =

⋃
rng(f qua (2L)-valued binary relation) as a subset of PL-WFF. Set

i1 = the internal relation of R1. For every A and B such that 〈〈A, B〉〉 ∈ R2
holds f(A) ⊆ f(B) by [4, (1)], [2, (4), (29), (9)]. rng f is ⊆-linear. Define
S[element of R1] ≡ f($1) is consistent. For every element x of R1 such
that for every element y of R1 such that y 6= x and 〈〈y, x〉〉 ∈ i1 holds S[y]
holds S[x] by [2, (9)], [7, (32)], [2, (1)], [15, (42)]. For every element A of
R1, S[A] from [12, Sch. 3]. F ⊆ G by [6, (3)]. G is consistent by (65), (16),
[15, (42)], (66). G is maximal by [6, (3)], (17), [13, (16)], (66). �

(69) If F is maximal and consistent, then for every p, F ` p iff p ∈ F . The
theorem is a consequence of (53).

(70) If F |= A, then F ` A.
Proof: Consider G such that F ∪ {¬A} ⊆ G and G is consistent and G
is maximal. Set M = {Propn, where n is an element of N : Propn ∈ G}.
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M ⊆ AP . Define P[element of PL-WFF] ≡ $1 ∈ G iff M |= $1. P[⊥PL].
For every n, P[Propn]. For every r and s such that P[r] and P[s] holds
P[r ⇒ s]. For every B, P[B] from PLInd. M 6|= A. �

(71) A is a tautology if and only if ∅PL-WFF ` A.
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