Leibniz Series for $\pi \square$

Karol Pąk
Institute of Informatics
University of Białystok
Ciołkowskiego 1M, 15-245 Białystok
Poland

Summary. In this article we prove the Leibniz series for π which states that

$$
\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 \cdot n+1}
$$

The formalization follows K. Knopp [8], 1] and [6]. Leibniz's Series for Pi is item \#26 from the "Formalizing 100 Theorems" list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

MSC: 40G99 03B35
Keywords: π approximation; Leibniz theorem; Leibniz series
MML identifier: LEIBNIZ1, version: 8.1.05 5.39.1282

1. Preliminaries

From now on i, n, m denote natural numbers, r, s denote real numbers, and A denotes a non empty, closed interval subset of \mathbb{R}.

Now we state the proposition:
(1) $\operatorname{rng}\left((\right.$ the function $\tan)\left]-\frac{\pi}{2}, \frac{\pi}{2}[)=\mathbb{R}\right.$.

Proof: Set $P=\frac{\pi}{2}$. Set $\left.I=\right]-P, P[. \mathbb{R} \subseteq \operatorname{rng}(($ the function $\tan) \upharpoonright I)$ by [4, (50)], [20, (30)], [14, (15)], [16, (1)].

[^0]One can verify that the function arctan is total and the function arctan is differentiable.

Now we state the propositions:
(2) $(\text { The function } \arctan)^{\prime}(r)=\frac{1}{1+r^{2}}$.
(3) Let us consider an open subset Z of \mathbb{R}. Then
(i) the function arctan is differentiable on Z, and
(ii) for every r such that $r \in Z$ holds (the function $\arctan)_{\mid Z}^{\prime}(r)=\frac{1}{1+r^{2}}$.

The theorem is a consequence of (2).
Let us consider n. One can verify that \square^{n} is continuous.
Now we state the propositions:
(4) (i) $\operatorname{dom}\left(\frac{\square^{n}}{\square^{0}+\square^{2}}\right)=\mathbb{R}$, and
(ii) $\frac{\square^{n}}{\square^{0}+\square^{2}}$ is continuous, and
(iii) $\left(\frac{\square^{n}}{\square^{0}+\square^{2}}\right)(r)=\frac{r^{n}}{1+r^{2}}$.
(5)

$$
\int_{A}\left(\frac{\square^{0}}{\square^{0}+\square^{2}}\right)(x) d x=
$$

$($ the function $\arctan)(\sup A)-($ the function $\arctan)(\inf A)$.
Proof: Set $Z_{0}=\square^{0}$. Set $Z_{2}=\square^{2}$. Set $f=\frac{Z_{0}}{Z_{0}+Z_{2}}$. $\operatorname{dom} f=\mathbb{R}$. f is continuous. If $r \in \mathbb{R}$, then $f(r)=\frac{1}{1+r^{2}}$ by [13, (4)], (4). For every element x of \mathbb{R} such that $x \in \operatorname{dom}(\text { the function } \arctan)_{\mathbb{R}}^{\prime}$ holds (the function $\arctan)_{\mathbb{R}}^{\prime}(x)=f(x)$.

$\left.(\inf A)^{2 \cdot n+1}\right)+\int_{A}\left((-1)^{i+1} \cdot\left(\frac{\square^{2 \cdot(n+1)}}{\square^{0}+\square^{2}}\right)\right)(x) d x$.
Proof: Set $I_{1}=(-1)^{i}$. Set $i_{1}=i+1$. Set $n_{1}=n+1$. Set $I_{2}=(-1)^{i_{1}}$. Set $Z_{0}=\square^{0}$. Set $Z_{2}=\square^{2}$. Set $Z_{2 n}=\square^{2 \cdot n}$. Set $f=I_{1} \cdot Z_{2 n}$. Set $g=I_{2} \cdot\left(\frac{\square^{2 \cdot n}}{Z_{0}+Z_{2}}\right)$. $\operatorname{dom} g=\mathbb{R}$. For every element x of $\mathbb{R},\left(I_{1} \cdot\left(\frac{Z_{2 n}}{Z_{0}+Z_{2}}\right)\right)(x)=(f+g)(x)$ by [13, (6)], [17, (36)], (4). $f+g=I_{1} \cdot\left(\frac{Z_{2 n}}{Z_{0}+Z_{2}}\right) \cdot \frac{\square^{2 \cdot n_{1}}}{Z_{0}+Z_{2}}$ is continuous. \square
(7) Suppose $A=[0, r]$ and $r \geqslant 0$. Then $\left|\int_{A}\left(\frac{\square^{2 \cdot n}}{\square^{0}+\square^{2}}\right)(x) d x\right| \leqslant\left(\frac{1}{2 \cdot n+1}\right)$. $r^{2 \cdot n+1}$.
Proof: Set $Z_{0}=\square^{0}$. Set $Z_{2}=\square^{2}$. Set $N=2 \cdot n$. Set $Z_{n}=\square^{N}$. Set $f=\frac{Z_{n}}{Z_{0}+Z_{2}} \cdot f$ is continuous and $\operatorname{dom} f=\mathbb{R}$. Reconsider $f_{1}=f \upharpoonright A$ as a function from A into \mathbb{R}. Reconsider $Z_{1}=Z_{n} \upharpoonright A$ as a function from A into \mathbb{R}. For every r such that $r \in A$ holds $f_{1}(r) \leqslant Z_{1}(r)$ by [4, (49)], [17,
(36)], [18, (3)], (4). For every object x such that $x \in \mathbb{R}$ holds $f(x)=|f|(x)$ by [13, (8)], (4).

2. Euler Transformation

Let a be a sequence of real numbers. The alternating series of a yielding a sequence of real numbers is defined by
(Def. 1) $\quad i t(i)=(-1)^{i} \cdot a(i)$.
Now we state the proposition:
(8) Let us consider a sequence a of real numbers. Suppose a is non-negative yielding, non-increasing, and convergent and $\lim a=0$. Then
(i) the alternating series of a is summable, and
(ii) for every $n,\left(\sum_{\alpha=0}^{\kappa}\right.$ (the alternating series of $\left.\left.a\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(2 \cdot n) \geqslant \sum$ (the alternating series of $a) \geqslant\left(\sum_{\alpha=0}^{\kappa}(\text { the alternating series of } a)(\alpha)\right)_{\kappa \in \mathbb{N}}(2$. $n+1)$.
Proof: Set $A=$ the alternating series of a. Set $P=\left(\sum_{\alpha=0}^{\kappa} A(\alpha)\right)_{\kappa \in \mathbb{N}}$. Define \mathcal{T} [natural number, object] $\equiv \$_{2}=P\left(2 \cdot \$_{1}\right)$. Define \mathcal{S} [natural number, object $] \equiv \$_{2}=P\left(2 \cdot \$_{1}+1\right)$. Consider T being a function from \mathbb{N} into \mathbb{R} such that for every element x of $\mathbb{N}, \mathcal{T}[x, T(x)]$ from [5, Sch. 3].
Consider S being a function from \mathbb{N} into \mathbb{R} such that for every element x of $\mathbb{N}, \mathcal{S}[x, S(x)]$ from [5, Sch. 3]. For every natural number $n, S(n) \leqslant S(n+1)$. For every natural number $n, T(n) \geqslant T(n+1)$. For every natural number $n, T(n) \geqslant S(n)$. For every natural number $n, T(n)>S(0)-1$ by [10, (6)]. For every natural number $n, S(n)<T(0)+1$ by [10, (8)].
Define \mathcal{D} (natural number) $=2 \cdot \$_{1}+1$. Consider D being a function from \mathbb{N} into \mathbb{N} such that for every element x of $\mathbb{N}, D(x)=\mathcal{D}(x)$ from [5, Sch. 8]. Reconsider $D_{1}=D$ as a many sorted set indexed by \mathbb{N}. For every natural number $n, D(n)<D(n+1)$ by [2, (13)]. Reconsider $a_{2}=a \cdot D_{1}$ as a sequence of real numbers.
For every object x such that $x \in \mathbb{N}$ holds $a_{2}(x)=(T-S)(x)$ by [4, (12)]. For every real number p such that $0<p$ there exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $|P(m)-\lim T|<p$ by [19, (9)].

3. Main Theorem

Let us consider r. The Leibniz series of r yielding a sequence of real numbers is defined by
(Def. 2) $\quad i t(n)=\frac{(-1)^{n} \cdot r^{2 \cdot n+1}}{2 \cdot n+1}$.
The Leibniz series yielding a sequence of real numbers is defined by the term (Def. 3) the Leibniz series of 1 .

Now we state the propositions:
(9) Suppose $r \in[-1,1]$. Then
(i) |the Leibniz series of $r \mid$ is non-negative yielding, non-increasing, and convergent, and
(ii) $\lim \mid$ the Leibniz series of $r \mid=0$.

Proof: Set $r_{1}=$ the Leibniz series of r. Set $A=\left|r_{1}\right| . A(n)=\frac{|r|^{2 \cdot n+1}}{2 \cdot n+1}$ by [15, (1)], [3, (67), (65)]. $A(n) \geqslant A(n+1)$ by [3, (46)], [15, (1)], [13, (6)], [2, (13)]. Set $C=\{0\}_{n \in \mathbb{N}}$. Define \mathcal{F} (natural number) $=\frac{\frac{1}{2}}{\$_{1}+\frac{1}{2}}$. Consider f being a sequence of real numbers such that $f(n)=\mathcal{F}(n)$ from [11, Sch. 1]. $C(n) \leqslant A(n) \leqslant f(n)$ by [11, (57)], [3, (46)], [13, (11)], [2, (11)].
(10) (i) if $r \geqslant 0$, then the alternating series of \mid the Leibniz series of $r \mid=$ the Leibniz series of r, and
(ii) if $r<0$, then $(-1) \cdot$ (the alternating series of |the Leibniz series of $r \mid)=$ the Leibniz series of r.
Proof: Set $r_{1}=$ the Leibniz series of r. Set $A=\left|r_{1}\right|$. Set $a_{1}=$ the alternating series of A. $a_{1}(n)=(-1)^{n} \cdot\left(\frac{|r|^{2 \cdot n+1}}{2 \cdot n+1}\right)$ by [15, (1)], [3, (67), (65)]. If $r \geqslant 0$, then $a_{1}=r_{1}$.
(11) If $r \in[-1,1]$, then the Leibniz series of r is summable. The theorem is a consequence of (9), (8), and (10).
(12) Suppose $A=[0, r]$ and $r \geqslant 0$. Then (the function arctan $)(r)=\left(\sum_{\alpha=0}^{\kappa}(\right.$ the Leibniz series of $r)(\alpha))_{\kappa \in \mathbb{N}}(n)+\int_{A}\left((-1)^{n+1} \cdot\left(\frac{\square^{2 \cdot(n+1)}}{\square^{0}+\square^{2}}\right)\right)(x) d x$.
Proof: Set $Z_{0}=\square^{0}$. Set $Z_{2}=\square^{2}$. Set $r_{1}=$ the Leibniz series of r. Define \mathcal{P} [natural number] \equiv (the function $\arctan)(r)=\left(\sum_{\alpha=0}^{\kappa} r_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)+$ $\int_{A}\left((-1)^{\$_{1}+1} \cdot\left(\frac{\square^{2 \cdot(\$ 1+1)}}{Z_{0}+Z_{2}}\right)\right)(x) d x . \mathcal{P}[0]$ by (5), [14, (43)], [13, (4)], [9, (21)]. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [13, (11)], [2, (11)], (6). $\mathcal{P}[i]$ from [2, Sch. 2].
(13) If $0 \leqslant r \leqslant 1$, then (the function $\arctan)(r)=\sum$ (the Leibniz series of r).

Proof: Set $r_{1}=$ the Leibniz series of r. Set $P=\left(\sum_{\alpha=0}^{\kappa} r_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}$. Set $A=($ the function $\arctan)(r)$. Define \mathcal{I} (natural number) $=\frac{\square^{2 \cdot s_{1}}}{\square^{0}+\square^{2}} \cdot P$ is convergent. For every s such that $0<s$ there exists n such that for every m such that $n \leqslant m$ holds $|P(m)-A|<s$ by [12, (3)], (4), [7, (11), (10)].
(14) Leibniz SERIES FOR π : $\frac{\pi}{4}=\sum($ the Leibniz series $)$.
(15) $\quad\left(\sum_{\alpha=0}^{\kappa}(\text { the Leibniz series })(\alpha)\right)_{\kappa \in \mathbb{N}}(2 \cdot n+1) \leqslant \sum($ the Leibniz series $) \leqslant$ $\left(\sum_{\alpha=0}^{\kappa}(\text { the Leibniz series })(\alpha)\right)_{\kappa \in \mathbb{N}}(2 \cdot n)$. The theorem is a consequence of (9), (10), and (8).
(16) (i) $\left(\sum_{\alpha=0}^{\kappa}(\text { the Leibniz series })(\alpha)\right)_{\kappa \in \mathbb{N}}(1)=\frac{2}{3}$, and
(ii) if n is odd, then $\left(\sum_{\alpha=0}^{\kappa}(\text { the Leibniz series })(\alpha)\right)_{\kappa \in \mathbb{N}}(n+2)=\left(\sum_{\alpha=0}^{\kappa}\right.$ (the Leibniz series $)(\alpha))_{\kappa \in \mathbb{N}}(n)+\frac{2}{4 \cdot n^{2}+16 \cdot n+15}$.
(17) π Approximation:
$\frac{313}{100}<\pi<\frac{315}{100}$. The theorem is a consequence of (16), (14), and (15).

References

[1] George E. Andrews, Richard Askey, and Ranjan Roy. Special Functions. Cambridge University Press, 1999.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[3] Czesław Byliński. The complex numbers, Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[6] Lokenath Debnath. The Legacy of Leonhard Euler: A Tricentennial Tribute. World Scientific, 2010.
[7] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions Formalized Mathematics, 9(2):281-284, 2001.
[8] Konrad Knopp. Infinite Sequences and Series. Dover Publications, 1956. ISBN 978-0-486-60153-3.
[9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[10] Jarosław Kotowicz. Monotone real sequences. Subsequences Formalized Mathematics, 1 (3):471-475, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[14] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008. doi 10.2478/v10037-008-0021-3.
[15] Akira Nishino and Yasunari Shidama. The Maclaurin expansions. Formalized Mathematics, 13(3):421-425, 2005.
[16] Chanapat Pacharapokin, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions Formalized Mathematics, 12(2):139-141, 2004.
[17] Konrad Raczkowski. Integer and rational exponents Formalized Mathematics, 2(1):125130, 1991.
[18] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms Formalized Mathematics, 2(2):213-216, 1991.
[19] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem Formalized Mathematics, 6(3):335-338, 1997.
[20] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received October 18, 2016

[^0]: ${ }^{1}$ This work has been financed by the resources of the Polish National Science Centre granted by decision no. DEC-2012/07/N/ST6/02147.

