

Leibniz Series for π^1

Karol Pąk
Institute of Informatics
University of Białystok
Ciołkowskiego 1M, 15-245 Białystok
Poland

Summary. In this article we prove the Leibniz series for π which states that

$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2 \cdot n + 1}.$$

The formalization follows K. Knopp [8], [1] and [6]. Leibniz's Series for Pi is item #26 from the "Formalizing 100 Theorems" list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

MSC: 40G99 03B35

Keywords: π approximation; Leibniz theorem; Leibniz series

MML identifier: LEIBNIZ1, version: 8.1.05 5.39.1282

1. Preliminaries

From now on i, n, m denote natural numbers, r, s denote real numbers, and A denotes a non empty, closed interval subset of \mathbb{R} .

Now we state the proposition:

(1) rng((the function tan) \upharpoonright] $-\frac{\pi}{2}, \frac{\pi}{2}[) = \mathbb{R}$. PROOF: Set $P = \frac{\pi}{2}$. Set I =]-P, P[. $\mathbb{R} \subseteq \text{rng}((\text{the function tan}) \upharpoonright I)$ by [4, (50)], [20, (30)], [14, (15)], [16, (1)]. \square

 $^{^{1}}$ This work has been financed by the resources of the Polish National Science Centre granted by decision no. DEC-2012/07/N/ST6/02147.

One can verify that the function arctan is total and the function arctan is differentiable.

Now we state the propositions:

- (2) (The function \arctan)' $(r) = \frac{1}{1+r^2}$.
- (3) Let us consider an open subset Z of \mathbb{R} . Then
 - (i) the function arctan is differentiable on Z, and
 - (ii) for every r such that $r \in Z$ holds (the function $\arctan)'_{\uparrow Z}(r) = \frac{1}{1+r^2}$.

The theorem is a consequence of (2).

Let us consider n. One can verify that \square^n is continuous.

Now we state the propositions:

- (4) (i) $\operatorname{dom}(\frac{\square^n}{\square^0 + \square^2}) = \mathbb{R}$, and
 - (ii) $\frac{\square^n}{\square^0 + \square^2}$ is continuous, and
 - (iii) $\left(\frac{\square^n}{\square^0 + \square^2}\right)(r) = \frac{r^n}{1 + r^2}$.

$$(5) \quad \int\limits_A (\frac{\Box^0}{\Box^0 + \Box^2})(x)dx =$$

(the function \arctan)($\sup A$) – (the function \arctan)($\inf A$).

PROOF: Set $Z_0 = \square^0$. Set $Z_2 = \square^2$. Set $f = \frac{Z_0}{Z_0 + Z_2}$. dom $f = \mathbb{R}$. f is continuous. If $r \in \mathbb{R}$, then $f(r) = \frac{1}{1 + r^2}$ by [13, (4)], (4). For every element x of \mathbb{R} such that $x \in \text{dom}(\text{the function } \arctan)'_{|\mathbb{R}}$ holds (the function $\arctan)'_{|\mathbb{R}}(x) = f(x)$. \square

(6)
$$\int_{A} ((-1)^{i} \cdot (\frac{\Box^{2 \cdot n}}{\Box^{0} + \Box^{2}}))(x) dx = (-1)^{i} \cdot ((\frac{1}{2 \cdot n + 1}) \cdot (\sup A)^{2 \cdot n + 1} - (\frac{1}{2 \cdot n + 1}) \cdot (\inf A)^{2 \cdot n + 1}) + \int_{A} ((-1)^{i+1} \cdot (\frac{\Box^{2 \cdot (n+1)}}{\Box^{0} + \Box^{2}}))(x) dx.$$

PROOF: Set $I_1 = (-1)^i$. Set $i_1 = i+1$. Set $n_1 = n+1$. Set $I_2 = (-1)^{i_1}$. Set $Z_0 = \square^0$. Set $Z_2 = \square^2$. Set $Z_{2n} = \square^{2 \cdot n}$. Set $f = I_1 \cdot Z_{2n}$. Set $g = I_2 \cdot (\frac{\square^{2 \cdot n_1}}{Z_0 + Z_2})$. dom $g = \mathbb{R}$. For every element x of \mathbb{R} , $(I_1 \cdot (\frac{Z_{2n}}{Z_0 + Z_2}))(x) = (f + g)(x)$ by [13, (6)], [17, (36)], (4). $f + g = I_1 \cdot (\frac{Z_{2n}}{Z_0 + Z_2}).$ $\frac{\square^{2 \cdot n_1}}{Z_0 + Z_2}$ is continuous. \square

(7) Suppose
$$A = [0, r]$$
 and $r \ge 0$. Then $\left| \int_{A} \left(\frac{\Box^{2 \cdot n}}{\Box^{0} + \Box^{2}} \right)(x) dx \right| \le \left(\frac{1}{2 \cdot n + 1} \right) \cdot r^{2 \cdot n + 1}$.

PROOF: Set $Z_0 = \square^0$. Set $Z_2 = \square^2$. Set $N = 2 \cdot n$. Set $Z_n = \square^N$. Set $f = \frac{Z_n}{Z_0 + Z_2}$. f is continuous and dom $f = \mathbb{R}$. Reconsider $f_1 = f \upharpoonright A$ as a function from A into \mathbb{R} . Reconsider $Z_1 = Z_n \upharpoonright A$ as a function from A into \mathbb{R} . For every r such that $r \in A$ holds $f_1(r) \leq Z_1(r)$ by [4, (49)], [17, 17]

(36)], [18, (3)], (4). For every object x such that $x \in \mathbb{R}$ holds f(x) = |f|(x) by [13, (8)], (4). \square

2. Euler Transformation

Let a be a sequence of real numbers. The alternating series of a yielding a sequence of real numbers is defined by

(Def. 1)
$$it(i) = (-1)^i \cdot a(i)$$
.

Now we state the proposition:

- (8) Let us consider a sequence a of real numbers. Suppose a is non-negative yielding, non-increasing, and convergent and $\lim a = 0$. Then
 - (i) the alternating series of a is summable, and
 - (ii) for every n, $(\sum_{\alpha=0}^{\kappa} (\text{the alternating series of } a)(\alpha))_{\kappa \in \mathbb{N}} (2 \cdot n) \geqslant \sum (\text{the alternating series of } a) \geqslant (\sum_{\alpha=0}^{\kappa} (\text{the alternating series of } a)(\alpha))_{\kappa \in \mathbb{N}} (2 \cdot n + 1).$

PROOF: Set A = the alternating series of a. Set $P = (\sum_{\alpha=0}^{\kappa} A(\alpha))_{\kappa \in \mathbb{N}}$. Define $\mathcal{T}[\text{natural number, object}] \equiv \$_2 = P(2 \cdot \$_1)$. Define $\mathcal{S}[\text{natural number, object}] \equiv \$_2 = P(2 \cdot \$_1 + 1)$. Consider T being a function from \mathbb{N} into \mathbb{R} such that for every element x of \mathbb{N} , $\mathcal{T}[x, T(x)]$ from [5, Sch. 3]. Consider S being a function from \mathbb{N} into \mathbb{R} such that for every element x of \mathbb{N} , $\mathcal{S}[x, S(x)]$ from [5, Sch. 3]. For every natural number n, $S(n) \leq S(n+1)$. For every natural number $S(n) \leq S(n)$. For every natural number $S(n) \leq S(n)$ being a function from $S(n) \leq S(n)$.

Define \mathcal{D} (natural number) = $2 \cdot \$_1 + 1$. Consider \mathcal{D} being a function from \mathbb{N} into \mathbb{N} such that for every element x of \mathbb{N} , $D(x) = \mathcal{D}(x)$ from [5, Sch. 8]. Reconsider $D_1 = D$ as a many sorted set indexed by \mathbb{N} . For every natural number n, D(n) < D(n+1) by [2, (13)]. Reconsider $a_2 = a \cdot D_1$ as a sequence of real numbers.

For every object x such that $x \in \mathbb{N}$ holds $a_2(x) = (T - S)(x)$ by [4, (12)]. For every real number p such that 0 < p there exists a natural number n such that for every natural number m such that $n \le m$ holds $|P(m) - \lim T| < p$ by [19, (9)]. \square

3. Main Theorem

Let us consider r. The Leibniz series of r yielding a sequence of real numbers is defined by

(Def. 2)
$$it(n) = \frac{(-1)^n \cdot r^{2 \cdot n+1}}{2 \cdot n+1}$$
.

The Leibniz series yielding a sequence of real numbers is defined by the term (Def. 3) the Leibniz series of 1.

Now we state the propositions:

- (9) Suppose $r \in [-1, 1]$. Then
 - (i) | the Leibniz series of r | is non-negative yielding, non-increasing, and convergent, and
 - (ii) $\lim |\text{the Leibniz series of } r| = 0.$

PROOF: Set r_1 = the Leibniz series of r. Set $A = |r_1|$. $A(n) = \frac{|r|^{2 \cdot n + 1}}{2 \cdot n + 1}$ by [15, (1)], [3, (67), (65)]. $A(n) \ge A(n+1)$ by [3, (46)], [15, (1)], [13, (6)], [2, (13)]. Set $C = \{0\}_{n \in \mathbb{N}}$. Define $\mathcal{F}(\text{natural number}) = \frac{\frac{1}{2}}{\$_1 + \frac{1}{2}}$. Consider f being a sequence of real numbers such that $f(n) = \mathcal{F}(n)$ from [11, Sch. 1]. $C(n) \le A(n) \le f(n)$ by [11, (57)], [3, (46)], [13, (11)], [2, (11)]. \square

- (10) (i) if $r \ge 0$, then the alternating series of |the Leibniz series of r| = the Leibniz series of r, and
 - (ii) if r < 0, then (-1) · (the alternating series of |the Leibniz series of r|) = the Leibniz series of r.

PROOF: Set r_1 = the Leibniz series of r. Set $A = |r_1|$. Set a_1 = the alternating series of A. $a_1(n) = (-1)^n \cdot (\frac{|r|^{2 \cdot n+1}}{2 \cdot n+1})$ by [15, (1)], [3, (67), (65)]. If $r \ge 0$, then $a_1 = r_1$. \square

- (11) If $r \in [-1, 1]$, then the Leibniz series of r is summable. The theorem is a consequence of (9), (8), and (10).
- (12) Suppose A = [0, r] and $r \ge 0$. Then (the function \arctan) $(r) = (\sum_{\alpha=0}^{\kappa} (\text{the Leibniz series of } r)(\alpha))_{\kappa \in \mathbb{N}}(n) + \int_{A} ((-1)^{n+1} \cdot (\frac{\square^{2 \cdot (n+1)}}{\square^0 + \square^2}))(x) dx$.

PROOF: Set $Z_0 = \Box^0$. Set $Z_2 = \Box^2$. Set r_1 = the Leibniz series of r. Define $\mathcal{P}[\text{natural number}] \equiv (\text{the function } \arctan)(r) = (\sum_{\alpha=0}^{\kappa} r_1(\alpha))_{\kappa \in \mathbb{N}}(\$_1) + \int_A ((-1)^{\$_1+1} \cdot (\frac{\Box^{2\cdot(\$_1+1)}}{Z_0+Z_2}))(x) dx$. $\mathcal{P}[0]$ by (5), [14, (43)], [13, (4)], [9, (21)].

If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [13, (11)], [2, (11)], (6). $\mathcal{P}[i]$ from [2, Sch. 2]. \square

(13) If $0 \le r \le 1$, then (the function \arctan) $(r) = \sum$ (the Leibniz series of r).

PROOF: Set r_1 = the Leibniz series of r. Set $P = (\sum_{\alpha=0}^{\kappa} r_1(\alpha))_{\kappa \in \mathbb{N}}$. Set A = (the function arctan)(r). Define $\mathcal{I}(\text{natural number}) = \frac{\square^{2 \cdot \$_1}}{\square^0 + \square^2}$. P is convergent. For every s such that 0 < s there exists n such that for every m such that $n \le m$ holds |P(m) - A| < s by [12, (3)], (4), [7, (11), (10)]. \square

- (14) Leibniz Series for π : $\frac{\pi}{4} = \sum$ (the Leibniz series).
- (15) $(\sum_{\alpha=0}^{\kappa} (\text{the Leibniz series})(\alpha))_{\kappa \in \mathbb{N}} (2 \cdot n + 1) \leq \sum (\text{the Leibniz series}) \leq (\sum_{\alpha=0}^{\kappa} (\text{the Leibniz series})(\alpha))_{\kappa \in \mathbb{N}} (2 \cdot n)$. The theorem is a consequence of (9), (10), and (8).
- (16) (i) $(\sum_{\alpha=0}^{\kappa} (\text{the Leibniz series})(\alpha))_{\kappa \in \mathbb{N}}(1) = \frac{2}{3}, \text{ and}$
 - (ii) if n is odd, then $(\sum_{\alpha=0}^{\kappa} (\text{the Leibniz series})(\alpha))_{\kappa \in \mathbb{N}} (n+2) = (\sum_{\alpha=0}^{\kappa} (\text{the Leibniz series})(\alpha))_{\kappa \in \mathbb{N}} (n) + \frac{2}{4 \cdot n^2 + 16 \cdot n + 15}$.
- (17) π Approximation: $\frac{313}{100} < \pi < \frac{315}{100}$. The theorem is a consequence of (16), (14), and (15).

References

- George E. Andrews, Richard Askey, and Ranjan Roy. Special Functions. Cambridge University Press, 1999.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Lokenath Debnath. The Legacy of Leonhard Euler: A Tricentennial Tribute. World Scientific, 2010.
- [7] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from $\mathbb R$ to $\mathbb R$ and integrability for continuous functions. Formalized Mathematics, 9(2):281–284, 2001.
- [8] Konrad Knopp. Infinite Sequences and Series. Dover Publications, 1956. ISBN 978-0-486-60153-3.
- [9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1 (3):471–475, 1990.
- [11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [14] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147–158, 2008. doi:10.2478/v10037-008-0021-3.
- [15] Akira Nishino and Yasunari Shidama. The Maclaurin expansions. Formalized Mathematics, 13(3):421–425, 2005.

- [16] Chanapat Pacharapokin, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139–141, 2004.
- [17] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–130, 1991.
- [18] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [19] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [20] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received October 18, 2016