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Summary. In this article, the basic existence theorem of Riemann-Stielt-
jes integral is formalized. This theorem states that if f is a continuous function
and p is a function of bounded variation in a closed interval of real line, f is
Riemann-Stieltjes integrable with respect to p. In the first section, basic proper-
ties of real finite sequences are formalized as preliminaries. In the second section,
we formalized the existence theorem of the Riemann-Stieltjes integral. These
formalizations are based on [15], [12], [10], and [I1].
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1. PRELIMINARIES

Now we state the propositions:

(1) Let us consider a real number F, a finite sequence g of elements of R,
and a finite sequence S of elements of R. Suppose len.S = leng and for
every natural number ¢ such that ¢ € dom S there exists a real number r
such that » = ¢(7) and S(i) =7-E. Then > S =>"¢q- E.

PROOF: Define P[natural number] = for every finite sequence ¢ of elements

of R for every finite sequence S of elements of R such that $; = len S
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and len S = lenq and for every natural number ¢ such that ¢ € dom S
there exists a real number r such that r = ¢(i) and S(i) = r - E holds
> S=>3q-E.P[0] by [, (72)]. For every natural number 4, P[i] from [I,
Sch. 2]. O

Let us consider finite sequences z, y of elements of R. Suppose lenx =

leny and for every element i of N such that i € dom x there exists a real
number v such that v = z(i) and y(i) = |v|. Then | > z| < > v.
PROOF: Define P[natural number| = for every finite sequences z, y of
elements of R such that $; = lenz and lenx = leny and for every element
i of N such that ¢ € dom x there exists a real number v such that v = x (i)
and y(i) = |v| holds |} z| < > y. P[0] by [1, (72)], [3, (44)]. For every
natural number ¢, P[i] from [II, Sch. 2]. O

Let us consider finite sequences p, g of elements of R. Suppose len p
len g and for every natural number j such that j € domp holds |p(j)
q(5). Then | X p| < g
PROOF: Define Plnatural number,set] = there exists a real number v
such that v = p($;) and $2 = |v|. For every natural number ¢ such that
i € Seglenp there exists an element x of R such that P[i, z]. Consider u
being a finite sequence of elements of R such that dom u = Seglen p and
for every natural number i such that ¢ € Seglen p holds P[i, u(7)] from [2]
Sch. 5]. For every element i of N such that ¢ € domp there exists a real
number v such that v = p(7) and u(i) = |v|. | X p| < S u. O

Let us consider a natural number n, and an object a. Then len(n +— a) =
n.

<

Let us consider a finite sequence p, and an object a. Then p =lenp +— a
if and only if for every object k such that & € domp holds p(k) = a.
ProoOF: If p = lenp — a, then for every object k such that k € domp
holds p(k) = a by [4, (57)]. O

Let us consider a finite sequence p of elements of R, a natural number

i, and a real number 7. Suppose ¢ € domp and p(i) = r and for every
natural number k such that ¥ € domp and k # i holds p(k) = 0. Then
Sp=r.
PROOF: Define P[natural number] = for every finite sequence p of elements
of R for every natural number 7 for every real number r such that lenp = $;
and ¢ € domp and p(i) = r and for every natural number k such that
k € domp and k # ¢ holds p(k) = 0 holds > p = r. P][0]. For every natural
number n such that P[n] holds P[n + 1] by [4, (19), (16)], [18] (25)], [17,
(7)]. For every natural number k, P[k| from [I, Sch. 2]. O

Let us consider finite sequences p, ¢ of elements of R. Suppose lenp <
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len ¢ and for every natural number ¢ such that ¢ € dom ¢ holds if ¢ < lenp,
then ¢(i) = p(i) and if lenp < 4, then ¢(¢) = 0. Then Y ¢ = p.
PRrROOF: Consider i; being a natural number such that ¢; = leng — lenp.
Set = i1 — (0 qua real number). ¢ = p " x by (4), [18, (25)], [16l (13)],
[4, (57)]. O
(8) Let us consider real numbers a, b, ¢, d. If b < ¢, then [a,b]N[c,d] C [b, b].
(9) Let us consider a real number a, a subset A of R, and a real-valued
function p. If A C [a,a], then vol(A, g) = 0.

(10) Let us consider a non empty, increasing finite sequence s of elements
of R, and a natural number m. Suppose m € doms. Then s[m is a non
empty, increasing finite sequence of elements of R.

PROOF: Set H = s[m. For every extended reals e, es such that e, es €
dom H and e; < eg holds H(e1) < H(ez) by [19, (57)], [B, (47)]. O

(11) Let us consider non empty, increasing finite sequences s, t of elements
of R. Suppose s(lens) < ¢(1). Then s~ t is a non empty, increasing finite
sequence of elements of R.

PROOF: Set H = s ™ t. For every extended reals ej, es such that e,
ez € dom H and e; < ez holds H(e1) < H(e2) by [18, (25)], [2, (25), (3)].
O

(12) Let us consider a non empty, increasing finite sequence s of elements of
R, and a real number a. Suppose s(lens) < a. Then s (a) is a non empty,
increasing finite sequence of elements of R. The theorem is a consequence
of (11).

(13) Let us consider a finite sequence T" of elements of R, and natural numbers
n, m. Suppose n + 1 < m < lenT. Then there exists a finite sequence T}
of elements of R such that

(i) len Ty =m — (n+ 1), and

(ii) rngTi CrngT', and

(iii) for every natural number i such that ¢ € dom T} holds T4 (i) = T'(i +
PROOF: Define F(natural number) = T($; + n). Reconsider m; = m —
(n+ 1) as a natural number. Consider p being a finite sequence such that
lenp = my and for every natural number k such that £k € domp holds
p(k) = F(k) from [2, Sch. 2]. rngp C rng T by [I8, (25)], [5, (3)]. O

(14) Let us consider a non empty, increasing finite sequence 7" of elements of

R, and natural numbers n, m. Suppose n + 1 < m < lenT. Then there

exists a non empty, increasing finite sequence 17 of elements of R such
that
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(i) lenTy =m — (n+ 1), and

(ii) rngT7 C rngT, and
(iii) for every natural number i such that ¢ € dom T} holds T4 (i) = T'(i +
Proor: Consider p being a finite sequence of elements of R such that
lenp=m—(n+1) and rngp C rng T and for every natural number i such
that ¢ € domp holds p(i) = T'(i +n). For every extended reals e1, es such
that e, e € domp and e; < es holds p(e;) < p(e2) by [18, (25)]. O

Let us consider a finite sequence p of elements of R, and natural numbers
n, m. Suppose n + 1 < m < lenp. Then there exists a finite sequence p;
of elements of R such that

(i) lenpy =m —(n+1) — 1, and

(ii) rngp1 C rngp, and
(iii) for every natural number ¢ such that ¢ € domp; holds p1 (i) = p(i +

n+1).

The theorem is a consequence of (13).

2. EXISTENCE OF RIEMANN-STIELTJES INTEGRAL FOR CONTINUOUS

FUNCTIONS

Now we state the propositions:

(16)

Let us consider a non empty, closed interval subset A of R, a partition T’
of A, a real-valued function g, a non empty, closed interval subset B of R,
a non empty, increasing finite sequence Sy of elements of R, and a finite
sequence Sy of elements of R.

Suppose B C A and inf B = inf A and there exists a partition S of B
such that S = Sy and len S; = len S and for every natural number j such
that 7 € dom S there exists a finite sequence p of elements of R such that
S1(j) = >Xp and lenp = lenT and for every natural number i such that
i € domT holds p(i) = | vol(divset(T',7) N divset(S, j), 0)|.

Then there exists a partition H of B and there exists a var-volume F' of
o and H such that >3 51 =) F.

PROOF: Define P[natural number| = for every non empty, closed interval
subset B of R for every non empty, increasing finite sequence Sy of elements
of R for every finite sequence S7 of elements of R such that B C A and
inf B = inf A and len Sy = $; and there exists a partition S of B such
that S = Sp and lenS; = len S and for every natural number j such
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that j € dom S there exists a finite sequence p of elements of R such
that S1(j) = Y. p and lenp = lenT and for every natural number i such
that i € dom T holds p(i) = | vol(divset(T, ) Ndivset(.S, j), 0)| there exists
a partition H of B and there exists a var-volume F of ¢ and H such that
> S1 = Y F. For every natural number k such that P[k] holds P[k+ 1] by
[18, (29)], [L (14)], [I8 (25)], [2, (40)]. For every natural number k, P[k]
from [II, Sch. 2]. O

(17) Let us consider a non empty, closed interval subset A of R, a function g
from A into R, and partitions T', S of A. Suppose g is bounded-variation.
Then there exists a finite sequence S; of elements of R such that

(i) lenS; =len S, and
(ii) > 51 < TotalVD(p), and

(iii) for every natural number j such that j € dom S there exists a finite
sequence p of elements of R such that S1(j) =Y. p and lenp =lenT
and for every natural number i such that ¢ € domT holds p(i) =
| vol(divset (T, 7) N divset(S, 5), 0)|.

PROOF: Define P[natural number, object] = there exists a finite sequence
p of elements of R such that $5 = > p and lenp = lenT and for every
natural number i such that ¢ € domT holds p(i) = |vol(divset(T,7) N
divset(S, $1), 0)|- For every natural number j such that j € Seglen S there
exists an element z of R such that P[j,z]. Consider S; being a finite
sequence of elements of R such that dom.S; = Seglen S and for every
natural number j such that j € Seglen S holds P[j, S1(j)] from [2, Sch. 5].
Consider H being a partition of A, F' being a var-volume of ¢ and H such
that ZSI = ZF O

(18) Let us consider a non empty, closed interval subset A of R, a function g
from A into R, and a partial function u from R to R.
Suppose ¢ is bounded-variation and domu = A and u[A is uniformly
continuous. Let us consider a division sequence T of A, and a middle
volume sequence S of o, u and T". Suppose d7 is convergent and lim dp = 0.
Then middle-sum(S) is convergent.
PROOF: For every division sequence T of A and for every middle volume
sequence S of g, v and T such that dr is convergent and lim d7 = 0 holds
middle-sum(.S5) is convergent by [14, (6)], [9 (9)], [8 (87)], [6, (5)]. O

(19) Let us consider a non empty, closed interval subset A of R, a function g
from A into R, a partial function u from R to R, division sequences Ty, T',
T; of A, a middle volume sequence Sy of ¢, v and T, and a middle volume
sequence S of g, uw and T'.
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Suppose for every natural number i, T7(2-1) = Ty(i) and Ty (2-i4+1) = T(i).
Then there exists a middle volume sequence Sy of ¢, © and T3y such that
for every natural number i, S1(2-14) = Sp(i) and S1(2-i+ 1) = S(7).
PROOF: Reconsider S = Sy, Sy = S as a sequence of R*. Define F(natural
number) = S3($1)(€ R*). Define G(natural number) = S3($1)(€ R*). Con-
sider S; being a sequence of R* such that for every natural number n,
S1(2-n) = F(n) and S1(2-n + 1) = G(n) from [I3| Sch. 1]. For every
element ¢ of N, S1(7) is a middle volume of g, w and T3 (¢) by [13| (14)], [6]
(5). O

(20) Let us consider sequences Sj, So2, S3 of real numbers. Suppose Ss is

convergent and for every natural number i, S3(2-4) = S1(¢) and S3(2-i+
1) = S3(7). Then

(i) Sp is convergent, and

(ii) limS; = lim S5, and

(iii) S2 is convergent, and

(iv) lim Sy = lim Ss.
PRrROOF: For every real number r such that 0 < r there exists a natural
number m; such that for every natural number ¢ such that m; < ¢ holds
|S1(7) — lim S| < r by [13, (14)], [I, (11)]. For every real number r such
that 0 < r there exists a natural number m; such that for every natural
number 7 such that m; < i holds |S2(:) — lim S3| < = by [13, (14)], [T,
(11)]. O

(21) Let us consider a non empty, closed interval subset A of R, a function g

1]

3]

from A into R, and a continuous partial function u from R to R.
Suppose ¢ is bounded-variation and domu = A. Then u is Riemann-
Stieltjes integrable with p.

Proor: Consider Ty being a division sequence of A such that d7, is co-
nvergent and limdz, = 0. Set Sy = the middle volume sequence of p,
u and Tp. Set I = limmiddle-sum(Sp). For every division sequence T
of A and for every middle volume sequence S of o, v and T such that
07 is convergent and lim 7 = 0 holds middle-sum(S) is convergent and
lim middle-sum(S) = I by (18), [13 (15)], (19), [13}, (16)]. O
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