Homography in $\mathbb{R} \mathbb{P}^{2}$

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Abstract

Summary. The real projective plane has been formalized in Isabelle/HOL by Timothy Makarios [13] and in Coq by Nicolas Magaud, Julien Narboux and Pascal Schreck [12.

Some definitions on the real projective spaces were introduced early in the Mizar Mathematical Library by Wojciech Leonczuk 9], Krzysztof Prazmowski [10] and by Wojciech Skaba 18.

In this article, we check with the Mizar system 4, some properties on the determinants and the Grassmann-Plücker relation in rank 3 [2], 1], 7], 16, 17.

Then we show that the projective space induced (in the sense defined in 9]) by \mathbb{R}^{3} is a projective plane (in the sense defined in [10]).

Finally, in the real projective plane, we define the homography induced by a 3-by-3 invertible matrix and we show that the images of 3 collinear points are themselves collinear.

MSC: 51N15 03B35 Keywords: projectivity; projective transformation; projective collineation; real projective plane; Grassmann-Plücker relation

MML identifier: ANPROJ_8, version: 8.1.05 5.39.1282

1. Preliminaries

From now on a, b, c, d, e, f denote real numbers, k, m denote natural numbers, D denotes a non empty set, V denotes a non trivial real linear space, u, v, w denote elements of V, and p, q, r denote elements of the projective space over V.

Now we state the propositions:
(1) $\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,1\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 3,3\rangle \in \operatorname{Seg} 3 \times$ Seg 3.
(2) $\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,1\rangle \in \operatorname{Seg} 3 \times \operatorname{Seg} 1$.
(3) $\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle \in \operatorname{Seg} 1 \times \operatorname{Seg} 3$.
(4) $\langle\langle a\rangle,\langle b\rangle,\langle c\rangle\rangle$ is a matrix over \mathbb{R}_{F} of dimension 3×1.
(5) Let us consider a matrix N over \mathbb{R}_{F} of dimension 3×1. Suppose $N=\langle\langle a\rangle$, $\langle b\rangle,\langle c\rangle\rangle$. Then $N_{\square, 1}=\langle a, b, c\rangle$. The theorem is a consequence of (2).
(6) Let us consider a non empty multiplicative magma K, and elements a_{1}, $a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ of K. Then $\left\langle a_{1}, a_{2}, a_{3}\right\rangle \bullet\left\langle b_{1}, b_{2}, b_{3}\right\rangle=\left\langle a_{1} \cdot b_{1}, a_{2} \cdot b_{2}, a_{3} \cdot b_{3}\right\rangle$.
(7) Let us consider a commutative, associative, left unital, Abelian, addassociative, right zeroed, right complementable, non empty double loop structure K, and elements $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ of K. Then $\left\langle a_{1}, a_{2}, a_{3}\right\rangle \cdot\left\langle b_{1}\right.$, $\left.b_{2}, b_{3}\right\rangle=a_{1} \cdot b_{1}+a_{2} \cdot b_{2}+a_{3} \cdot b_{3}$. The theorem is a consequence of (6).
(8) Let us consider a square matrix M over \mathbb{R}_{F} of dimension 3 , and a matrix N over \mathbb{R}_{F} of dimension 3×1. Suppose $N=\langle\langle 0\rangle,\langle 0\rangle,\langle 0\rangle\rangle$. Then $M \cdot N=$ $\langle\langle 0\rangle,\langle 0\rangle,\langle 0\rangle\rangle$. The theorem is a consequence of (7), (5), and (2).
(9) u, v and w are lineary dependent if and only if $u=v$ or $u=w$ or $v=w$ or $\{u, v, w\}$ is linearly dependent.
(10) p, q and r are collinear if and only if there exists u and there exists v and there exists w such that $p=$ the direction of u and $q=$ the direction of v and $r=$ the direction of w and u is not zero and v is not zero and w is not zero and ($u=v$ or $u=w$ or $v=w$ or $\{u, v, w\}$ is linearly dependent). The theorem is a consequence of (9).
(11) p, q and r are collinear if and only if there exists u and there exists v and there exists w such that $p=$ the direction of u and $q=$ the direction of v and $r=$ the direction of w and u is not zero and v is not zero and w is not zero and there exists a and there exists b and there exists c such that $a \cdot u+b \cdot v+c \cdot w=0_{V}$ and $(a \neq 0$ or $b \neq 0$ or $c \neq 0)$.
(12) Let us consider elements u, v, w of V. Suppose $a \neq 0$ and $a \cdot u+b \cdot v+c \cdot w=$ 0_{V}. Then $u=\left(\frac{-b}{a}\right) \cdot v+\left(\frac{-c}{a}\right) \cdot w$.
(13) If $a \neq 0$ and $a \cdot b+c \cdot d+e \cdot f=0$, then $b=-\left(\frac{c}{a}\right) \cdot d-\left(\frac{e}{a}\right) \cdot f$.
(14) Let us consider points u, v, w of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose there exists a and there exists b and there exists c such that $a \cdot u+b \cdot v+c \cdot w=0_{\mathcal{E}_{\mathrm{T}}^{3}}$ and $a \neq 0$. Then $\langle | u, v, w| \rangle=0$. The theorem is a consequence of (12).
(15) Let us consider a natural number n. Then $\operatorname{dom} 1_{\mathbb{R}} \operatorname{matrix}(n)=\operatorname{Seg} n$.
(16) Let us consider a matrix A over \mathbb{R}_{F}. Then $\left(\mathbb{R} \rightarrow \mathbb{R}_{\mathrm{F}}\right)\left(\mathbb{R}_{\mathrm{F}} \rightarrow \mathbb{R}\right) A=A$.
(17) Let us consider matrices A, B over \mathbb{R}_{F}, and matrices R_{1}, R_{2} over \mathbb{R}. If $A=R_{1}$ and $B=R_{2}$, then $A \cdot B=R_{1} \cdot R_{2}$. The theorem is a consequence of (16).
(18) Let us consider a natural number n, a square matrix M over \mathbb{R} of dimension n, and a square matrix N over \mathbb{R}_{F} of dimension n. If $M=N$, then M is invertible iff N is invertible. The theorem is a consequence of (17).

From now on o, p, q, r, s, t denote points of $\mathcal{E}_{\mathrm{T}}^{3}$ and M denotes a square matrix over \mathbb{R}_{F} of dimension 3 .

Let us consider real numbers $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$. Now we state the propositions:
(19) $\left\langle\left\langle p_{1}, p_{2}, p_{3}\right\rangle,\left\langle q_{1}, q_{2}, q_{3}\right\rangle,\left\langle r_{1}, r_{2}, r_{3}\right\rangle\right\rangle$ is a square matrix over \mathbb{R}_{F} of dimension 3.
(20) Suppose $M=\left\langle\left\langle p_{1}, q_{1}, r_{1}\right\rangle,\left\langle p_{2}, q_{2}, r_{2}\right\rangle,\left\langle p_{3}, q_{3}, r_{3}\right\rangle\right\rangle$. Then
(i) $M_{1,1}=p_{1}$, and
(ii) $M_{1,2}=q_{1}$, and
(iii) $M_{1,3}=r_{1}$, and
(iv) $M_{2,1}=p_{2}$, and
(v) $M_{2,2}=q_{2}$, and
(vi) $M_{2,3}=r_{2}$, and
(vii) $M_{3,1}=p_{3}$, and
(viii) $M_{3,2}=q_{3}$, and
(ix) $M_{3,3}=r_{3}$.

The theorem is a consequence of (1).
(21) Suppose $M=\langle p, q, r\rangle$. Then
(i) $M_{1,1}=(p)_{\mathbf{1}}$, and
(ii) $M_{1,2}=(p)_{\mathbf{2}}$, and
(iii) $M_{1,3}=(p)_{\mathbf{3}}$, and
(iv) $M_{2,1}=(q)_{\mathbf{1}}$, and
(v) $M_{2,2}=(q)_{\mathbf{2}}$, and
(vi) $M_{2,3}=(q)_{\mathbf{3}}$, and
(vii) $M_{3,1}=(r)_{\mathbf{1}}$, and
(viii) $M_{3,2}=(r)_{\mathbf{2}}$, and
(ix) $M_{3,3}=(r)_{\mathbf{3}}$.

The theorem is a consequence of (1).
(22) Let us consider real numbers $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$. Suppose $M=\left\langle\left\langle p_{1}, q_{1}, r_{1}\right\rangle,\left\langle p_{2}, q_{2}, r_{2}\right\rangle,\left\langle p_{3}, q_{3}, r_{3}\right\rangle\right\rangle$. Then $M^{\mathrm{T}}=\left\langle\left\langle p_{1}, p_{2}, p_{3}\right\rangle,\left\langle q_{1}, q_{2}\right.\right.$, $\left.\left.q_{3}\right\rangle,\left\langle r_{1}, r_{2}, r_{3}\right\rangle\right\rangle$. The theorem is a consequence of (1) and (20).
(23) Suppose $M=\langle p, q, r\rangle$. Then $M^{\mathrm{T}}=\left\langle\left\langle(p)_{\mathbf{1}},(q)_{\mathbf{1}},(r)_{\mathbf{1}}\right\rangle,\left\langle(p)_{\mathbf{2}},(q)_{\mathbf{2}},(r)_{\mathbf{2}}\right\rangle\right.$, $\left.\left\langle(p)_{\mathbf{3}},(q)_{\mathbf{3}},(r)_{\mathbf{3}}\right\rangle\right\rangle$. The theorem is a consequence of (1) and (21).
(24) $\operatorname{lines}(M)=\{\operatorname{Line}(M, 1), \operatorname{Line}(M, 2), \operatorname{Line}(M, 3)\}$.

Proof: $\operatorname{lines}(M) \subseteq\{\operatorname{Line}(M, 1)$, Line $(M, 2), \operatorname{Line}(M, 3)\}$ by [14, (103)], [19, (1)]. $\{\operatorname{Line}(M, 1), \operatorname{Line}(M, 2), \operatorname{Line}(M, 3)\} \subseteq \operatorname{lines}(M)$ by [3, (1)], 14, (103)].
(25) Suppose $M=\left\langle\left\langle(p)_{\mathbf{1}},(p)_{\mathbf{2}},(p)_{\mathbf{3}}\right\rangle,\left\langle(q)_{\mathbf{1}},(q)_{\mathbf{2}},(q)_{\mathbf{3}}\right\rangle,\left\langle(r)_{\mathbf{1}},(r)_{\mathbf{2}},(r)_{\mathbf{3}}\right\rangle\right\rangle$. Then
(i) $\operatorname{Line}(M, 1)=p$, and
(ii) $\operatorname{Line}(M, 2)=q$, and
(iii) Line $(M, 3)=r$.
(26) Let us consider an object x. Then $x \in \operatorname{lines}\left(M^{\mathrm{T}}\right)$ if and only if there exists a natural number i such that $i \in \operatorname{Seg} 3$ and $x=M_{\square, i}$.

2. Grassmann-PlüCker Relation

Now we state the propositions:
(27) $\langle | p, q, r| \rangle=(p)_{\mathbf{1}} \cdot(q)_{\mathbf{2}} \cdot(r)_{\mathbf{3}}-(p)_{\mathbf{3}} \cdot(q)_{\mathbf{2}} \cdot(r)_{\mathbf{1}}-(p)_{\mathbf{1}} \cdot(q)_{\mathbf{3}} \cdot(r)_{\mathbf{2}}+(p)_{\mathbf{2}}$. $(q)_{\mathbf{3}} \cdot(r)_{\mathbf{1}}-(p)_{\mathbf{2}} \cdot(q)_{\mathbf{1}} \cdot(r)_{\mathbf{3}}+(p)_{\mathbf{3}} \cdot(q)_{\mathbf{1}} \cdot(r)_{\mathbf{2}}$.
(28) Grassmannn-PlÜCker-Relation in Rank 3:
$\langle | p, q, r| \rangle \cdot\langle | p, s, t| \rangle-\langle | p, q, s| \rangle \cdot\langle | p, r, t| \rangle+\langle | p, q, t| \rangle \cdot\langle | p, r, s| \rangle=0$. The theorem is a consequence of (27).
(29) $\langle | p, q, r| \rangle=-\langle | p, r, q| \rangle$. The theorem is a consequence of (27).
(30) $\langle | p, q, r| \rangle=-\langle | q, p, r| \rangle$. The theorem is a consequence of (27).
(31) $\langle | a \cdot p, q, r| \rangle=a \cdot\langle | p, q, r| \rangle$. The theorem is a consequence of (27).
(32) $\langle | p, a \cdot q, r| \rangle=a \cdot\langle | p, q, r| \rangle$. The theorem is a consequence of (30) and (31).
(33) $\langle | p, q, a \cdot r| \rangle=a \cdot\langle | p, q, r| \rangle$. The theorem is a consequence of (29) and (32).
(34) \quad Suppose $M=\left\langle\left\langle(p)_{\mathbf{1}},(q)_{\mathbf{1}},(r)_{\mathbf{1}}\right\rangle,\left\langle(p)_{\mathbf{2}},(q)_{\mathbf{2}},(r)_{\mathbf{2}}\right\rangle,\left\langle(p)_{\mathbf{3}},(q)_{\mathbf{3}},(r)_{\mathbf{3}}\right\rangle\right\rangle$. Then $\langle | p, q, r| \rangle=\operatorname{Det} M$. The theorem is a consequence of (22).
(35) Suppose $M=\left\langle\left\langle(p)_{\mathbf{1}},(p)_{\mathbf{2}},(p)_{\mathbf{3}}\right\rangle,\left\langle(q)_{\mathbf{1}},(q)_{\mathbf{2}},(q)_{\mathbf{3}}\right\rangle,\left\langle(r)_{\mathbf{1}},(r)_{\mathbf{2}},(r)_{\mathbf{3}}\right\rangle\right\rangle$. Then $\langle | p, q, r| \rangle=\operatorname{Det} M$.
Let us consider a square matrix M over \mathbb{R}_{F} of dimension k. Now we state the propositions:
(36) $\quad \operatorname{Det} M=0_{\mathbb{R}_{F}}$ if and only if $\operatorname{rk}(M)<k$.
(37) $\operatorname{rk}(M)<k$ if and only if $\operatorname{lines}(M)$ is linearly dependent or M is not without repeated line.
(38) Let us consider a matrix M over \mathbb{R}_{F} of dimension $k \times m$. Then Mx2Tran (M) is a function from $\operatorname{RLSp} 2 \operatorname{RVSp}\left(\mathcal{E}_{\mathrm{T}}^{k}\right)$ into $\operatorname{RLSp} 2 \operatorname{RVSp}\left(\mathcal{E}_{\mathrm{T}}^{m}\right)$.
(39) Let us consider a square matrix M over \mathbb{R}_{F} of dimension k. Then Mx2Tra$\mathrm{n}(M)$ is a linear transformation from RLSp2RVSp $\left(\mathcal{E}_{\mathrm{T}}^{k}\right)$ to $\operatorname{RLSp} 2 \operatorname{RVSp}\left(\mathcal{E}_{\mathrm{T}}^{k}\right)$. Proof: Reconsider $M_{1}=\operatorname{Mx} 2 \operatorname{Tran}(M)$ as a function from $\operatorname{RLSp} 2 \operatorname{RVSp}\left(\mathcal{E}_{\mathrm{T}}^{k}\right)$ into $\operatorname{RLSp} 2 \operatorname{RVSp}\left(\mathcal{E}_{\mathrm{T}}^{k}\right)$. For every elements x, y of $\operatorname{RLSp} 2 \operatorname{RVSp}\left(\mathcal{E}_{\mathrm{T}}^{k}\right), M_{1}(x+$ $y)=M_{1}(x)+M_{1}(y)$ by [15, (22)]. For every scalar a of \mathbb{R}_{F} and for every vector x of $\operatorname{RLSp} 2 \operatorname{RVSp}\left(\mathcal{E}_{\mathrm{T}}^{k}\right), M_{1}(a \cdot x)=a \cdot M_{1}(x)$ by [15, (23)].
(40) Suppose $M=\left\langle\left\langle(p)_{\mathbf{1}},(p)_{\mathbf{2}},(p)_{\mathbf{3}}\right\rangle,\left\langle(q)_{\mathbf{1}},(q)_{\mathbf{2}},(q)_{\mathbf{3}}\right\rangle,\left\langle(r)_{\mathbf{1}},(r)_{\mathbf{2}},(r)_{\mathbf{3}}\right\rangle\right\rangle$ and $\operatorname{rk}(M)<3$. Then there exists a and there exists b and there exists c such that $a \cdot p+b \cdot q+c \cdot r=0_{\mathcal{E}_{T}^{3}}$ and $(a \neq 0$ or $b \neq 0$ or $c \neq 0)$. The theorem is a consequence of $(37),(25),(24),(39)$, and (7).
(41) If $a \cdot p+b \cdot q+c \cdot r=0_{\mathcal{E}_{\mathrm{T}}^{3}}$ and $(a \neq 0$ or $b \neq 0$ or $c \neq 0)$, then $\langle | p, q, r| \rangle=0$. The theorem is a consequence of (14) and (30).
(42) Suppose $\langle | p, q, r| \rangle=0$. Then there exists a and there exists b and there exists c such that $a \cdot p+b \cdot q+c \cdot r=0_{\mathcal{E}_{\mathrm{T}}^{3}}$ and $(a \neq 0$ or $b \neq 0$ or $c \neq 0)$. The theorem is a consequence of (19), (35), (36), and (40).
(43) p, q and r are lineary dependent if and only if $\langle | p, q, r| \rangle=0$. The theorem is a consequence of (41) and (42).

3. Some Properties about the Cross Product

Now we state the propositions:
(44) $|(p, p \times q)|=0$.
(45) $|(p, q \times p)|=0$.
(46) (i) $\langle | o, p,(o \times p) \times(q \times r)| \rangle=0$, and
(ii) $\langle | q, r,(o \times p) \times(q \times r)| \rangle=0$.

The theorem is a consequence of (44) and (45).
(47) (i) o, p and $(o \times p) \times(q \times r)$ are lineary dependent, and
(ii) q, r and $(o \times p) \times(q \times r)$ are lineary dependent.

The theorem is a consequence of (46) and (43).
(i) $0_{\mathcal{E}_{\mathrm{T}}^{3}} \times p=0_{\mathcal{E}_{\mathrm{T}}^{3}}$, and
(ii) $p \times 0_{\mathcal{E}_{\mathrm{T}}^{3}}=0_{\mathcal{E}_{\mathrm{T}}^{3}}$.
(49) $\langle | p, q, 0_{\mathcal{E}_{\mathrm{T}}^{3}}| \rangle=0$. The theorem is a consequence of (48).
(50) If $p \times q=0_{\mathcal{E}_{\mathrm{T}}^{3}}$ and $r=[1,1,1]$, then p, q and r are lineary dependent. Proof: Reconsider $r=[1,1,1]$ as an element of $\mathcal{E}_{\mathrm{T}}^{3} .\langle | p, q, r| \rangle=0$ by [8, (2)], (27).
(51) If p is not zero and q is not zero and $p \times q=0_{\mathcal{E}_{\mathrm{T}}^{3}}$, then p and q are proportional.
(52) Let us consider non zero points p, q, r, s of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $(p \times q) \times(r \times s)$ is zero. Then
(i) p and q are proportional, or
(ii) r and s are proportional, or
(iii) $p \times q$ and $r \times s$ are proportional.

The theorem is a consequence of (51).
(53) $\langle | p, q, p \times q| \rangle=|(q, q)| \cdot|(p, p)|-|(q, p)| \cdot|(p, q)|$.
(54) $|(p \times q, p \times q)|=|(q, q)| \cdot|(p, p)|-|(q, p)| \cdot|(p, q)|$.
(55) If p is not zero and $|(p, q)|=0$ and $|(p, r)|=0$ and $|(p, s)|=0$, then $\langle | q, r, s| \rangle=0$. The theorem is a consequence of (13) and (27).
(56) $\langle | p, q, p \times q| \rangle=|p \times q|^{2}$. The theorem is a consequence of (53) and (54).
(57) The projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is a projective plane defined in terms of collinearity.
Proof: Set $P=$ the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. There exist elements u, v, w_{1} of $\mathcal{E}_{\mathrm{T}}^{3}$ such that for every real numbers a, b, c such that $a \cdot u+b \cdot v+c \cdot w_{1}=$ $0_{\mathcal{E}_{T}^{3}}$ holds $a=0$ and $b=0$ and $c=0$ by [6, (22)], [8, (4)], [11, (39)], [8, (2)]. For every elements p, p_{1}, q, q_{1} of P, there exists an element r of P such that p, p_{1} and r are collinear and q, q_{1} and r are collinear by [9, (26)], (52), [9, (22)], [18, (2)].

4. Real Projective Plane and Homography

Let us consider elements u, v, w, x of $\mathcal{E}_{\mathrm{T}}^{3}$. Now we state the propositions:
(58) Suppose u is not zero and x is not zero and the direction of $u=$ the direction of x. Then $\langle | u, v, w| \rangle=0$ if and only if $\langle | x, v, w| \rangle=0$. The theorem is a consequence of (31).
(59) Suppose v is not zero and x is not zero and the direction of $v=$ the direction of x. Then $\langle | u, v, w| \rangle=0$ if and only if $\langle | u, x, w| \rangle=0$. The theorem is a consequence of (32).
(60) Suppose w is not zero and x is not zero and the direction of $w=$ the direction of x. Then $\langle | u, v, w| \rangle=0$ if and only if $\langle | u, v, x| \rangle=0$. The theorem is a consequence of (33).
(61) (i) $\left(1_{\mathbb{R}} \operatorname{matrix}(3)\right)(1)=e_{1}$, and
(ii) $\left(1_{\mathbb{R}} \operatorname{matrix}(3)\right)(2)=e_{2}$, and
(iii) $\left(1_{\mathbb{R}} \operatorname{matrix}(3)\right)(3)=e_{3}$.
(62) (i) the base finite sequence of 3 and $1=e_{1}$, and
(ii) the base finite sequence of 3 and $2=e_{2}$, and
(iii) the base finite sequence of 3 and $3=e_{3}$.
(63) Let us consider a finite sequence p_{2} of elements of D. Suppose len $p_{2}=3$. Then
(i) $\left\langle p_{2}\right\rangle_{\square, 1}=\left\langle p_{2}(1)\right\rangle$, and
(ii) $\left\langle p_{2}\right\rangle_{\square, 2}=\left\langle p_{2}(2)\right\rangle$, and
(iii) $\left\langle p_{2}\right\rangle_{\square, 3}=\left\langle p_{2}(3)\right\rangle$.

The theorem is a consequence of (3).
(64) (i) $\left\langle e_{1}\right\rangle_{\square, 1}=\langle 1\rangle$, and
(ii) $\left\langle e_{1}\right\rangle_{\square, 2}=\langle 0\rangle$, and
(iii) $\left\langle e_{1}\right\rangle_{\square, 3}=\langle 0\rangle$.

The theorem is a consequence of (63).
(65) (i) $\left\langle e_{2}\right\rangle_{\square, 1}=\langle 0\rangle$, and
(ii) $\left\langle e_{2}\right\rangle_{\square, 2}=\langle 1\rangle$, and
(iii) $\left\langle e_{2}\right\rangle_{\square, 3}=\langle 0\rangle$.

The theorem is a consequence of (63).
(66) (i) $\left\langle e_{3}\right\rangle_{\square, 1}=\langle 0\rangle$, and
(ii) $\left\langle e_{3}\right\rangle_{\square, 2}=\langle 0\rangle$, and
(iii) $\left\langle e_{3}\right\rangle_{\square, 3}=\langle 1\rangle$.

The theorem is a consequence of (63).
(i) $\left(I_{\mathbb{R}_{\mathrm{F}}}^{3 \times 3}\right)_{\square, 1}=\langle 1,0,0\rangle$, and
(ii) $\left(I_{\mathbb{R}_{F}}^{3 \times 3}\right)_{\square, 2}=\langle 0,1,0\rangle$, and
(iii) $\left(I_{\mathbb{R}_{\mathrm{F}}}^{3 \times 3}\right)_{\square, 3}=\langle 0,0,1\rangle$.

The theorem is a consequence of (1) and (15).
(68) (i) $\operatorname{Line}\left(I_{\mathbb{R}_{\mathrm{F}}}^{3 \times 3}, 1\right)=\langle 1,0,0\rangle$, and
(ii) $\operatorname{Line}\left(I_{\mathbb{R}_{\mathfrak{F}}}^{3 \times 3}, 2\right)=\langle 0,1,0\rangle$, and
(iii) $\operatorname{Line}\left(I_{\mathbb{R}_{F}}^{3 \times 3}, 3\right)=\langle 0,0,1\rangle$.

The theorem is a consequence of (1).
(69) (i) $\left\langle e_{1}\right\rangle^{\mathrm{T}}=\langle\langle 1\rangle,\langle 0\rangle,\langle 0\rangle\rangle$, and
(ii) $\left\langle e_{2}\right\rangle^{\mathrm{T}}=\langle\langle 0\rangle,\langle 1\rangle,\langle 0\rangle\rangle$, and
(iii) $\left\langle e_{3}\right\rangle^{\mathrm{T}}=\langle\langle 0\rangle,\langle 0\rangle,\langle 1\rangle\rangle$.

The theorem is a consequence of (64), (65), and (66).
From now on p_{1} denotes a finite sequence of elements of D.
Now we state the propositions:
(70) Let us consider a finite sequence p_{1} of elements of D. If $k \in \operatorname{dom} p_{1}$, then $\left\langle p_{1}\right\rangle_{1, k}=p_{1}(k)$.
(71) If $k \in \operatorname{dom} p_{1}$, then $\left\langle p_{1}\right\rangle_{\square, k}=\left\langle p_{1}(k)\right\rangle$. The theorem is a consequence of (70).
(72) Let us consider an element p_{2} of \mathcal{R}^{3}. Suppose $p_{1}=p_{2}$. Then $(\mathbb{R} \rightarrow$ $\left.\mathbb{R}_{\mathrm{F}}\right)$ ColVec $2 \mathrm{Mx}\left(p_{2}\right)=\left\langle p_{1}\right\rangle^{\mathrm{T}}$. The theorem is a consequence of (71).
In the sequel P denotes a square matrix over \mathbb{R}_{F} of dimension 3 .
Now we state the propositions:
(73) Suppose $P=\left\langle\left\langle(p)_{\mathbf{1}},(p)_{\mathbf{2}},(p)_{\mathbf{3}}\right\rangle,\left\langle(q)_{\mathbf{1}},(q)_{\mathbf{2}},(q)_{\mathbf{3}}\right\rangle,\left\langle(r)_{\mathbf{1}},(r)_{\mathbf{2}},(r)_{\mathbf{3}}\right\rangle\right\rangle$. Then
(i) $\operatorname{Line}(P, 1)=p$, and
(ii) $\operatorname{Line}(P, 2)=q$, and
(iii) $\operatorname{Line}(P, 3)=r$.
(74) Suppose $P=\left\langle\left\langle(p)_{\mathbf{1}},(p)_{\mathbf{2}},(p)_{\mathbf{3}}\right\rangle,\left\langle(q)_{\mathbf{1}},(q)_{\mathbf{2}},(q)_{\mathbf{3}}\right\rangle,\left\langle(r)_{\mathbf{1}},(r)_{\mathbf{2}},(r)_{\mathbf{3}}\right\rangle\right\rangle$. Then
(i) $P_{\square, 1}=\left\langle(p)_{\mathbf{1}},(q)_{\mathbf{1}},(r)_{\mathbf{1}}\right\rangle$, and
(ii) $P_{\square, 2}=\left\langle(p)_{\mathbf{2}},(q)_{\mathbf{2}},(r)_{\mathbf{2}}\right\rangle$, and
(iii) $P_{\square, 3}=\left\langle(p)_{\mathbf{3}},(q)_{\mathbf{3}},(r)_{\mathbf{3}}\right\rangle$.
(75) width $\left\langle p_{1}\right\rangle=\operatorname{len} p_{1}$.
(76) Suppose len $p_{1}=3$. Then
(i) Line $\left(\left\langle p_{1}\right\rangle^{\mathrm{T}}, 1\right)=\left\langle p_{1}(1)\right\rangle$, and
(ii) $\operatorname{Line}\left(\left\langle p_{1}\right\rangle^{\mathrm{T}}, 2\right)=\left\langle p_{1}(2)\right\rangle$, and
(iii) Line $\left(\left\langle p_{1}\right\rangle^{\mathrm{T}}, 3\right)=\left\langle p_{1}(3)\right\rangle$.

The theorem is a consequence of (75) and (63).
(77) If len $p_{1}=3$, then $\left\langle p_{1}\right\rangle^{\mathrm{T}}=\left\langle\left\langle p_{1}(1)\right\rangle,\left\langle p_{1}(2)\right\rangle,\left\langle p_{1}(3)\right\rangle\right\rangle$. The theorem is a consequence of (76).
Let us consider D. Let p be a finite sequence of elements of D. Assume len $p=3$. The functor $\operatorname{F2M}(p)$ yielding a finite sequence of elements of D^{1} is defined by the term
(Def. 1) $\langle\langle p(1)\rangle,\langle p(2)\rangle,\langle p(3)\rangle\rangle$.
Let us consider a finite sequence p of elements of \mathbb{R}. Now we state the propositions:
(78) If len $p=3$, then len $\operatorname{F} 2 \mathrm{M}(p)=3$.
(79) If len $p=3$, then p is a 3 -element finite sequence of elements of \mathbb{R}.
(80) If $p=[0,0,0]$, then $\operatorname{F} 2 \mathrm{M}(p)=\langle\langle 0\rangle,\langle 0\rangle,\langle 0\rangle\rangle$.
(81) Suppose len $p_{1}=3$. Then $\left\langle\left\langle p_{1}\right\rangle_{\square, 1},\left\langle p_{1}\right\rangle_{\square, 2},\left\langle p_{1}\right\rangle_{\square, 3}\right\rangle=\operatorname{F} 2 \mathrm{M}\left(p_{1}\right)$. The theorem is a consequence of (63).
Let us consider D. Let p be a finite sequence of elements of D^{1}. Assume len $p=3$. The functor $\operatorname{M2F}(p)$ yielding a finite sequence of elements of D is defined by the term
(Def. 2) $\langle p(1)(1), p(2)(1), p(3)(1)\rangle$.
Now we state the proposition:
(82) Let us consider a finite sequence p of elements of \mathbb{R}^{1}. Suppose len $p=3$. Then $\operatorname{M2F}(p)$ is a point of $\mathcal{E}_{\mathrm{T}}^{3}$.
Let p be a finite sequence of elements of \mathbb{R}^{1} and a be a real number. Assume len $p=3$. The functor $a \cdot p$ yielding a finite sequence of elements of \mathbb{R}^{1} is defined by
(Def. 3) there exist real numbers p_{1}, p_{2}, p_{3} such that $p_{1}=p(1)(1)$ and $p_{2}=$ $p(2)(1)$ and $p_{3}=p(3)(1)$ and $i t=\left\langle\left\langle a \cdot p_{1}\right\rangle,\left\langle a \cdot p_{2}\right\rangle,\left\langle a \cdot p_{3}\right\rangle\right\rangle$.
Let us consider a finite sequence p of elements of \mathbb{R}^{1}. Now we state the propositions:
(83) If len $p=3$, then $\operatorname{M2F}(a \cdot p)=a \cdot \operatorname{M2F}(p)$.
(84) If len $p=3$, then $\langle\langle p(1)(1)\rangle,\langle p(2)(1)\rangle,\langle p(3)(1)\rangle\rangle=p$.
(85) If len $p=3$, then $\operatorname{F2M}(\operatorname{M2F}(p))=p$. The theorem is a consequence of (84).
(86) Let us consider a finite sequence p of elements of \mathbb{R}. If len $p=3$, then $\operatorname{M2F}(\mathrm{F} 2 \mathrm{M}(p))=p$.
(87) (i) $\left\langle e_{1}\right\rangle^{\mathrm{T}}=\operatorname{F} 2 \mathrm{M}\left(e_{1}\right)$, and
(ii) $\left\langle e_{2}\right\rangle^{\mathrm{T}}=\mathrm{F} 2 \mathrm{M}\left(e_{2}\right)$, and
(iii) $\left\langle e_{3}\right\rangle^{\mathrm{T}}=\mathrm{F} 2 \mathrm{M}\left(e_{3}\right)$.

The theorem is a consequence of (69).
(88) Let us consider a finite sequence p of elements of D. If len $p=3$, then $\langle p\rangle^{\mathrm{T}}=\mathrm{F} 2 \mathrm{M}(p)$. The theorem is a consequence of (77).
(89) $\operatorname{Line}\left(\left\langle p_{1}\right\rangle, 1\right)=p_{1}$.
(90) Let us consider a matrix M over D of dimension 3×1. Then
(i) $\operatorname{Line}(M, 1)=\left\langle M_{1,1}\right\rangle$, and
(ii) $\operatorname{Line}(M, 2)=\left\langle M_{2,1}\right\rangle$, and
(iii) $\operatorname{Line}(M, 3)=\left\langle M_{3,1}\right\rangle$.

From now on R denotes a ring.
Now we state the propositions:
(91) Let us consider a square matrix N over R of dimension 3, and a finite sequence p of elements of R. If len $p=3$, then $N \cdot\langle p\rangle^{\mathrm{T}}$ is 3,1 -size.
(92) Let us consider a finite sequence p_{1} of elements of R, and a square matrix N over R of dimension 3. Suppose len $p_{1}=3$. Then
(i) Line $\left(N \cdot\left\langle p_{1}\right\rangle^{\mathrm{T}}, 1\right)=\left\langle\left(N \cdot\left\langle p_{1}\right\rangle^{\mathrm{T}}\right)_{1,1}\right\rangle$, and
(ii) $\operatorname{Line}\left(N \cdot\left\langle p_{1}\right\rangle^{\mathrm{T}}, 2\right)=\left\langle\left(N \cdot\left\langle p_{1}\right\rangle^{\mathrm{T}}\right)_{2,1}\right\rangle$, and
(iii) $\operatorname{Line}\left(N \cdot\left\langle p_{1}\right\rangle^{\mathrm{T}}, 3\right)=\left\langle\left(N \cdot\left\langle p_{1}\right\rangle^{\mathrm{T}}\right)_{3,1}\right\rangle$.

The theorem is a consequence of (91) and (90).
(93) $\quad\left(\left\langle p_{1}\right\rangle^{\mathrm{T}}\right)_{\square, 1}=p_{1}$. The theorem is a consequence of (89).
(94) Let us consider finite sequences p_{1}, q_{1}, r_{1} of elements of \mathbb{R}_{F}. Suppose $p=p_{1}$ and $q=q_{1}$ and $r=r_{1}$ and $\langle | p, q, r| \rangle \neq 0$. Then there exists a square matrix M over \mathbb{R}_{F} of dimension 3 such that
(i) M is invertible, and
(ii) $M \cdot p_{1}=\mathrm{F} 2 \mathrm{M}\left(e_{1}\right)$, and
(iii) $M \cdot q_{1}=\mathrm{F} 2 \mathrm{M}\left(e_{2}\right)$, and
(iv) $M \cdot r_{1}=\operatorname{F} 2 \mathrm{M}\left(e_{3}\right)$.

Proof: Reconsider $P=\left\langle\left\langle(p)_{\mathbf{1}},(p)_{\mathbf{2}},(p)_{\mathbf{3}}\right\rangle,\left\langle(q)_{\mathbf{1}},(q)_{\mathbf{2}},(q)_{\mathbf{3}}\right\rangle,\left\langle(r)_{\mathbf{1}},(r)_{\mathbf{2}}\right.\right.$, $\left.\left.(r)_{\mathbf{3}}\right\rangle\right\rangle$ as a square matrix over \mathbb{R}_{F} of dimension $3 .\langle | p, q, r| \rangle=\operatorname{Det} P$. Consider N being a square matrix over \mathbb{R}_{F} of dimension 3 such that N is inverse of $P^{\mathrm{T}} \cdot N \cdot\left\langle p_{1}\right\rangle^{\mathrm{T}}$ is a matrix over \mathbb{R}_{F} of dimension 3×1 and $N \cdot\left\langle q_{1}\right\rangle^{\mathrm{T}}$ is a matrix over \mathbb{R}_{F} of dimension 3×1 and $N \cdot\left\langle r_{1}\right\rangle^{\mathrm{T}}$ is a matrix over \mathbb{R}_{F} of dimension $3 \times 1 . N \cdot\left\langle p_{1}\right\rangle^{\mathrm{T}}=\mathrm{F} 2 \mathrm{M}\left(e_{1}\right)$ by (78), 3, (91), (45), (1)]. $N \cdot\left\langle q_{1}\right\rangle^{\mathrm{T}}=\mathrm{F} 2 \mathrm{M}\left(e_{2}\right)$ by (78), [3, (91), (45), (1)]. $N \cdot\left\langle r_{1}\right\rangle^{\mathrm{T}}=\mathrm{F} 2 \mathrm{M}\left(e_{3}\right)$ by (78), 3, (91), (45), (1)].
(95) Let us consider finite sequences p_{1}, q_{1}, r_{1} of elements of \mathbb{R}_{F}, and finite sequences p_{2}, q_{2}, r_{2} of elements of \mathbb{R}^{1}. Suppose $P=\left\langle\left\langle(p)_{\mathbf{1}},(q)_{\mathbf{1}},(r)_{\mathbf{1}}\right\rangle\right.$, $\left.\left\langle(p)_{\mathbf{2}},(q)_{\mathbf{2}},(r)_{\mathbf{2}}\right\rangle,\left\langle(p)_{\mathbf{3}},(q)_{\mathbf{3}},(r)_{\mathbf{3}}\right\rangle\right\rangle$ and $p=p_{1}$ and $q=q_{1}$ and $r=r_{1}$ and $p_{2}=M \cdot p_{1}$ and $q_{2}=M \cdot q_{1}$ and $r_{2}=M \cdot r_{1}$. Then $(M \cdot P)^{\mathrm{T}}=\left\langle\operatorname{M2F}\left(p_{2}\right)\right.$, $\left.\operatorname{M2F}\left(q_{2}\right), \operatorname{M2F}\left(r_{2}\right)\right\rangle$.
Proof: $P^{\mathrm{T}}=\left\langle\left\langle(p)_{\mathbf{1}},(p)_{\mathbf{2}},(p)_{\mathbf{3}}\right\rangle,\left\langle(q)_{\mathbf{1}},(q)_{\mathbf{2}},(q)_{\mathbf{3}}\right\rangle,\left\langle(r)_{\mathbf{1}},(r)_{\mathbf{2}},(r)_{\mathbf{3}}\right\rangle\right\rangle$.
width $M=\operatorname{len}\left\langle p_{1}\right\rangle^{\mathrm{T}}$ and width $M=\operatorname{len}\left\langle q_{1}\right\rangle^{\mathrm{T}}$ and width $M=\operatorname{len}\left\langle r_{1}\right\rangle^{\mathrm{T}}$ by (75), [11, (50)]. len $p_{2}=3$ and len $q_{2}=3$ and len $r_{2}=3$.
(96) Let us consider finite sequences p_{2}, q_{2}, r_{2} of elements of \mathbb{R}^{1}. Suppose $M=\left\langle\operatorname{M} 2 \mathrm{~F}\left(p_{2}\right), \operatorname{M2F}\left(q_{2}\right), \operatorname{M2F}\left(r_{2}\right)\right\rangle$ and $\operatorname{Det} M=0$ and $\operatorname{M2F}\left(p_{2}\right)=p$ and $\operatorname{M2F}\left(q_{2}\right)=q$ and $\operatorname{M2F}\left(r_{2}\right)=r$. Then $\langle | p, q, r| \rangle=0$. The theorem is a consequence of (35).
(97) Let us consider points p_{3}, q_{3}, r_{3} of $\mathcal{E}_{\mathrm{T}}^{3}$, finite sequences p_{2}, q_{2}, r_{2} of elements of \mathbb{R}^{1}, and finite sequences p_{1}, q_{1}, r_{1} of elements of \mathbb{R}_{F}. Suppose M is invertible and $p=p_{1}$ and $q=q_{1}$ and $r=r_{1}$ and $p_{2}=M \cdot p_{1}$ and $q_{2}=M \cdot q_{1}$ and $r_{2}=M \cdot r_{1}$ and $\operatorname{M2F}\left(p_{2}\right)=p_{3}$ and $\operatorname{M2F}\left(q_{2}\right)=q_{3}$ and $\operatorname{M2F}\left(r_{2}\right)=r_{3}$. Then $\langle | p, q, r| \rangle=0$ if and only if $\langle | p_{3}, q_{3}, r_{3}| \rangle=0$. The theorem is a consequence of (19), (23), (95), and (35).
(98) If $0<m$, then every matrix over \mathbb{R}_{F} of dimension $m \times 1$ is a finite sequence of elements of \mathbb{R}^{1}.
Proof: Consider s being a finite sequence such that $s \in \operatorname{rng} M$ and len $s=$ 1. Consider n being a natural number such that for every object x such that $x \in \operatorname{rng} M$ there exists a finite sequence s such that $s=x$ and len $s=n$. Consider s_{1} being a finite sequence such that $s_{1}=s$ and len $s_{1}=n$. $\operatorname{rng} M \subseteq \mathbb{R}^{1}$ by [5, (132)].
(99) Let us consider a finite sequence u_{1} of elements of \mathbb{R}_{F}. Suppose len $u_{1}=3$. Then $\left\langle u_{1}\right\rangle^{\mathrm{T}}=I_{\mathbb{R}_{\mathrm{F}}}^{3 \times 3} \cdot\left\langle u_{1}\right\rangle^{\mathrm{T}}$. The theorem is a consequence of (77), (91), (2), (68), (7), and (93).
(100) Let us consider an element u of $\mathcal{E}_{\mathrm{T}}^{3}$, and a finite sequence u_{1} of elements of \mathbb{R}_{F}. Suppose $u=u_{1}$ and $\left\langle u_{1}\right\rangle^{\mathrm{T}}=\langle\langle 0\rangle,\langle 0\rangle,\langle 0\rangle\rangle$. Then $u=0_{\mathcal{E}_{\mathrm{T}}^{3}}$. The theorem is a consequence of (77).
(101) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , elements u, μ of $\mathcal{E}_{\mathrm{T}}^{3}$, a finite sequence u_{1} of elements of \mathbb{R}_{F}, and a finite sequence u_{2} of elements of \mathbb{R}^{1}. Suppose u is not zero and $u=u_{1}$ and $u_{2}=$ $N \cdot u_{1}$ and $\mu=\operatorname{M2F}\left(u_{2}\right)$. Then μ is not zero. The theorem is a consequence of $(75),(85),(80),(8),(99)$, and (100).
Let N be an invertible square matrix over \mathbb{R}_{F} of dimension 3 . The homography of N yielding a function from the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ into the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is defined by
(Def. 4) for every point x of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, there exist elements u, v of $\mathcal{E}_{\mathrm{T}}^{3}$ and there exists a finite sequence u_{1} of elements of \mathbb{R}_{F} and there exists a finite sequence p of elements of \mathbb{R}^{1} such that $x=$ the direction of u and u is not zero and $u=u_{1}$ and $p=N \cdot u_{1}$ and $v=\operatorname{M2F}(p)$ and v is not zero and $i t(x)=$ the direction of v.
Now we state the proposition:
(102) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , and points p, q, r of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Then p, q and r are
collinear if and only if (the homography of $N)(p)$, (the homography of $N)(q)$ and (the homography of $N)(r)$ are collinear.

Proof: If p, q and r are collinear, then (the homography of $N)(p)$, (the homography of $N)(q)$ and (the homography of $N)(r)$ are collinear by [10, $(23)],(43),[9,(22),(1)]$. If (the homography of $N)(p)$, (the homography of $N)(q)$ and (the homography of $N)(r)$ are collinear, then p, q and r are collinear.

References

[1] Susanne Apel. The geometry of brackets and the area principle. Phd thesis, Technische Universität München, Fakultät für Mathematik, 2014.
[2] Susanne Apel and Jürgen Richter-Gebert. Cancellation patterns in automatic geometric theorem proving. In Automated Deduction in Geometry, pages 1-33. Springer, 2010.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences Formalized Mathematics, 1(1):107-114, 1990.
[4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Agata Darmochwał. The Euclidean space, Formalized Mathematics, 2(4):599-603, 1991.
[7] Laurent Fuchs and Laurent Thery. A formalization of Grassmann-Cayley algebra in Coq and its application to theorem proving in projective geometry. In Automated Deduction in Geometry, pages 51-67. Springer, 2010.
[8] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematıcs, 11(4):381-383, 2003.
[9] Woiciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761-766, 1990.
[10] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces - part I Formalized Mathematics, 1(4):767-776, 1990.
[11] Xiquan Liang, Piqing Zhao, and Ou Bai. Vector functions and their differentiation formulas in 3-dimensional Euclidean spaces. Formalized Mathematics, 18(1):1-10, 2010. doi 10.2478/v10037-010-0001-2
[12] Nicolas Magaud, Julien Narboux, and Pascal Schreck. Formalizing projective plane geometry in Coq. In Automated Deduction in Geometry, pages 141-162. Springer, 2008.
[13] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski's Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master's thesis.
[14] Karol Pąk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007. doi 10.2478/v10037-007-0024-5
[15] Karol Pak. Linear transformations of Euclidean topological spaces. Formalized Mathematics, 19(2):103-108, 2011. doi 10.2478/v10037-011-0016-3
[16] Jürgen Richter-Gebert. Mechanical theorem proving in projective geometry. Annals of Mathematics and Artificial Intelligence, 13(1-2):139-172, 1995.
[17] Jürgen Richter-Gebert. Perspectives on projective geometry: a guided tour through real and complex geometry. Springer Science \& Business Media, 2011.
[18] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.
[19] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 1990.

Received October 18, 2016

