

Homography in \mathbb{RP}^2

Roland Coghetto Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. The real projective plane has been formalized in Isabelle/HOL by Timothy Makarios [13] and in Coq by Nicolas Magaud, Julien Narboux and Pascal Schreck [12].

Some definitions on the real projective spaces were introduced early in the Mizar Mathematical Library by Wojciech Leonczuk [9], Krzysztof Prazmowski [10] and by Wojciech Skaba [18].

In this article, we check with the Mizar system [4], some properties on the determinants and the Grassmann-Plücker relation in rank 3 [2], [1], [7], [16], [17].

Then we show that the projective space induced (in the sense defined in [9]) by \mathbb{R}^3 is a projective plane (in the sense defined in [10]).

Finally, in the real projective plane, we define the homography induced by a 3-by-3 invertible matrix and we show that the images of 3 collinear points are themselves collinear.

MSC: 51N15 03B35

Keywords: projectivity; projective transformation; projective collineation; real projective plane; Grassmann-Plücker relation

MML identifier: ANPROJ_8, version: 8.1.05 5.39.1282

1. Preliminaries

From now on a, b, c, d, e, f denote real numbers, k, m denote natural numbers, D denotes a non empty set, V denotes a non trivial real linear space, u, v, w denote elements of V, and p, q, r denote elements of the projective space over V.

Now we state the propositions:

(1) $\langle 1, 1 \rangle$, $\langle 1, 2 \rangle$, $\langle 1, 3 \rangle$, $\langle 2, 1 \rangle$, $\langle 2, 2 \rangle$, $\langle 2, 3 \rangle$, $\langle 3, 1 \rangle$, $\langle 3, 2 \rangle$, $\langle 3, 3 \rangle \in \text{Seg } 3 \times \text{Seg } 3$.

239

- (2) $\langle 1, 1 \rangle, \langle 2, 1 \rangle, \langle 3, 1 \rangle \in \operatorname{Seg} 3 \times \operatorname{Seg} 1.$
- (3) $\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle \in \text{Seg } 1 \times \text{Seg } 3.$
- (4) $\langle \langle a \rangle, \langle b \rangle, \langle c \rangle \rangle$ is a matrix over \mathbb{R}_{F} of dimension 3×1 .
- (5) Let us consider a matrix N over \mathbb{R}_{F} of dimension 3×1 . Suppose $N = \langle \langle a \rangle$, $\langle b \rangle, \langle c \rangle \rangle$. Then $N_{\Box,1} = \langle a, b, c \rangle$. The theorem is a consequence of (2).
- (6) Let us consider a non empty multiplicative magma K, and elements a_1 , a_2, a_3, b_1, b_2, b_3 of K. Then $\langle a_1, a_2, a_3 \rangle \bullet \langle b_1, b_2, b_3 \rangle = \langle a_1 \cdot b_1, a_2 \cdot b_2, a_3 \cdot b_3 \rangle$.
- (7) Let us consider a commutative, associative, left unital, Abelian, addassociative, right zeroed, right complementable, non empty double loop structure K, and elements $a_1, a_2, a_3, b_1, b_2, b_3$ of K. Then $\langle a_1, a_2, a_3 \rangle \cdot \langle b_1, b_2, b_3 \rangle = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$. The theorem is a consequence of (6).
- (8) Let us consider a square matrix M over \mathbb{R}_{F} of dimension 3, and a matrix N over \mathbb{R}_{F} of dimension 3×1 . Suppose $N = \langle \langle 0 \rangle, \langle 0 \rangle, \langle 0 \rangle \rangle$. Then $M \cdot N = \langle \langle 0 \rangle, \langle 0 \rangle, \langle 0 \rangle \rangle$. The theorem is a consequence of (7), (5), and (2).
- (9) u, v and w are linearly dependent if and only if u = v or u = w or v = w or $\{u, v, w\}$ is linearly dependent.
- (10) p, q and r are collinear if and only if there exists u and there exists v and there exists w such that p = the direction of u and q = the direction of v and r = the direction of w and u is not zero and v is not zero and w is not zero and $(u = v \text{ or } u = w \text{ or } v = w \text{ or } \{u, v, w\}$ is linearly dependent). The theorem is a consequence of (9).
- (11) p, q and r are collinear if and only if there exists u and there exists v and there exists w such that p = the direction of u and q = the direction of v and r = the direction of w and u is not zero and v is not zero and w is not zero and there exists a and there exists b and there exists c such that $a \cdot u + b \cdot v + c \cdot w = 0_V$ and $(a \neq 0 \text{ or } b \neq 0 \text{ or } c \neq 0)$.
- (12) Let us consider elements u, v, w of V. Suppose $a \neq 0$ and $a \cdot u + b \cdot v + c \cdot w = 0_V$. Then $u = \left(\frac{-b}{a}\right) \cdot v + \left(\frac{-c}{a}\right) \cdot w$.
- (13) If $a \neq 0$ and $a \cdot b + c \cdot d + e \cdot f = 0$, then $b = -(\frac{c}{a}) \cdot d (\frac{e}{a}) \cdot f$.
- (14) Let us consider points u, v, w of $\mathcal{E}^3_{\mathrm{T}}$. Suppose there exists a and there exists b and there exists c such that $a \cdot u + b \cdot v + c \cdot w = 0_{\mathcal{E}^3_{\mathrm{T}}}$ and $a \neq 0$. Then $\langle |u, v, w| \rangle = 0$. The theorem is a consequence of (12).
- (15) Let us consider a natural number n. Then dom $1_{\mathbb{R}}$ matrix(n) = Seg n.
- (16) Let us consider a matrix A over \mathbb{R}_{F} . Then $(\mathbb{R} \to \mathbb{R}_{\mathrm{F}})(\mathbb{R}_{\mathrm{F}} \to \mathbb{R})A = A$.
- (17) Let us consider matrices A, B over \mathbb{R}_F , and matrices R_1, R_2 over \mathbb{R} . If $A = R_1$ and $B = R_2$, then $A \cdot B = R_1 \cdot R_2$. The theorem is a consequence of (16).

(18) Let us consider a natural number n, a square matrix M over \mathbb{R} of dimension n, and a square matrix N over \mathbb{R}_{F} of dimension n. If M = N, then M is invertible iff N is invertible. The theorem is a consequence of (17).

From now on o, p, q, r, s, t denote points of $\mathcal{E}_{\mathrm{T}}^3$ and M denotes a square matrix over \mathbb{R}_{F} of dimension 3.

Let us consider real numbers p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 . Now we state the propositions:

- (19) $\langle \langle p_1, p_2, p_3 \rangle, \langle q_1, q_2, q_3 \rangle, \langle r_1, r_2, r_3 \rangle \rangle$ is a square matrix over \mathbb{R}_F of dimension 3.
- (20) Suppose $M = \langle \langle p_1, q_1, r_1 \rangle, \langle p_2, q_2, r_2 \rangle, \langle p_3, q_3, r_3 \rangle \rangle$. Then
 - (i) $M_{1,1} = p_1$, and
 - (ii) $M_{1,2} = q_1$, and
 - (iii) $M_{1,3} = r_1$, and
 - (iv) $M_{2,1} = p_2$, and
 - (v) $M_{2,2} = q_2$, and
 - (vi) $M_{2,3} = r_2$, and
 - (vii) $M_{3,1} = p_3$, and
 - (viii) $M_{3,2} = q_3$, and
 - (ix) $M_{3,3} = r_3$.

The theorem is a consequence of (1).

(21) Suppose $M = \langle p, q, r \rangle$. Then

- (i) $M_{1,1} = (p)_1$, and
- (ii) $M_{1,2} = (p)_2$, and
- (iii) $M_{1,3} = (p)_3$, and
- (iv) $M_{2,1} = (q)_1$, and
- (v) $M_{2,2} = (q)_2$, and
- (vi) $M_{2,3} = (q)_3$, and
- (vii) $M_{3,1} = (r)_1$, and
- (viii) $M_{3,2} = (r)_2$, and
- (ix) $M_{3,3} = (r)_{\mathbf{3}}$.

The theorem is a consequence of (1).

(22) Let us consider real numbers p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 . Suppose $M = \langle \langle p_1, q_1, r_1 \rangle, \langle p_2, q_2, r_2 \rangle, \langle p_3, q_3, r_3 \rangle \rangle$. Then $M^{\mathrm{T}} = \langle \langle p_1, p_2, p_3 \rangle, \langle q_1, q_2, q_3 \rangle, \langle r_1, r_2, r_3 \rangle \rangle$. The theorem is a consequence of (1) and (20).

- (23) Suppose $M = \langle p, q, r \rangle$. Then $M^{\mathrm{T}} = \langle \langle (p)_{\mathbf{1}}, (q)_{\mathbf{1}}, (r)_{\mathbf{1}} \rangle, \langle (p)_{\mathbf{2}}, (q)_{\mathbf{2}}, (r)_{\mathbf{2}} \rangle, \langle (p)_{\mathbf{3}}, (q)_{\mathbf{3}}, (r)_{\mathbf{3}} \rangle \rangle$. The theorem is a consequence of (1) and (21).
- (24) $\operatorname{lines}(M) = \{\operatorname{Line}(M, 1), \operatorname{Line}(M, 2), \operatorname{Line}(M, 3)\}.$ PROOF: $\operatorname{lines}(M) \subseteq \{\operatorname{Line}(M, 1), \operatorname{Line}(M, 2), \operatorname{Line}(M, 3)\}$ by [14, (103)], [19, (1)]. $\{\operatorname{Line}(M, 1), \operatorname{Line}(M, 2), \operatorname{Line}(M, 3)\} \subseteq \operatorname{lines}(M)$ by [3, (1)], [14, (103)]. \Box
- (25) Suppose $M = \langle \langle (p)_{1}, (p)_{2}, (p)_{3} \rangle, \langle (q)_{1}, (q)_{2}, (q)_{3} \rangle, \langle (r)_{1}, (r)_{2}, (r)_{3} \rangle \rangle$. Then
 - (i) $\operatorname{Line}(M, 1) = p$, and
 - (ii) $\operatorname{Line}(M, 2) = q$, and
 - (iii) $\operatorname{Line}(M,3) = r$.
- (26) Let us consider an object x. Then $x \in \text{lines}(M^{\mathrm{T}})$ if and only if there exists a natural number i such that $i \in \text{Seg 3}$ and $x = M_{\Box,i}$.

2. Grassmann-Plücker Relation

Now we state the propositions:

- $\begin{array}{l} (27) \quad \langle |p,q,r|\rangle = (p)_{\mathbf{1}} \cdot (q)_{\mathbf{2}} \cdot (r)_{\mathbf{3}} (p)_{\mathbf{3}} \cdot (q)_{\mathbf{2}} \cdot (r)_{\mathbf{1}} (p)_{\mathbf{1}} \cdot (q)_{\mathbf{3}} \cdot (r)_{\mathbf{2}} + (p)_{\mathbf{2}} \cdot (q)_{\mathbf{3}} \cdot (r)_{\mathbf{1}} (p)_{\mathbf{2}} \cdot (q)_{\mathbf{1}} \cdot (r)_{\mathbf{3}} + (p)_{\mathbf{3}} \cdot (q)_{\mathbf{1}} \cdot (r)_{\mathbf{2}}. \end{array}$
- (28) GRASSMANNN-PLÜCKER-RELATION IN RANK 3: $\langle |p,q,r| \rangle \cdot \langle |p,s,t| \rangle - \langle |p,q,s| \rangle \cdot \langle |p,r,t| \rangle + \langle |p,q,t| \rangle \cdot \langle |p,r,s| \rangle = 0.$ The theorem is a consequence of (27).
- (29) $\langle |p,q,r| \rangle = -\langle |p,r,q| \rangle$. The theorem is a consequence of (27).
- (30) $\langle |p,q,r| \rangle = -\langle |q,p,r| \rangle$. The theorem is a consequence of (27).
- (31) $\langle |a \cdot p, q, r| \rangle = a \cdot \langle |p, q, r| \rangle$. The theorem is a consequence of (27).
- (32) $\langle |p, a \cdot q, r| \rangle = a \cdot \langle |p, q, r| \rangle$. The theorem is a consequence of (30) and (31).
- (33) $\langle |p,q,a \cdot r| \rangle = a \cdot \langle |p,q,r| \rangle$. The theorem is a consequence of (29) and (32).
- (34) Suppose $M = \langle \langle (p)_{\mathbf{1}}, (q)_{\mathbf{1}}, (r)_{\mathbf{1}} \rangle, \langle (p)_{\mathbf{2}}, (q)_{\mathbf{2}}, (r)_{\mathbf{2}} \rangle, \langle (p)_{\mathbf{3}}, (q)_{\mathbf{3}}, (r)_{\mathbf{3}} \rangle \rangle$. Then $\langle |p, q, r| \rangle = \text{Det } M$. The theorem is a consequence of (22).
- (35) Suppose $M = \langle \langle (p)_{\mathbf{1}}, (p)_{\mathbf{2}}, (p)_{\mathbf{3}} \rangle, \langle (q)_{\mathbf{1}}, (q)_{\mathbf{2}}, (q)_{\mathbf{3}} \rangle, \langle (r)_{\mathbf{1}}, (r)_{\mathbf{2}}, (r)_{\mathbf{3}} \rangle \rangle$. Then $\langle |p, q, r| \rangle = \text{Det } M$.

Let us consider a square matrix M over $\mathbb{R}_{\mathcal{F}}$ of dimension k. Now we state the propositions:

(36) Det $M = 0_{\mathbb{R}_{\mathrm{F}}}$ if and only if $\mathrm{rk}(M) < k$.

- (37) $\operatorname{rk}(M) < k$ if and only if $\operatorname{lines}(M)$ is linearly dependent or M is not without repeated line.
- (38) Let us consider a matrix M over \mathbb{R}_{F} of dimension $k \times m$. Then Mx2Tran (M) is a function from RLSp2RVSp $(\mathcal{E}_{\mathrm{T}}^k)$ into RLSp2RVSp $(\mathcal{E}_{\mathrm{T}}^m)$.
- (39) Let us consider a square matrix M over \mathbb{R}_{F} of dimension k. Then Mx2Tran(M) is a linear transformation from RLSp2RVSp($\mathcal{E}_{\mathrm{T}}^{k}$) to RLSp2RVSp($\mathcal{E}_{\mathrm{T}}^{k}$). PROOF: Reconsider $M_{1} = \mathrm{Mx2Tran}(M)$ as a function from RLSp2RVSp($\mathcal{E}_{\mathrm{T}}^{k}$) into RLSp2RVSp($\mathcal{E}_{\mathrm{T}}^{k}$). For every elements x, y of RLSp2RVSp($\mathcal{E}_{\mathrm{T}}^{k}$), $M_{1}(x + y) = M_{1}(x) + M_{1}(y)$ by [15, (22)]. For every scalar a of \mathbb{R}_{F} and for every vector x of RLSp2RVSp($\mathcal{E}_{\mathrm{T}}^{k}$), $M_{1}(a \cdot x) = a \cdot M_{1}(x)$ by [15, (23)]. \Box
- (40) Suppose $M = \langle \langle (p)_{\mathbf{1}}, (p)_{\mathbf{2}}, (p)_{\mathbf{3}} \rangle, \langle (q)_{\mathbf{1}}, (q)_{\mathbf{2}}, (q)_{\mathbf{3}} \rangle, \langle (r)_{\mathbf{1}}, (r)_{\mathbf{2}}, (r)_{\mathbf{3}} \rangle \rangle$ and $\operatorname{rk}(M) < 3$. Then there exists a and there exists b and there exists c such that $a \cdot p + b \cdot q + c \cdot r = 0_{\mathcal{E}_{\mathrm{T}}^3}$ and $(a \neq 0 \text{ or } b \neq 0 \text{ or } c \neq 0)$. The theorem is a consequence of (37), (25), (24), (39), and (7).
- (41) If $a \cdot p + b \cdot q + c \cdot r = 0_{\mathcal{E}_{\mathrm{T}}^3}$ and $(a \neq 0 \text{ or } b \neq 0 \text{ or } c \neq 0)$, then $\langle |p, q, r| \rangle = 0$. The theorem is a consequence of (14) and (30).
- (42) Suppose $\langle |p,q,r| \rangle = 0$. Then there exists a and there exists b and there exists c such that $a \cdot p + b \cdot q + c \cdot r = 0_{\mathcal{E}_{T}^{3}}$ and $(a \neq 0 \text{ or } b \neq 0 \text{ or } c \neq 0)$. The theorem is a consequence of (19), (35), (36), and (40).
- (43) p, q and r are lineary dependent if and only if $\langle |p, q, r| \rangle = 0$. The theorem is a consequence of (41) and (42).

3. Some Properties about the Cross Product

Now we state the propositions:

- $(44) |(p, p \times q)| = 0.$
- $(45) |(p, q \times p)| = 0.$
- (46) (i) $\langle |o, p, (o \times p) \times (q \times r)| \rangle = 0$, and

(ii) $\langle |q, r, (o \times p) \times (q \times r)| \rangle = 0.$

The theorem is a consequence of (44) and (45).

(47) (i) o, p and $(o \times p) \times (q \times r)$ are lineary dependent, and

(ii) q, r and $(o \times p) \times (q \times r)$ are lineary dependent.

The theorem is a consequence of (46) and (43).

(48) (i) $0_{\mathcal{E}_{\mathrm{T}}^3} \times p = 0_{\mathcal{E}_{\mathrm{T}}^3}$, and (ii) $p \times 0_{\mathcal{E}_{\mathrm{T}}^3} = 0_{\mathcal{E}_{\mathrm{T}}^3}$.

- (49) $\langle |p,q,0_{\mathcal{E}^3_{T}}| \rangle = 0$. The theorem is a consequence of (48).
- (50) If $p \times q = 0_{\mathcal{E}_{\mathrm{T}}^3}$ and r = [1, 1, 1], then p, q and r are lineary dependent. PROOF: Reconsider r = [1, 1, 1] as an element of $\mathcal{E}_{\mathrm{T}}^3$. $\langle |p, q, r| \rangle = 0$ by [8, (2)], (27). \Box
- (51) If p is not zero and q is not zero and $p \times q = 0_{\mathcal{E}_{T}^{3}}$, then p and q are proportional.
- (52) Let us consider non zero points p, q, r, s of $\mathcal{E}^3_{\mathrm{T}}$. Suppose $(p \times q) \times (r \times s)$ is zero. Then
 - (i) p and q are proportional, or
 - (ii) r and s are proportional, or
 - (iii) $p \times q$ and $r \times s$ are proportional.

The theorem is a consequence of (51).

- (53) $\langle |p,q,p \times q| \rangle = |(q,q)| \cdot |(p,p)| |(q,p)| \cdot |(p,q)|.$
- (54) $|(p \times q, p \times q)| = |(q, q)| \cdot |(p, p)| |(q, p)| \cdot |(p, q)|.$
- (55) If p is not zero and |(p,q)| = 0 and |(p,r)| = 0 and |(p,s)| = 0, then $\langle |q,r,s| \rangle = 0$. The theorem is a consequence of (13) and (27).
- (56) $\langle |p,q,p \times q| \rangle = |p \times q|^2$. The theorem is a consequence of (53) and (54).
- (57) The projective space over \mathcal{E}_{T}^{3} is a projective plane defined in terms of collinearity.

PROOF: Set P = the projective space over $\mathcal{E}_{\mathrm{T}}^3$. There exist elements u, v, w_1 of $\mathcal{E}_{\mathrm{T}}^3$ such that for every real numbers a, b, c such that $a \cdot u + b \cdot v + c \cdot w_1 = 0_{\mathcal{E}_{\mathrm{T}}^3}$ holds a = 0 and b = 0 and c = 0 by [6, (22)], [8, (4)], [11, (39)], [8, (2)]. For every elements p, p_1, q, q_1 of P, there exists an element r of P such that p, p_1 and r are collinear and q, q_1 and r are collinear by [9, (26)], (52), [9, (22)], [18, (2)]. \Box

4. Real Projective Plane and Homography

Let us consider elements u, v, w, x of \mathcal{E}^3_{T} . Now we state the propositions:

- (58) Suppose u is not zero and x is not zero and the direction of u = the direction of x. Then $\langle |u, v, w| \rangle = 0$ if and only if $\langle |x, v, w| \rangle = 0$. The theorem is a consequence of (31).
- (59) Suppose v is not zero and x is not zero and the direction of v = the direction of x. Then $\langle |u, v, w| \rangle = 0$ if and only if $\langle |u, x, w| \rangle = 0$. The theorem is a consequence of (32).

- (60) Suppose w is not zero and x is not zero and the direction of w =the direction of x. Then $\langle |u, v, w| \rangle = 0$ if and only if $\langle |u, v, x| \rangle = 0$. The theorem is a consequence of (33).
- (61)(i) $(1_{\mathbb{R}} \operatorname{matrix}(3))(1) = e_1$, and
 - (ii) $(1_{\mathbb{R}} \operatorname{matrix}(3))(2) = e_2$, and
 - (iii) $(1_{\mathbb{R}} \operatorname{matrix}(3))(3) = e_3.$
- (i) the base finite sequence of 3 and $1 = e_1$, and (62)
 - (ii) the base finite sequence of 3 and $2 = e_2$, and
 - (iii) the base finite sequence of 3 and $3 = e_3$.
- (63) Let us consider a finite sequence p_2 of elements of D. Suppose len $p_2 = 3$. Then
 - (i) $\langle p_2 \rangle_{\Box,1} = \langle p_2(1) \rangle$, and
 - (ii) $\langle p_2 \rangle_{\Box 2} = \langle p_2(2) \rangle$, and
 - (iii) $\langle p_2 \rangle_{\Box,3} = \langle p_2(3) \rangle$.

The theorem is a consequence of (3).

- (64) (i) $\langle e_1 \rangle_{\Box,1} = \langle 1 \rangle$, and
 - (ii) $\langle e_1 \rangle_{\Box,2} = \langle 0 \rangle$, and

(iii)
$$\langle e_1 \rangle_{\Box,3} = \langle 0 \rangle.$$

The theorem is a consequence of (63).

- (65) (i) $\langle e_2 \rangle_{\Box,1} = \langle 0 \rangle$, and
 - (ii) $\langle e_2 \rangle_{\Box 2} = \langle 1 \rangle$, and
 - (iii) $\langle e_2 \rangle_{\Box,3} = \langle 0 \rangle$.

The theorem is a consequence of (63).

- (66) (i) $\langle e_3 \rangle_{\Box,1} = \langle 0 \rangle$, and
 - (ii) $\langle e_3 \rangle_{\Box,2} = \langle 0 \rangle$, and
 - (iii) $\langle e_3 \rangle_{\Box,3} = \langle 1 \rangle$.

The theorem is a consequence of (63).

(i) $(I_{\mathbb{R}_{\mathrm{F}}}^{3\times3})_{\Box,1} = \langle 1, 0, 0 \rangle$, and (67)(ii) $(I_{\mathbb{R}_{\mathrm{F}}}^{3\times3})_{\Box,2} = \langle 0, 1, 0 \rangle$, and (iii) $(I_{\mathbb{R}_{\mathrm{F}}}^{3\times3})_{\Box,3} = \langle 0, 0, 1 \rangle.$ The theorem is a consequence of (1) and (15). (i) $\operatorname{Line}(I_{\mathbb{R}_{\mathrm{F}}}^{3\times3}, 1) = \langle 1, 0, 0 \rangle$, and (68)

(ii) Line $(I_{\mathbb{R}_{\mathrm{F}}}^{3\times3}, 2) = \langle 0, 1, 0 \rangle$, and

(iii) $\operatorname{Line}(I_{\mathbb{R}_{\mathrm{F}}}^{3\times3},3) = \langle 0,0,1 \rangle.$ The theorem is a consequence of (1).

- (i) $\langle e_1 \rangle^{\mathrm{T}} = \langle \langle 1 \rangle, \langle 0 \rangle, \langle 0 \rangle \rangle$, and (69)
 - (ii) $\langle e_2 \rangle^{\mathrm{T}} = \langle \langle 0 \rangle, \langle 1 \rangle, \langle 0 \rangle \rangle$, and
 - (iii) $\langle e_3 \rangle^{\mathrm{T}} = \langle \langle 0 \rangle, \langle 0 \rangle, \langle 1 \rangle \rangle.$

The theorem is a consequence of (64), (65), and (66).

From now on p_1 denotes a finite sequence of elements of D.

Now we state the propositions:

- (70) Let us consider a finite sequence p_1 of elements of D. If $k \in \text{dom } p_1$, then $\langle p_1 \rangle_{1,k} = p_1(k).$
- (71) If $k \in \text{dom} p_1$, then $\langle p_1 \rangle_{\Box,k} = \langle p_1(k) \rangle$. The theorem is a consequence of (70).
- (72) Let us consider an element p_2 of \mathcal{R}^3 . Suppose $p_1 = p_2$. Then $(\mathbb{R} \to \mathbb{R})$ \mathbb{R}_{F}) ColVec2Mx $(p_2) = \langle p_1 \rangle^{\mathrm{T}}$. The theorem is a consequence of (71).

In the sequel P denotes a square matrix over \mathbb{R}_{F} of dimension 3. Now we state the propositions:

- Suppose $P = \langle \langle (p)_1, (p)_2, (p)_3 \rangle, \langle (q)_1, (q)_2, (q)_3 \rangle, \langle (r)_1, (r)_2, (r)_3 \rangle \rangle$. Then (73)
 - (i) $\operatorname{Line}(P, 1) = p$, and
 - (ii) $\operatorname{Line}(P, 2) = q$, and
 - (iii) Line(P, 3) = r.

(74) Suppose
$$P = \langle \langle (p)_{\mathbf{1}}, (p)_{\mathbf{2}}, (p)_{\mathbf{3}} \rangle, \langle (q)_{\mathbf{1}}, (q)_{\mathbf{2}}, (q)_{\mathbf{3}} \rangle, \langle (r)_{\mathbf{1}}, (r)_{\mathbf{2}}, (r)_{\mathbf{3}} \rangle \rangle$$
. Then

- (i) $P_{\Box 1} = \langle (p)_1, (q)_1, (r)_1 \rangle$, and
- (ii) $P_{\Box,2} = \langle (p)_2, (q)_2, (r)_2 \rangle$, and
- (iii) $P_{\Box,3} = \langle (p)_{\mathbf{3}}, (q)_{\mathbf{3}}, (r)_{\mathbf{3}} \rangle.$
- (75) width $\langle p_1 \rangle = \operatorname{len} p_1$.
- (76) Suppose len $p_1 = 3$. Then
 - (i) Line($\langle p_1 \rangle^{\mathrm{T}}, 1$) = $\langle p_1(1) \rangle$, and
 - (ii) Line $(\langle p_1 \rangle^{\mathrm{T}}, 2) = \langle p_1(2) \rangle$, and
 - (iii) Line $(\langle p_1 \rangle^{\mathrm{T}}, 3) = \langle p_1(3) \rangle$.

The theorem is a consequence of (75) and (63).

(77) If len $p_1 = 3$, then $\langle p_1 \rangle^T = \langle \langle p_1(1) \rangle, \langle p_1(2) \rangle, \langle p_1(3) \rangle \rangle$. The theorem is a consequence of (76).

Let us consider D. Let p be a finite sequence of elements of D. Assume len p = 3. The functor F2M(p) yielding a finite sequence of elements of D^1 is defined by the term

(Def. 1) $\langle \langle p(1) \rangle, \langle p(2) \rangle, \langle p(3) \rangle \rangle$.

Let us consider a finite sequence p of elements of \mathbb{R} . Now we state the propositions:

- (78) If len p = 3, then len F2M(p) = 3.
- (79) If len p = 3, then p is a 3-element finite sequence of elements of \mathbb{R} .
- (80) If p = [0, 0, 0], then $F2M(p) = \langle \langle 0 \rangle, \langle 0 \rangle, \langle 0 \rangle \rangle$.
- (81) Suppose len $p_1 = 3$. Then $\langle \langle p_1 \rangle_{\Box,1}, \langle p_1 \rangle_{\Box,2}, \langle p_1 \rangle_{\Box,3} \rangle = F2M(p_1)$. The theorem is a consequence of (63).

Let us consider D. Let p be a finite sequence of elements of D^1 . Assume $\ln p = 3$. The functor M2F(p) yielding a finite sequence of elements of D is defined by the term

(Def. 2) $\langle p(1)(1), p(2)(1), p(3)(1) \rangle$.

Now we state the proposition:

(82) Let us consider a finite sequence p of elements of \mathbb{R}^1 . Suppose len p = 3. Then M2F(p) is a point of $\mathcal{E}^3_{\mathrm{T}}$.

Let p be a finite sequence of elements of \mathbb{R}^1 and a be a real number. Assume len p = 3. The functor $a \cdot p$ yielding a finite sequence of elements of \mathbb{R}^1 is defined by

(Def. 3) there exist real numbers p_1 , p_2 , p_3 such that $p_1 = p(1)(1)$ and $p_2 = p(2)(1)$ and $p_3 = p(3)(1)$ and $it = \langle \langle a \cdot p_1 \rangle, \langle a \cdot p_2 \rangle, \langle a \cdot p_3 \rangle \rangle$.

Let us consider a finite sequence p of elements of \mathbb{R}^1 . Now we state the propositions:

- (83) If len p = 3, then M2F $(a \cdot p) = a \cdot M2F(p)$.
- (84) If len p = 3, then $\langle \langle p(1)(1) \rangle, \langle p(2)(1) \rangle, \langle p(3)(1) \rangle \rangle = p$.
- (85) If len p = 3, then F2M(M2F(p)) = p. The theorem is a consequence of (84).
- (86) Let us consider a finite sequence p of elements of \mathbb{R} . If len p = 3, then M2F(F2M(p)) = p.

(87) (i)
$$\langle e_1 \rangle^{\rm T} = {\rm F2M}(e_1)$$
, and

- (ii) $\langle e_2 \rangle^{\mathrm{T}} = \mathrm{F2M}(e_2)$, and
- (iii) $\langle e_3 \rangle^{\mathrm{T}} = \mathrm{F2M}(e_3).$

The theorem is a consequence of (69).

(88) Let us consider a finite sequence p of elements of D. If $\operatorname{len} p = 3$, then $\langle p \rangle^{\mathrm{T}} = \mathrm{F2M}(p)$. The theorem is a consequence of (77).

(89) Line
$$(\langle p_1 \rangle, 1) = p_1$$
.

(90) Let us consider a matrix M over D of dimension 3×1 . Then

- (i) $\operatorname{Line}(M, 1) = \langle M_{1,1} \rangle$, and
- (ii) $\operatorname{Line}(M, 2) = \langle M_{2,1} \rangle$, and
- (iii) Line $(M, 3) = \langle M_{3,1} \rangle$.

From now on R denotes a ring.

Now we state the propositions:

- (91) Let us consider a square matrix N over R of dimension 3, and a finite sequence p of elements of R. If len p = 3, then $N \cdot \langle p \rangle^{\mathrm{T}}$ is 3,1-size.
- (92) Let us consider a finite sequence p_1 of elements of R, and a square matrix N over R of dimension 3. Suppose len $p_1 = 3$. Then
 - (i) Line $(N \cdot \langle p_1 \rangle^{\mathrm{T}}, 1) = \langle (N \cdot \langle p_1 \rangle^{\mathrm{T}})_{1,1} \rangle$, and
 - (ii) Line $(N \cdot \langle p_1 \rangle^{\mathrm{T}}, 2) = \langle (N \cdot \langle p_1 \rangle^{\mathrm{T}})_{2,1} \rangle$, and
 - (iii) Line $(N \cdot \langle p_1 \rangle^{\mathrm{T}}, 3) = \langle (N \cdot \langle p_1 \rangle^{\mathrm{T}})_{3,1} \rangle.$

The theorem is a consequence of (91) and (90).

- (93) $(\langle p_1 \rangle^{\mathrm{T}})_{\Box,1} = p_1$. The theorem is a consequence of (89).
- (94) Let us consider finite sequences p_1 , q_1 , r_1 of elements of \mathbb{R}_F . Suppose $p = p_1$ and $q = q_1$ and $r = r_1$ and $\langle |p, q, r| \rangle \neq 0$. Then there exists a square matrix M over \mathbb{R}_F of dimension 3 such that
 - (i) M is invertible, and
 - (ii) $M \cdot p_1 = F2M(e_1)$, and
 - (iii) $M \cdot q_1 = F2M(e_2)$, and
 - (iv) $M \cdot r_1 = F2M(e_3)$.

PROOF: Reconsider $P = \langle \langle (p)_1, (p)_2, (p)_3 \rangle, \langle (q)_1, (q)_2, (q)_3 \rangle, \langle (r)_1, (r)_2, (p)_3 \rangle, \langle (r)_1, (r)_2, (p)_$

 $(r)_{3}\rangle\rangle$ as a square matrix over \mathbb{R}_{F} of dimension 3. $\langle |p,q,r|\rangle = \mathrm{Det} P$. Consider N being a square matrix over \mathbb{R}_{F} of dimension 3 such that N is inverse of P^{T} . $N \cdot \langle p_{1} \rangle^{\mathrm{T}}$ is a matrix over \mathbb{R}_{F} of dimension 3×1 and $N \cdot \langle q_{1} \rangle^{\mathrm{T}}$ is a matrix over \mathbb{R}_{F} of dimension 3×1 and $N \cdot \langle r_{1} \rangle^{\mathrm{T}}$ is a matrix over \mathbb{R}_{F} of dimension 3×1 and $N \cdot \langle r_{1} \rangle^{\mathrm{T}}$ is a matrix over \mathbb{R}_{F} of dimension 3×1 . $N \cdot \langle p_{1} \rangle^{\mathrm{T}} = \mathrm{F2M}(e_{1})$ by (78), [3, (91), (45), (1)]. $N \cdot \langle q_{1} \rangle^{\mathrm{T}} = \mathrm{F2M}(e_{2})$ by (78), [3, (91), (45), (1)]. $N \cdot \langle r_{1} \rangle^{\mathrm{T}} = \mathrm{F2M}(e_{3})$ by (78), [3, (91), (45), (1)]. \Box

(95) Let us consider finite sequences p_1 , q_1 , r_1 of elements of \mathbb{R}_F , and finite sequences p_2 , q_2 , r_2 of elements of \mathbb{R}^1 . Suppose $P = \langle \langle (p)_1, (q)_1, (r)_1 \rangle$, $\langle (p)_2, (q)_2, (r)_2 \rangle, \langle (p)_3, (q)_3, (r)_3 \rangle \rangle$ and $p = p_1$ and $q = q_1$ and $r = r_1$ and $p_2 = M \cdot p_1$ and $q_2 = M \cdot q_1$ and $r_2 = M \cdot r_1$. Then $(M \cdot P)^T = \langle M2F(p_2),$ $M2F(q_2), M2F(r_2) \rangle$. PROOF: $P^T = \langle \langle (p)_1, (p)_2, (p)_3 \rangle, \langle (q)_1, (q)_2, (q)_3 \rangle, \langle (r)_1, (r)_2, (r)_3 \rangle \rangle$. width $M = \log(n_1)^T$ and width $M = \log(n_2)^T$ and width $M = \log(r_2)^T$ by

width $M = \operatorname{len}\langle p_1 \rangle^{\mathrm{T}}$ and width $M = \operatorname{len}\langle q_1 \rangle^{\mathrm{T}}$ and width $M = \operatorname{len}\langle r_1 \rangle^{\mathrm{T}}$ by (75), [11, (50)]. $\operatorname{len} p_2 = 3$ and $\operatorname{len} q_2 = 3$ and $\operatorname{len} r_2 = 3$. \Box

- (96) Let us consider finite sequences p_2 , q_2 , r_2 of elements of \mathbb{R}^1 . Suppose $M = \langle M2F(p_2), M2F(q_2), M2F(r_2) \rangle$ and Det M = 0 and $M2F(p_2) = p$ and $M2F(q_2) = q$ and $M2F(r_2) = r$. Then $\langle |p, q, r| \rangle = 0$. The theorem is a consequence of (35).
- (97) Let us consider points p_3 , q_3 , r_3 of $\mathcal{E}_{\mathrm{T}}^3$, finite sequences p_2 , q_2 , r_2 of elements of \mathbb{R}^1 , and finite sequences p_1 , q_1 , r_1 of elements of \mathbb{R}_{F} . Suppose M is invertible and $p = p_1$ and $q = q_1$ and $r = r_1$ and $p_2 = M \cdot p_1$ and $q_2 = M \cdot q_1$ and $r_2 = M \cdot r_1$ and $\mathrm{M2F}(p_2) = p_3$ and $\mathrm{M2F}(q_2) = q_3$ and $\mathrm{M2F}(r_2) = r_3$. Then $\langle |p, q, r| \rangle = 0$ if and only if $\langle |p_3, q_3, r_3| \rangle = 0$. The theorem is a consequence of (19), (23), (95), and (35).
- (98) If 0 < m, then every matrix over \mathbb{R}_F of dimension $m \times 1$ is a finite sequence of elements of \mathbb{R}^1 . PROOF: Consider *s* being a finite sequence such that $s \in \operatorname{rng} M$ and len s = 1. Consider *n* being a natural number such that for every object *x* such that $x \in \operatorname{rng} M$ there exists a finite sequence *s* such that s = x and len s = n. Consider s_1 being a finite sequence such that $s_1 = s$ and len $s_1 = n$. $\operatorname{rng} M \subseteq \mathbb{R}^1$ by [5, (132)]. \Box
- (99) Let us consider a finite sequence u_1 of elements of \mathbb{R}_F . Suppose len $u_1 = 3$. Then $\langle u_1 \rangle^T = I_{\mathbb{R}_F}^{3 \times 3} \cdot \langle u_1 \rangle^T$. The theorem is a consequence of (77), (91), (2), (68), (7), and (93).
- (100) Let us consider an element u of $\mathcal{E}_{\mathrm{T}}^3$, and a finite sequence u_1 of elements of \mathbb{R}_{F} . Suppose $u = u_1$ and $\langle u_1 \rangle^{\mathrm{T}} = \langle \langle 0 \rangle, \langle 0 \rangle, \langle 0 \rangle \rangle$. Then $u = 0_{\mathcal{E}_{\mathrm{T}}^3}$. The theorem is a consequence of (77).
- (101) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, elements u, μ of $\mathcal{E}_{\mathrm{T}}^3$, a finite sequence u_1 of elements of \mathbb{R}_{F} , and a finite sequence u_2 of elements of \mathbb{R}^1 . Suppose u is not zero and $u = u_1$ and $u_2 = N \cdot u_1$ and $\mu = \mathrm{M2F}(u_2)$. Then μ is not zero. The theorem is a consequence of (75), (85), (80), (8), (99), and (100).

Let N be an invertible square matrix over \mathbb{R}_{F} of dimension 3. The homography of N yielding a function from the projective space over $\mathcal{E}_{\mathrm{T}}^3$ into the projective space over $\mathcal{E}_{\mathrm{T}}^3$ is defined by

(Def. 4) for every point x of the projective space over $\mathcal{E}_{\mathrm{T}}^3$, there exist elements u, v of $\mathcal{E}_{\mathrm{T}}^3$ and there exists a finite sequence u_1 of elements of \mathbb{R}_{F} and there exists a finite sequence p of elements of \mathbb{R}^1 such that x = the direction of u and u is not zero and $u = u_1$ and $p = N \cdot u_1$ and $v = \mathrm{M2F}(p)$ and v is not zero and it(x) = the direction of v.

Now we state the proposition:

(102) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3, and points p, q, r of the projective space over $\mathcal{E}_{\mathrm{T}}^3$. Then p, q and r are

collinear if and only if (the homography of N)(p), (the homography of N)(q) and (the homography of N)(r) are collinear.

PROOF: If p, q and r are collinear, then (the homography of N)(p), (the homography of N)(q) and (the homography of N)(r) are collinear by [10, (23)], (43), [9, (22), (1)]. If (the homography of N)(p), (the homography of N)(q) and (the homography of N)(r) are collinear, then p, q and r are collinear. \Box

References

- [1] Susanne Apel. The geometry of brackets and the area principle. Phd thesis, Technische Universität München, Fakultät für Mathematik, 2014.
- [2] Susanne Apel and Jürgen Richter-Gebert. Cancellation patterns in automatic geometric theorem proving. In *Automated Deduction in Geometry*, pages 1–33. Springer, 2010.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [7] Laurent Fuchs and Laurent Thery. A formalization of Grassmann-Cayley algebra in Coq and its application to theorem proving in projective geometry. In Automated Deduction in Geometry, pages 51–67. Springer, 2010.
- [8] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. *Formalized Mathematics*, 11(4):381–383, 2003.
- [9] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761–766, 1990.
- [10] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces part I. Formalized Mathematics, 1(4):767–776, 1990.
- [11] Xiquan Liang, Piqing Zhao, and Ou Bai. Vector functions and their differentiation formulas in 3-dimensional Euclidean spaces. Formalized Mathematics, 18(1):1–10, 2010. doi:10.2478/v10037-010-0001-2.
- [12] Nicolas Magaud, Julien Narboux, and Pascal Schreck. Formalizing projective plane geometry in Coq. In Automated Deduction in Geometry, pages 141–162. Springer, 2008.
- [13] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski's Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master's thesis.
- [14] Karol Pak. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199–211, 2007. doi:10.2478/v10037-007-0024-5.
- [15] Karol Pak. Linear transformations of Euclidean topological spaces. Formalized Mathematics, 19(2):103–108, 2011. doi:10.2478/v10037-011-0016-3.
- [16] Jürgen Richter-Gebert. Mechanical theorem proving in projective geometry. Annals of Mathematics and Artificial Intelligence, 13(1-2):139–172, 1995.
- [17] Jürgen Richter-Gebert. Perspectives on projective geometry: a guided tour through real and complex geometry. Springer Science & Business Media, 2011.

- [18] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657–659, 1990.
- [19] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.

Received October 18, 2016