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Summary. In this article we extend the algebraic theory of polynomial
rings, formalized in Mizar [I], based on [2], [3]. After introducing constant and
monic polynomials we present the canonical embedding of R into R[X] and deal
with both unit and irreducible elements. We also define polynomial GCDs and
show that for fields F' and irreducible polynomials p the field F[X]/<p> is iso-
morphic to the field of polynomials with degree smaller than the one of p.
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1. PRELIMINARIES

Let R be a non empty double loop structure and a be an element of R.
Observe that the functor {a} yields a subset of R. Observe that every ring
which is almost left invertible and commutative is also almost right invertible
and every ring which is almost right invertible and commutative is also almost
left invertible and every ring which is almost left cancelable and commutative
is also almost right cancelable and every ring which is almost right cancelable
and commutative is also almost left cancelable.

Let L be a non empty zero structure and X be a set. We say that X is

L-polynomial membered if and only if
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(Def. 1) for every object p such that p € X holds p is a polynomial over L.

Let X be a 1-sorted structure. We say that X is L-polynomial membered if
and only if

(Def. 2) the carrier of X is L-polynomial membered.

Let us note that there exists a set which is non empty and L-polynomial
membered and there exists a 1-sorted structure which is non empty and L-
polynomial membered.

Let X be a non empty, L-polynomial membered 1-sorted structure. One can
check that the carrier of X is L-polynomial membered.

Let L be an add-associative, right zeroed, right complementable, distribu-
tive, non empty double loop structure. Let us observe that Polynom-Ring(L)
is L-polynomial membered.

Let L be a non empty zero structure and X be a non empty, L-polynomial
membered set.

Observe that an element of X is a polynomial over L. Let R be a ring. One
can verify that there exists an element of the carrier of Polynom-Ring(R) which
is zero and there exists an element of Polynom-Ring(R) which is zero and there
exists a polynomial over R which is zero.

Let R be a non degenerated ring. Let us note that there exists an element of
the carrier of Polynom-Ring(R) which is non zero and there exists an element
of Polynom-Ring(R) which is non zero.

Let L be an add-associative, right zeroed, right complementable, distribu-
tive, non empty double loop structure and p, ¢ be polynomials over L. We say
that p | ¢ if and only if

(Def. 3) there exist elements a, b of Polynom-Ring(L) such that a = p and b = ¢
and a | b.

Now we state the proposition:

(1) Let us consider an add-associative, right zeroed, right complementable,
distributive, non empty double loop structure L, and polynomials p, ¢
over L. Then p | ¢ if and only if there exists a polynomial r over L such
that pxr = q.

Let us consider a field F' and polynomials p, ¢ over F. Now we state the
propositions:

(2) If degp < deggq, then p mod g = p.

(3) p mod ¢ =0.F if and only if ¢ | p. The theorem is a consequence of (1).

(4) p=(pdivg) * g+ (p mod q).

Let us consider a field F', polynomials p, r over F', and a non zero polynomial
q over F'. Now we state the propositions:
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(5) (i) p+rdivg= (pdivg) + (rdivg), and

(ii) p+r mod ¢ = (p mod ¢) + (r mod q).
The theorem is a consequence of (4).
(6) pxrmod g = (p mod q)*(r mod ¢) mod ¢q. The theorem is a consequence
of (4), (5), (3), and (1).
Now we state the propositions:

(7) Let us consider a field F', polynomials r, ¢, u over F, and a non zero
polynomial p over F. Then (r * ¢ mod p) * u mod p = (r * ¢) * u mod p.
The theorem is a consequence of (5), (3), and (1).

(8) Let us consider an add-associative, right zeroed, right complementable,
left distributive, non empty double loop structure L, and a sequence p of
L. Then Op, -p=0.L.

(9) Let us consider a left unital, non empty double loop structure L, and
a sequence p of L. Then 1, -p = p.

(10) Let us consider an add-associative, right zeroed, right complementable,
right unital, distributive, associative, commutative, non empty double
loop structure L, sequences p, g of L, and an element a of L. Then a - (p *
a) =px(a-q).

(11) Let us consider an associative, non empty multiplicative magma L, a se-
quence p of L, and elements a, b of L. Then (a-b)-p=a-(b-p).

(12) Let us consider an add-associative, right zeroed, right complementable,
left distributive, left unital, non empty double loop structure L, and
a sequence p of L. Then 1. L *xp = p.

Let L be an add-associative, right zeroed, right complementable, well

unital, distributive, non empty double loop structure. Let us observe that
Polynom-Ring(L) is well unital.

2. CONSTANT POLYNOMIALS

Let R be an add-associative, right zeroed, right complementable, distribu-
tive, non empty double loop structure and x be an element of the carrier of
Polynom-Ring(R). We say that z is constant if and only if

(Def. 4) degz < 0.

Let R be a non degenerated ring. Observe that there exists an element of
Polynom-Ring(R) which is non zero and constant and there exists an element
of the carrier of Polynom-Ring(R) which is non zero and constant.



230 CHRISTOPH SCHWARZWELLER et al.

Let R be an integral domain. Let us observe that there exists an element of
Polynom-Ring(R) which is non constant and there exists an element of the car-
rier of Polynom-Ring(R) which is non constant.

Let L be a non empty zero structure and a be an element of L. The functor
alL yielding a sequence of L is defined by the term

(Def. 5) 0.L+-(0,a).
Note that a[L is finite-Support and a[L is constant.

Let a be a non zero element of L. Let us note that a[L is non zero and there
exists a polynomial over L which is non zero and constant.

Now we state the propositions:

(13) Let us consider a non empty zero structure L. Then 0r[L = 0. L.

(14) Let us consider a non empty multiplicative loop with zero structure L.
Then 1,[L=1.L.
Let L be a non empty zero structure. Observe that Oz [L is zero.

Let L be a non degenerated multiplicative loop with zero structure. Let us
note that 1 [L is non zero.

Now we state the propositions:

(15) Let us consider an add-associative, right zeroed, right complementable,
distributive, non empty double loop structure L, and an element p of
the carrier of Polynom-Ring(L). Then p is non zero and constant if and
only if degp = 0.

(16) Let us consider an add-associative, right zeroed, right complementable,
right distributive, right unital, non empty double loop structure L, and
an element a of L. Then a[L =a-1. L.

Let us consider a ring R and elements a, b of R. Now we state the proposi-
tions:

(17) alR+ bR = (a+b)[R.

(18) (alR)* (b|R) = a - bIR.

(19) alR =b|R if and only if a = b.
(20)

20) Let us consider a ring R, and an element p of the carrier of Polynom-Ring-

(R). Then p is constant if and only if there exists an element a of R such
that p = a|R.

(21) Let us consider a ring R, and an element a of R. Then deg(a[R) = 0 if
and only if a # Og. The theorem is a consequence of (19).
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3. MoNIC POLYNOMIALS

Let L be a non empty double loop structure and p be a polynomial over L.
We introduce the notation p is monic as a synonym of p is normalized.

Let L be an add-associative, right zeroed, right complementable, distribu-
tive, non degenerated double loop structure. Let us observe that 1. L is monic
and 0. L is non monic and there exists a polynomial over L which is monic and
there exists a polynomial over L which is non monic and there exists an element
of the carrier of Polynom-Ring(L) which is monic and there exists an element
of the carrier of Polynom-Ring(L) which is non monic.

Let L be a well unital, non degenerated double loop structure and x be
an element of L. One can verify that rpoly(1,x) is monic.

Let L be a field and p be an element of the carrier of Polynom-Ring(L). Let
us observe that the functor NormPolynomial p yields an element of the carrier
of Polynom-Ring(L). Let F' be a field and p be a non zero polynomial over F'.
Observe that NormPolynomial p is monic.

Let L be a field and p be a non zero element of the carrier of Polynom-Ring(L).
Observe that NormPolynomial p is monic.

Now we state the proposition:

(22) Let us consider a field F. Then NormPolynomial 0. F' = 0. F'.

Let us consider a field F' and a non zero element p of the carrier of Polynom-
Ring(F'). Now we state the propositions:
(23) NormPolynomialp = (LCp)~! - p.
(24) p is monic if and only if NormPolynomialp = p. The theorem is a con-
sequence of (23) and (9).

Let us consider a field F' and elements p, ¢ of the carrier of Polynom-Ring(F).
Now we state the propositions:

(25) ¢ | pif and only if NormPolynomial ¢ | p. The theorem is a consequence
of (22), (1), (9), (11), (10), and (23).

(26) q | pif and only if ¢ | NormPolynomial p. The theorem is a consequence
of (22), (1), (23), (10), (9), and (11).

Let us consider a field " and an element p of the carrier of Polynom-Ring(F).
Now we state the propositions:

(27) NormPolynomial p is associated to p. The theorem is a consequence of
(1), (26), and (25).

(28) NormPolynomial p is irreducible if and only if p is irreducible. The the-
orem is a consequence of (27).

Now we state the propositions:
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(29) Let us consider an integral domain R, and elements p, ¢ of the carrier of
Polynom-Ring(R). If p is associated to ¢, then degp = degq.

(30) Let us consider an integral domain R, and monic elements p, g of the car-
rier of Polynom-Ring(R). Then p is associated to ¢ if and only if p = q.
The theorem is a consequence of (29), (20), (16), (10), and (12).

4. THE CANONICAL HOMOMORPHISM FROM R INTO R[X]

Let R be a ring. The canonical homomorphism of R into quotient field

yielding a function from R into Polynom-Ring(R) is defined by
(Def. 6) for every element x of R, it(x) = z[R.

Note that the canonical homomorphism of R into quotient field is additive,
multiplicative, and unity-preserving and the canonical homomorphism of R into
quotient field is monomorphic and Polynom-Ring(R) is R-homomorphic and
R-monomorphic.

Now we state the proposition:

(31) Let us consider a ring R. Then char(Polynom-Ring(R)) = char(R).
Let R be a non degenerated ring. Let us note that Polynom-Ring(R) is
infinite and every ring with characteristic 0 is infinite.
Now we state the proposition:
(32) Let us consider a ring R. If char(R) = 0, then R is infinite.

Let n be a non trivial natural number.
One can verify that Polynom-Ring(7 /n) is infinite. Now we state the pro-
position:
(33) Let us consider a non trivial natural number n.
Then char(Polynom-Ring(Z /n)) # 0.
Let n be a non trivial natural number. Observe that there exists a ring which
is infinite and has characteristic n.

5. UNITS AND IRREDUCIBLE POLYNOMIALS

Let us note that there exists an integral domain which is non almost left
invertible.

Let R be a non almost left invertible integral domain. One can verify that
there exists a non-unit of R which is non zero and Z® is non almost left invertible.

Let R be an integral domain. Observe that Polynom-Ring(R) is non almost
left invertible.

Now we state the propositions:
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(34) Let us consider an integral domain R. Then R is a field if and only if for
every non-unit a of R, a = 0g.

(35) Let us consider an integral domain R, and an element a of R. Then a[R
is a unit of Polynom-Ring(R) if and only if @ is a unit of R. The theorem
is a consequence of (1), (20), (18), and (19).

(36) Let us consider an integral domain F', and an element p of the carrier
of Polynom-Ring(F'). If p is a unit of Polynom-Ring(F"), then degp = 0.
The theorem is a consequence of (1).

(37) Let us consider a field F', and an element p of the carrier of Polynom-Ring
(F). Then p is a unit of Polynom-Ring(F) if and only if degp = 0. The
theorem is a consequence of (1), (20), and (18).

(38) Let us consider an integral domain R, and an element p of the carrier
of Polynom-Ring(R). Suppose p is a unit of Polynom-Ring(R). Then p is
non zero and constant. The theorem is a consequence of (36) and (15).

(39) Let us consider a field F', and an element p of the carrier of Polynom-Ring
(F). Then p is a unit of Polynom-Ring(F") if and only if p is non zero and
constant. The theorem is a consequence of (37) and (15).

Let R be an integral domain. One can check that every element of Polynom-

Ring(R) which is non constant is also non zero and non unital.

Let F' be an integral domain. Let us observe that every element of the carrier
of Polynom-Ring(F') which is non constant is also non zero and non unital.

Let F' be a field. Observe that every element of Polynom-Ring(F') which
is non zero and constant is also unital and every element of Polynom-Ring(F')
which is unital is also non zero and constant and every element of the carrier
of Polynom-Ring(F") which is non zero and constant is also unital and every
element of the carrier of Polynom-Ring(F") which is unital is also non zero and
constant.

Now we state the propositions:

(40) Let us consider an integral domain R, and an element p of the carrier
of Polynom-Ring(R). Suppose there exists an element ¢ of the carrier
of Polynom-Ring(R) such that ¢ | p and 1 < degq < degp. Then p is
reducible. The theorem is a consequence of (36).

(41) Let us consider a field F', and an element p of the carrier of Polynom-Ring
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(F). Then pis reducible if and only if p = 0. F or p is a unit of Polynom-Ring

(F) or there exists an element g of the carrier of Polynom-Ring(F') such
that ¢ | p and 1 < degq < degp. The theorem is a consequence of (1),
(37), and (40).

(42) Let us consider an integral domain R, and a monic element p of the car-
rier of Polynom-Ring(R). If degp = 1, then p is irreducible. The theorem
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is a consequence of (36), (20), (16), (10), (12), and (35).

(43) There exists a non monic element p of the carrier of Polynom-Ring(Z®)
such that

(i) degp =1, and
(ii) p is reducible.
The theorem is a consequence of (16), (10), (12), (15), (35), and (36).

(44) Let us consider a field F', and an element p of the carrier of Polynom-Ring
(F). If degp = 1, then p is irreducible. The theorem is a consequence of
(36), (20), (21), and (35).

(45) Let us consider an algebraic closed field F', and an element p of the carrier
of Polynom-Ring(F'). Then p is irreducible if and only if degp = 1. The
theorem is a consequence of (36) and (44).

(46) Let us consider a field F. Then F is algebraic closed if and only if for
every monic element p of the carrier of Polynom-Ring(F), p is irreducible
iff degp = 1. The theorem is a consequence of (37), (41), (28), and (45).

Let R be an integral domain. Note that there exists an element of Polynom-

Ring(R) which is irreducible and there exists an element of the carrier of
Polynom-Ring(R) which is irreducible.

Let R be a ring. Let us observe that there exists an element of Polynom-Ring

(R) which is reducible and there exists an element of the carrier of Polynom-

Ring(R) which is reducible. Let R be an integral domain.

Note that IRR(Polynom-Ring(R)) is non empty.

Let F be a field. Observe that every element of Polynom-Ring(F') which is
constant is also reducible and every element of the carrier of Polynom-Ring(F")
which is constant is also reducible and every element of Polynom-Ring(F')
which is irreducible is also non constant and every element of the carrier of
Polynom-Ring(F) which is irreducible is also non constant.

6. THE FIELD F[X]/<p>

Let F' be a field and p be an element of the carrier of Polynom-Ring(F).
Let us note that %—iﬁzﬁ(lf) is Abelian, add-associative, right zeroed, right
complementable, commutative, associative, well unital, and distributive.

Let p be an irreducible element of the carrier of Polynom-Ring(F'). Observe
that w is non degenerated and almost left invertible.

Let p be a polynomial over F'. The functor PolyMultMod(p) yielding a binary

operation on Polynom-Ring(F') is defined by
(Def. 7) for every polynomials r, q over F', it(r,q) = r * ¢ mod p.
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Let p be a non constant element of the carrier of Polynom-Ring(F'). The
functor Polynom-Ring(p) yielding a strict double loop structure is defined by

(Def. 8) the carrier of it = {q, where ¢ is a polynomial over F' : degq < degp}
and the addition of it = (the addition of Polynom-Ring(F")) [ (the carrier
of it) and the multiplication of it = PolyMultMod(p) | (the carrier of it)
and the one of it = 1. F" and the zero of it = 0. F..

Observe that Polynom-Ring(p) is non degenerated and Polynom-Ring(p) is
Abelian, add-associative, right zeroed, and right complementable and Polynom-

Ring(p) is associative, well unital, and distributive.

The functor PolyMod(p) yielding a function from Polynom-Ring(F') into
Polynom-Ring(p) is defined by

(Def. 9) for every polynomial q over F', it(q) = ¢ mod p.

Observe that PolyMod(p) is additive, multiplicative, and unity-preserving
and Polynom-Ring(p) is (Polynom-Ring(F'))-homomorphic and PolyMod(p) is
onto.

Let us consider a field F' and a non constant element p of the carrier of
Polynom-Ring(F'). Now we state the propositions:

(47) ker PolyMod(p) = {p}-ideal. The theorem is a consequence of (1) and
(3)-

Polynom-Ring(F
(48) PR
a consequence of (47).

and Polynom-Ring(p) are isomorphic. The theorem is

Let F' be afield and p be a non constant element of the carrier of Polynom-Ring

(F). Observe that Polynom-Ring(p) is commutative.

Let p be an irreducible element of the carrier of Polynom-Ring(F'). Observe
that Polynom-Ring(p) is almost left invertible.

7. PoLyNoMIAL GCDs

Let L be a non empty multiplicative magma, x, y be elements of L, and z
be an element of L. We say that z is x,y-GCD if and only if

(Def. 10) z | x and z | y and for every element r of L such that r | z and r | y

holds 7 | z.
Let L be a GCD domain. Note that there exists an element of L which is
z,y-GCD.

A GCD of z and y is an x,y-GCD element of L. Now we state the proposition:

(49) Let us consider a GCD domain L, elements x, y of L, and GCDs u, v of
x and y. Then u is associated to v.
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Let L be a GCD domain and z, y be elements of L. One can verify that
every element of L which is x,y-GCD is also y,z-GCD.

Let F be a field and p, g be elements of the carrier of Polynom-Ring(F).
The functor ged(p, ¢) yielding an element of the carrier of Polynom-Ring(F) is
defined by

(Def. 11) (i) ¢t =0.F,ifp=0.F and ¢ =0.F,
(ii) et is GCD of p and ¢ and monic, otherwise.

One can check that the functor ged(p, ¢) is commutative.

Let p, ¢ be elements of Polynom-Ring(F'). Let us note that the functor
ged(p, q) is commutative.

Let p, ¢ be elements of the carrier of Polynom-Ring(F'). Let us observe that
ged(p, q) is p,g-GCD.

Let p, ¢ be elements of Polynom-Ring(F'). Observe that ged(p, ¢) is p,q-GCD.

Let p be an element of the carrier of Polynom-Ring(F) and ¢ be a non zero
element of the carrier of Polynom-Ring(F). Note that ged(p, ¢) is non zero and
monic.

Let p be an element of Polynom-Ring(F') and ¢ be a non zero element of
Polynom-Ring(F’). Let us observe that ged(p, g) is non zero and monic.

Let p, ¢ be zero elements of the carrier of Polynom-Ring(F"). Let us note
that ged(p, q) is zero.

Let p, ¢ be zero elements of Polynom-Ring(F'). One can verify that ged(p, q)
is zero.

Now we state the propositions:

(50) Let us consider a field F', and elements p, ¢ of the carrier of Polynom-Ring
(F). Then

(i) ged(p,q) | p, and
(ii) ged(p,q) | g, and
i

(iii) for every element r of the carrier of Polynom-Ring(F') such that r | p
and r | ¢ holds r | ged(p, q).

(51) Let us consider a field F', and elements p, ¢ of Polynom-Ring(F'). Then

(i) ged(p,q) | p, and

(i) ged(p,q) | ¢, and

(iii) for every element r of Polynom-Ring(F') such that r | p and r | ¢
holds r | ged(p, q).

Let F be a field and p, ¢ be polynomials over F. The functor ged(p,q)
yielding a polynomial over F' is defined by
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(Def. 12) there exist elements a, b of Polynom-Ring(F") such that a = p and b = ¢
and it = ged(a, b).
Observe that the functor ged(p, ¢) is commutative.
Let p be a polynomial over F' and ¢ be a non zero polynomial over F'. Let
us note that ged(p, ¢) is non zero and monic.
Let p, g be zero polynomials over F'. One can verify that ged(p, q) is zero.
Now we state the propositions:

(52) Let us consider a field F', and polynomials p, ¢ over F. Then
(i) ged(p,q) | p, and
(ii) ged(p,q) | ¢, and
(iii) for every polynomial r over F' such that r | p and r | ¢ holds r |
ged(p, q)-
The theorem is a consequence of (1).
(53) Let us consider a field F', a polynomial p over F, a non zero polynomial
q over F', and a monic polynomial s over F'. Then s = ged(p, q) if and only

if s | pand s | ¢ and for every polynomial r over F' such that r | p and
7 | ¢ holds 7 | s. The theorem is a consequence of (52).
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