# Prime Factorization of Sums and Differences of Two Like Powers 

Rafał Ziobro<br>Department of Carbohydrate Technology<br>University of Agriculture<br>Krakow, Poland


#### Abstract

Summary. Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4, 3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases).

Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could serve in further development of Mizar projects [2]. This could be regarded as one of the important benefits of proof formalization (9).


MSC: 11A51 03B35
Keywords: integers; factorization; primes
MML identifier: ${ }^{\text {NEWTONO3, }}$, version: 8.1.05 5.37.1275
From now on $a, b, c, d, x, j, k, l, m, n, o$ denote natural numbers, $p, q, t, z$, $u, v$ denote integers, and $a_{1}, b_{1}, c_{1}, d_{1}$ denote complexes.

Now we state the propositions:
(1) $a_{1}^{n+k}+b_{1}^{n+k}=a_{1}^{n} \cdot\left(a_{1}^{k}+b_{1}^{k}\right)+b_{1}^{k} \cdot\left(b_{1}^{n}-a_{1}^{n}\right)$.
(2) $a_{1}^{n+k}-b_{1}^{n+k}=a_{1}^{n} \cdot\left(a_{1}^{k}-b_{1}^{k}\right)+b_{1}^{k} \cdot\left(a_{1}^{n}-b_{1}^{n}\right)$.
(3) $a_{1}^{m+2}+b_{1}^{m+2}=\left(a_{1}+b_{1}\right) \cdot\left(a_{1}^{m+1}+b_{1}^{m+1}\right)-a_{1} \cdot b_{1} \cdot\left(a_{1}^{m}+b_{1}^{m}\right)$.

Let $a$ be a natural number. Let us note that $a$ is trivial if and only if the condition (Def. 1) is satisfied.
(Def. 1) $a \leqslant 1$.
Let $a$ be a complex. Let us note that the functor $a^{2}$ yields a set and is defined by the term
(Def. 2) $a^{2}$.
Let $a, b$ be integers. The functors: $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ yielding natural numbers are defined by terms
(Def. 3) $\operatorname{gcd}(|a|,|b|)$,
(Def. 4) $\operatorname{lcm}(|a|,|b|)$,
respectively. Let $a, b$ be positive real numbers. Note that $\max (a, b)$ is positive and $\min (a, b)$ is positive.

Let $a$ be a non zero integer and $b$ be an integer. One can check that $\operatorname{gcd}(a, b)$ is non zero.

Let $a$ be a non zero complex and $n$ be a natural number. Let us observe that $a^{n}$ is non zero.

Let $a$ be a non trivial natural number and $n$ be a non zero natural number. Note that $a^{n}$ is non trivial.

Let $a$ be an integer. One can check that $|a|$ is natural.
Let $a$ be an even integer. Note that $|a|$ is even.
Let $a$ be a natural number. Let us note that $\operatorname{lcm}(a, a)$ reduces to $a$ and $\operatorname{gcd}(a, a)$ reduces to $a$.

Let $a$ be a non zero integer and $b$ be an integer. Note that $\operatorname{gcd}(a, b)$ is positive.
Let $a, b$ be integers. One can check that $\operatorname{gcd}(a, \operatorname{gcd}(a, b))$ reduces to $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, \operatorname{lcm}(a, b))$ reduces to $\operatorname{lcm}(a, b)$.

Let $a$ be an integer. Observe that $\operatorname{gcd}(a, 1)$ reduces to 1 and $\operatorname{gcd}(a+1, a)$ reduces to 1 .

Now we state the proposition:
(4) Let us consider integers $t, z$. Then $\operatorname{gcd}\left(t^{n}, z^{n}\right)=(\operatorname{gcd}(t, z))^{n}$.

Let $a$ be an integer and $n$ be a natural number.
One can verify that $\operatorname{gcd}\left((a+1)^{n}, a^{n}\right)$ reduces to 1 .
Let us consider $a_{1}$ and $b_{1}$. One can verify that $a_{1}{ }^{0}-b_{1}{ }^{0}$ reduces to 0 .
Let $a$ be a non negative real number and $n$ be a natural number. One can verify that $a^{n}$ is non negative and there exists an odd natural number which is non trivial and there exists an even natural number which is non trivial.

Let $a$ be a positive real number and $n$ be a natural number. One can verify that $a^{n}$ is positive.

Let $a$ be an integer. One can verify that $a \cdot a$ is square and $\frac{a}{a}$ is square and there exists an element of $\mathbb{N}$ which is non square and every element of $\mathbb{N}$ which is prime is also non square and there exists a prime natural number which is even and there exists a prime natural number which is odd and every integer which is prime is also non square.

Let $a$ be a square element of $\mathbb{N}$. Observe that $\sqrt{a}$ is natural.

Let $a$ be an integer. Let us note that $a^{2}$ is square and $a \cdot a$ is square and there exists an integer which is non square and every natural number which is zero is also trivial and there exists a natural number which is square and there exists an element of $\mathbb{N}$ which is non zero and there exists a square element of $\mathbb{N}$ which is non trivial and every natural number which is trivial is also square and every integer which is non square is also non zero.

Now we state the propositions:
(5) Let us consider integers $a, b, c, d$. If $a \mid b$ and $c \mid d$, then $a \cdot c \mid b \cdot d$.
(6) Let us consider integers $a, b$. Then $a \mid b$ if and only if $\operatorname{lcm}(a, b)=|b|$. Proof: If $a \mid b$, then $\operatorname{lcm}(a, b)=|b|$ by [ 8 , (16)], [7, (44)].
Let $a$ be an integer. Observe that $\operatorname{lcm}(a, 0)$ reduces to 0 .
Let $a$ be a natural number. Note that $\operatorname{lcm}(a, 1)$ reduces to $a$.
Let us consider $a$ and $b$. Let us observe that $\operatorname{lcm}(a \cdot b, a)$ reduces to $a \cdot b$ and $\operatorname{lcm}(\operatorname{gcd}(a, b), b)$ reduces to $b$ and $\operatorname{gcd}(a, \operatorname{lcm}(a, b))$ reduces to $a$.

Let us consider integers $a, b$. Now we state the propositions:

$$
\begin{equation*}
|a \cdot b|=(\operatorname{gcd}(a, b)) \cdot \operatorname{lcm}(a, b) \tag{7}
\end{equation*}
$$

(8) $\operatorname{lcm}\left(a^{n}, b^{n}\right)=\operatorname{lcm}(a, b)^{n}$. The theorem is a consequence of (4) and (7).

Let $a$ be a square element of $\mathbb{N}$ and $b$ be a square element of $\mathbb{N}$. One can check that $\operatorname{gcd}(a, b)$ is square and $\operatorname{lcm}(a, b)$ is square.

Let $a, b$ be square integers. One can verify that $\operatorname{gcd}(a, b)$ is square and $\operatorname{lcm}(a, b)$ is square.

Now we state the proposition:
(9) Let us consider an integer $t$. Then $t$ is odd if and only if $\operatorname{gcd}(t, 2)=1$. Proof: If $t$ is odd, then $\operatorname{gcd}(t, 2)=1$ by [13, (1)], [14, (5)].
Let $t$ be an integer. One can check that $t$ is odd if and only if the condition (Def. 5) is satisfied.
(Def. 5) $\operatorname{gcd}(t, 2)=1$.
Let $a$ be an odd integer. Let us observe that $|a|$ is odd and $-a$ is odd.
Let $a, b$ be even integers. Note that $\operatorname{gcd}(a, b)$ is even.
Let $a$ be an integer and $b$ be an odd integer. Note that $\operatorname{gcd}(a, b)$ is odd.
Let $a$ be a natural number. One can check that $|-a|$ reduces to $a$.
Let $t, z$ be even integers. One can check that $t+z$ is even and $t-z$ is even and $t \cdot z$ is even.

Let $t, z$ be odd integers. Note that $t+z$ is even and $t-z$ is even and $t \cdot z$ is odd.

Let $t$ be an odd integer and $z$ be an even integer. Let us observe that $t+z$ is odd and $t-z$ is odd and $t \cdot z$ is even.

Now we state the proposition:
(10) Let us consider a non zero, square integer $a$, and an integer $b$. If $a \cdot b$ is square, then $b$ is square.
Let $a$ be a square element of $\mathbb{N}$ and $n$ be a natural number. Let us observe that $a^{n}$ is square.

Let $a$ be a square integer. Note that $a^{n}$ is square.
Let $a$ be a non zero, square integer and $b$ be a non square integer. Let us note that $a \cdot b$ is non square.

Let $a$ be an element of $\mathbb{N}$ and $b$ be an even natural number. Note that $a^{b}$ is square.

Let $a$ be a non square element of $\mathbb{N}$ and $b$ be an odd natural number. Note that $a^{b}$ is non square.

Let $a$ be a non zero, square integer. Note that $a+1$ is non square.
Let $a$ be a non zero, square element of $\mathbb{N}$. Let us observe that $a+1$ is non square.

Let $a$ be a non zero, square object and $b$ be a non square element of $\mathbb{N}$. Let us observe that $a \cdot b$ is non square.

Let $a$ be a non zero, square integer and $n, m$ be natural numbers. Let us observe that $a^{n}+a^{m}$ is non square.

Let $a$ be a non zero, square element of $\mathbb{N}$. Let us note that $a^{n}+a^{m}$ is non square.

Let $a$ be a non zero, square integer and $p$ be a prime natural number. Note that $p \cdot a$ is non square.

Let $a$ be a non trivial element of $\mathbb{N}$. One can verify that $a-1$ is non zero.
Let $q$ be a square integer. Let us observe that $|q|$ is square.
Let $x$ be a non zero integer. Let us observe that $|x|$ is non zero.
Let $a$ be a non trivial, square element of $\mathbb{N}$. Let us observe that $a-1$ is non square.

Let $a$ be a non trivial element of $\mathbb{N}$. Let us note that $a \cdot(a-1)$ is non square.
Let $a, b$ be integers and $n, m$ be natural numbers. One can verify that $\left(a^{n}+b^{n}\right) \cdot\left(a^{m}-b^{m}\right)+\left(a^{m}+b^{m}\right) \cdot\left(a^{n}-b^{n}\right)$ is even and $\left(a^{n}+b^{n}\right) \cdot\left(a^{m}+b^{m}\right)+$ $\left(a^{m}-b^{m}\right) \cdot\left(a^{n}-b^{n}\right)$ is even.

Let $a$ be an even integer. Let us note that $\frac{a}{2}$ is integer.
Let $a, b$ be non zero natural numbers. Note that $a+b$ is non trivial.
Let $b$ be a non zero natural number and $a, c$ be non trivial natural numbers. Let us observe that $c$-count $\left(c^{a-c o u n t(b)}\right)$ reduces to $a$-count $(b)$.

Let $a, b$ be non zero integers. Let us note that $\frac{a}{\operatorname{gcd}(a, b)}$ is integer and $\frac{\operatorname{lcm}(a, b)}{b}$ is integer and $\frac{\operatorname{lcm}(a, b)}{\operatorname{gcd}(a, b)}$ is integer.

Let $a$ be an even integer. One can verify that $\operatorname{gcd}(a, 2)$ reduces to 2 .
Let us observe that there exists an even natural number which is non zero.

Let $a$ be an even integer and $n$ be a non zero natural number. Let us observe that $a \cdot n$ is even and $a^{n}$ is even.

Let $a$ be an integer and $n$ be a zero natural number. One can check that $a \cdot n$ is even and $a^{n}$ is odd.

Let $a$ be an element of $\mathbb{N}$. Note that $|a|$ reduces to $a$.
One can check that every integer which is non negative is also natural.
Let $a$ be a non negative real number and $n$ be a non zero natural number. Let us note that $\sqrt[n]{a^{n}}$ reduces to $a$ and $(\sqrt[n]{a})^{n}$ reduces to $a$.

Now we state the propositions:
(11) If $a \nmid b$, then $a \cdot c \nmid b$.
(12) Let us consider non negative real numbers $a, b$, and a positive natural number $n$. Then $a^{n}=b^{n}$ if and only if $a=b$.
Let $a$ be a real number and $n$ be an even natural number. One can verify that $a^{n}$ is non negative.

Let $a$ be a negative real number and $n$ be an odd natural number. One can verify that $a^{n}$ is negative.

Now we state the propositions:
(13) Let us consider real numbers $a, b$, and an odd natural number $n$. Then $a^{n}=b^{n}$ if and only if $a=b$. The theorem is a consequence of (12).
(14) If $a$ and $b$ are relatively prime, then for every non zero natural number $n, a \cdot b=c^{n}$ iff $\sqrt[n]{a}, \sqrt[n]{b} \in \mathbb{N}$ and $c=\sqrt[n]{a} \cdot \sqrt[n]{b}$.
Proof: If $a \cdot b=c^{n}$, then $\sqrt[n]{a}, \sqrt[n]{b} \in \mathbb{N}$ and $c=\sqrt[n]{a} \cdot \sqrt[n]{b}$ by [14, (30)], [11, (11)], [1, (14)].
(15) Let us consider a non zero natural number $n$, an integer $a$, and an integer $b$. Then $b^{n} \mid a^{n}$ if and only if $b \mid a$.
Proof: If $b^{n} \mid a^{n}$, then $b \mid a$ by [10, (1)], [14, (3)], (4), [5, (3)].
(16) Let us consider an integer $a$, and natural numbers $m, n$. If $m \geqslant n$, then $a^{n} \mid a^{m}$.
(17) Let us consider integers $a, b$. If $a \mid b$ and $b^{m} \mid c$, then $a^{m} \mid c$. The theorem is a consequence of (4).
(18) Let us consider integers $a$, $p$. If $p^{2 \cdot n+k} \mid a^{2}$, then $p^{n} \mid a$. The theorem is a consequence of (16), (4), and (12).
(19) Let us consider odd, square elements $a, b$ of $\mathbb{N}$. Then $8 \mid a-b$.

Let us consider odd natural numbers $a, b$. Now we state the propositions:
(20) If $4 \mid a-b$, then $4 \nmid a^{n}+b^{n}$.
(21) If $4 \mid a^{n}+b^{n}$, then $4 \nmid a^{2 \cdot n}+b^{2 \cdot n}$.
(22) If $4 \mid a^{n}-b^{n}$, then $4 \nmid a^{2 \cdot n}+b^{2 \cdot n}$.
(23) Let us consider odd natural numbers $a, b$. If $2^{m} \mid a^{n}-b^{n}$, then $2^{m+1} \mid$ $a^{2 \cdot n}-b^{2 \cdot n}$.
(24) $a_{1}^{3}-b_{1}^{3}=\left(a_{1}-b_{1}\right) \cdot\left(a_{1}^{2}+b_{1}^{2}+a_{1} \cdot b_{1}\right)$. The theorem is a consequence of (2).
(25) Let us consider an odd natural number $n$. Then $3 \mid a^{n}+b^{n}$ if and only if $3 \mid a+b$.
Proof: Consider $k$ such that $n=2 \cdot k+1$. If $3 \mid a^{n}+b^{n}$, then $3 \mid a+b$ by [14, (173)], [5, (4)], [8, (1), (10)].
(26) Let us consider an integer $c$. If $c \mid a-b$, then $c \mid a^{n}-b^{n}$.
(27) Let us consider an odd natural number $n$. Then $3 \mid a^{n}-b^{n}$ if and only if $3 \mid a-b$.
Proof: Consider $k$ such that $n=2 \cdot k+1$. If $3 \mid a^{n}-b^{n}$, then $3 \mid a-b$ by [14, (173)], [8, (10)], [5, (4)], [8, (1)].
(28) Let us consider a natural number $n$. Then $a^{n} \equiv(a-b)^{n}(\bmod b)$.
(29) Let us consider a non trivial natural number $a$. Then there exists a prime natural number $n$ such that $n \mid a$.
(30) Let us consider a prime natural number $p$. If $p \mid(p+(k+1)) \cdot(p-(k+1))$, then $k+1 \geqslant p$.
(31) Let us consider a prime natural number $p$, and a non zero natural number $k$. If $k<p$, then $p \nmid p^{2}-k^{2}$. The theorem is a consequence of (30).
(32) Let us consider integers $a, b$, and an odd, prime natural number $p$. If $p \nmid b$, then if $p \mid a-b$, then $p \nmid a+b$.
(33) Let us consider a non zero, square element $a$ of $\mathbb{N}$, and a prime natural number $p$. If $p \mid a$, then $a+p$ is not square.
(34) Let us consider a non zero, square element $a$ of $\mathbb{N}$, and a prime natural number $p$. If $a+p$ is square, then $p=2 \cdot \sqrt{a}+1$.
(35) Let us consider integers $a, b, c$. Suppose $a$ and $b$ are relatively prime. Then $\operatorname{gcd}(c, a \cdot b)=(\operatorname{gcd}(c, a)) \cdot(\operatorname{gcd}(c, b))$.
(36) Let us consider a prime natural number $p$. If $a \mid p^{n}$, then there exists $k$ such that $a=p^{k}$.
Let us consider non zero natural numbers $a, b$ and a prime natural number $p$. Now we state the propositions:
(37) If $a+b=p$, then $a$ and $b$ are relatively prime.
(38) If $a^{n}+b^{n}=p^{n}$, then $a$ and $b$ are relatively prime.
(39) Let us consider non zero natural numbers $a, b$. If $c \geqslant a+b$, then $c^{k+1}$. $(a+b)>a^{k+2}+b^{k+2}$.
(40) Let us consider natural numbers $a, c$, and a non zero natural number $b$. If $a \cdot b<c<a \cdot(b+1)$, then $a \nmid c$ and $c \nmid a$.
(41) Let us consider real numbers $a, b$. Then $a+b=\min (a, b)+\max (a, b)$.
(42) Let us consider non negative real numbers $a, b$. Then
(i) $\max \left(a^{n}, b^{n}\right)=(\max (a, b))^{n}$, and
(ii) $\min \left(a^{n}, b^{n}\right)=(\min (a, b))^{n}$.
(43) Let us consider a prime natural number $p$. Suppose $a \cdot b=p^{n}$. Then there exist natural numbers $k, l$ such that
(i) $a=p^{k}$, and
(ii) $b=p^{l}$, and
(iii) $k+l=n$.
(44) Let us consider non trivial natural numbers $a, b$. If $a$ and $b$ are relatively prime, then $a \nmid b$ and $b \nmid a$.
(45) Let us consider a non trivial natural number $a$, and a prime natural number $p$. If $p>a$, then $p \nmid a$ and $a \nmid p$. The theorem is a consequence of (44).
(46) Let us consider a prime natural number $p$. Then
(i) $\operatorname{gcd}(a, p)=1$, or
(ii) $\operatorname{gcd}(a, p)=p$.
(47) Let us consider a non trivial natural number $a$, and a prime natural number $p$. If $a \mid p^{n}$, then $p \mid a$. The theorem is a consequence of (46).
(48) Let us consider odd natural numbers $a, b$, and an even natural number $m$. Then 2 -count $\left(a^{m}+b^{m}\right)=1$.
(49) Let us consider a non zero natural number $a$. Then there exists an odd natural number $k$ such that $a=2^{2 \text {-count (a) }} \cdot k$.
(50) Let us consider a non zero natural number $b$. Suppose $a>b$. Then there exists a prime natural number $p$ such that $p$-count $(a)>p$-count $(b)$.
Proof: If for every prime natural number $p, p$-count $(a) \leqslant p$-count $(b)$, then $a \leqslant b$ by [12, (20)], [1, (14)].
(51) Let us consider natural numbers $a, b, c$. Suppose $a \neq 1$ and $b \neq 0$ and $c \neq 0$ and $b>a$-count $(c)$. Then $a^{b} \nmid c$. The theorem is a consequence of (11).

Let us consider a non zero integer $b$ and an integer $a$. Now we state the propositions:
(52) If $|a| \neq 1$, then $a^{|a|-\operatorname{count}(|b|)} \mid b$ and $a^{(|a|-\operatorname{count}(|b|))+1} \nmid b$.
(53) If $|a| \neq 1$, then if $a^{n} \mid b$ and $a^{n+1} \nmid b$, then $n=|a|-\operatorname{count}(|b|)$.
(54) Let us consider a non zero natural number $b$, and a non trivial natural number $a$. Then $a \mid b$ if and only if $a$-count $(\operatorname{gcd}(a, b))=1$.
Proof: If $a \mid b$, then $a$-count $(\operatorname{gcd}(a, b))=1$ by [14, (3)], [6, (22)].
(55) Let us consider non zero natural numbers $b$, $n$, and a non trivial natural number $a$. Then $a$-count $(\operatorname{gcd}(a, b))=1$ if and only if $a^{n}-\operatorname{count}\left((\operatorname{gcd}(a, b))^{n}\right)$ $=1$. The theorem is a consequence of (15), (54), and (4).
(56) Let us consider a non zero natural number $b$, and a non trivial natural number $a$. Then $a$-count $(\operatorname{gcd}(a, b))=0$ if and only if $a-\operatorname{count}(\operatorname{gcd}(a, b)) \neq$ 1. The theorem is a consequence of (54).

Let $a, b$ be integers. The functor $a$-count $(b)$ yielding a natural number is defined by the term
(Def. 6) $|a|$-count $(|b|)$.
Let $a$ be an integer. Assume $|a| \neq 1$. Let $b$ be a non zero integer. One can check that the functor $a$-count $(b)$ is defined by
(Def. 7) $a^{i t} \mid b$ and $a^{i t+1} \nmid b$.
Now we state the propositions:
(57) Let us consider a prime natural number $p$, and non zero integers $a, b$. Then $p$-count $(a \cdot b)=(p$-count $(a))+(p$-count $(b))$.
(58) Let us consider a non trivial natural number $a$, and a non zero natural number $b$. Then $a^{a-\operatorname{count}(b)} \leqslant b$.
(59) Let us consider a non trivial natural number $a$, and a non zero integer $b$. Then $a^{n} \mid b$ if and only if $n \leqslant a$-count $(b)$.
Proof: If $a^{n} \mid b$, then $n \leqslant a$-count( $b$ ) by [8, (9)], [7, (89)], [1, (13)]. If $a^{n} \nmid b$, then $a$-count $(b)<n$ by [8, (9)], [7, (89)].
(60) Let us consider a non trivial natural number $a$, a non zero integer $b$, and a non zero natural number $n$. Then $n \cdot(a$-count $(b)) \leqslant a$-count $\left(b^{n}\right)<$ $n \cdot((a$-count $(b))+1)$. The theorem is a consequence of (4) and (59).
(61) Let us consider a non trivial natural number $a$, and non zero natural numbers $b, n$. If $b<a$, then $a$-count $\left(b^{n}\right)<n$. The theorem is a consequence of (60).
(62) Let us consider a non trivial natural number $a$, and a non zero natural number $b$. If $b<a^{n}$, then $a$-count $(b)<n$. The theorem is a consequence of (59).
(63) Let us consider non zero natural numbers $a, b$, and a non trivial natural number $n$. Then $a+b$-count $\left(a^{n}+b^{n}\right)<n$. The theorem is a consequence of (62).
(64) Let us consider non zero natural numbers $a, b$. Then $\operatorname{gcd}(a, b)=1$ if and only if for every non trivial natural number $c,(c$-count $(a)) \cdot(c$-count $(b))=0$.

Proof: If $\operatorname{gcd}(a, b)=1$, then for every non trivial natural number $c$, $(c$-count $(a)) \cdot(c$-count $(b))=0$ by [6, (27)]. If for every prime natural number $c,(c$-count $(a)) \cdot(c$-count $(b))=0$, then $\operatorname{gcd}(a, b)=1$ by [6, (27)].

Let us consider a non zero, even natural number $m$ and odd natural numbers $a, b$. Now we state the propositions:
(65) If $a \neq b$, then 2 -count $\left(a^{2 \cdot m}-b^{2 \cdot m}\right) \geqslant\left(2\right.$-count $\left.\left(a^{m}-b^{m}\right)\right)+1$. The theorem is a consequence of $(12),(23)$, and (59).
(66) If $a \neq b$, then 2 -count $\left(a^{2 \cdot m}-b^{2 \cdot m}\right)=\left(2-\operatorname{count}\left(a^{m}-b^{m}\right)\right)+1$. The theorem is a consequence of $(12),(57)$, and (48).
Let us consider a prime natural number $p$ and integers $a, b$. Now we state the propositions:
(67) If $|a| \neq|b|$, then $p$-count $\left(a^{2}-b^{2}\right)=(p-\operatorname{count}(a-b))+(p-\operatorname{count}(a+b))$.
(68) If $|a| \neq|b|$, then $p$-count $\left(a^{3}-b^{3}\right)=(p$-count $(a-b))+\left(p-\operatorname{count}\left(a^{2}+a\right.\right.$. $\left.b+b^{2}\right)$ ). The theorem is a consequence of (24).
(69) Let us consider non zero natural numbers $a, b$. Then $\frac{a}{\operatorname{gcd}(a, b)}=\frac{\operatorname{lcm}(a, b)}{b}$.

Let us consider a non zero natural number $b$. Now we state the propositions:
(70) $\operatorname{lcm}(a, a \cdot n+b)=\left(\left(\frac{a \cdot n}{b}\right)+1\right) \cdot \operatorname{lcm}(a, b)$. The theorem is a consequence of (69).
(71) $\operatorname{lcm}(a,(n \cdot a+1) \cdot b)=(n \cdot a+1) \cdot \operatorname{lcm}(a, b)$. The theorem is a consequence of (70).
(72) Let us consider a non trivial natural number $a$, and non zero natural numbers $n, b$. Then $a$-count $(b) \geqslant n \cdot\left(a^{n}-\operatorname{count}(b)\right)$. The theorem is a consequence of (51).
Let us consider odd integers $a, b$. Now we state the propositions:
(73) $4 \mid a-b$ if and only if $4 \nmid a+b$.
(74) 2 -count $\left(a^{2}+b^{2}\right)=1$. The theorem is a consequence of (5) and (73).
(75) Let us consider a prime natural number $p$, and natural numbers $a, b$. Suppose $a \neq b$. Then $p$-count $(a+b) \geqslant p$-count $(\operatorname{gcd}(a, b))$.
(76) Let us consider a non zero integer $a$, a non trivial natural number $b$, and an integer $c$. If $a=b^{b-\operatorname{count}(a)} \cdot c$, then $b \nmid c$.
Let $a$ be a non zero integer and $b$ be a non trivial natural number. Let us note that $\frac{a}{b^{b-\operatorname{count}(a)}}$ is integer and $\frac{a}{2^{2-\operatorname{count}(a)}}$ is integer and $\frac{a}{2^{2-\operatorname{count}(a)}}$ is odd.

Now we state the proposition:
(77) Let us consider a non zero integer $a$, and a non trivial natural number $b$. Then $b$-count $(a)=0$ if and only if $b \nmid a$.
Let $a$ be an odd integer. Observe that 2 -count $(a)$ is zero.

Observe that $\frac{a}{2^{2-c o u n t(a)}}$ reduces to $a$.
Now we state the propositions:
(78) Let us consider a prime natural number $a$, a non zero integer $b$, and a natural number $c$. Then $a$-count $\left(b^{c}\right)=c \cdot(a$-count $(b))$.
(79) Let us consider non zero natural numbers $a, b$, and an odd natural number $n$. Then $\frac{a^{n+2}+b^{n+2}}{a+b}=a^{n+1}+b^{n+1}-a \cdot b \cdot\left(\frac{a^{n}+b^{n}}{a+b}\right)$. The theorem is a consequence of (3).
(80) Let us consider odd integers $a, b$, and a natural number $n$.

Then 2 -count $\left(a^{2 \cdot n+1}-b^{2 \cdot n+1}\right)=2$-count $(a-b)$. The theorem is a consequence of (13), (2), and (57).
(81) Let us consider odd integers $a, b$, and an odd natural number $m$. Then 2 -count $\left(a^{m}+b^{m}\right)=2$-count $(a+b)$. The theorem is a consequence of (80).
(82) Let us consider odd natural numbers $a, b$. Suppose $a \neq b$. Then $1=$ $\min (2$-count $(a-b), 2-\operatorname{count}(a+b))$.
Let us consider a non trivial natural number $a$ and non zero integers $b, c$. Now we state the propositions:
(83) If $a$-count $(b)>a$-count $(c)$, then $a^{a-\operatorname{count}(c)} \mid b$ and $a^{a-\operatorname{count}(b)} \nmid c$.
(84) If $a^{a-\operatorname{count}(b)} \mid c$ and $a^{a-c o u n t(c)} \mid b$, then $a$-count $(b)=a$-count $(c)$. The theorem is a consequence of (83).
(85) Let us consider integers $a, b$, and natural numbers $m$, $n$. If $a^{n} \mid b$ and $a^{m} \nmid b$, then $m>n$. The theorem is a consequence of (16).
Let us consider a non trivial natural number $a$ and non zero integers $b, c$. Now we state the propositions:
(86) If $a$-count $(b)=a$-count $(c)$ and $a^{n} \mid b$, then $a^{n} \mid c$. The theorem is a consequence of (85).
(87) $a$-count $(b)=a$-count $(c)$ if and only if for every natural number $n, a^{n} \mid b$ iff $a^{n} \mid c$.
Proof: If $a$-count $(b) \neq a$-count $(c)$, then there exists a natural number $n$ such that $a^{n} \mid b$ and $a^{n} \nmid c$ or $a^{n} \mid c$ and $a^{n} \nmid b$ by (83), [1, (13)], [7, (89)], [8, (9)].
(88) Let us consider odd integers $a, b$. Suppose $|a| \neq|b|$. Then
(i) $2-\operatorname{count}\left((a-b)^{2}\right) \neq 2-\operatorname{count}\left((a+b)^{2}\right)$, and
(ii) 2 -count $\left((a-b)^{2}\right) \neq\left(2\right.$-count $\left.\left(a^{2}\right)\right)-b^{2}$.

The theorem is a consequence of (78), (73), and (87).
(89) Let us consider a non trivial natural number $b$, and a non zero integer $a$. Then $b$-count $(a) \neq 0$ if and only if $b \mid a$.
Proof: $b$-count $(|a|) \neq 0$ iff $b||a|$ by [6, (27)].
(90) Let us consider a non trivial natural number $b$, and a non zero natural number $a$. Then $b$-count $(a)=0$ if and only if $a \bmod b \neq 0$. The theorem is a consequence of (89).
(91) Let us consider a prime natural number $p$, and a non trivial natural number $a$. Then $a$-count $(p) \leqslant 1$.
(92) Let us consider non trivial natural numbers $a, b$, and a non zero natural number $c$. Then $a^{(a-\operatorname{count}(b)) \cdot(b-\operatorname{count}(c))} \leqslant c$. The theorem is a consequence of (58).
(93) Let us consider a prime natural number $p$, a non trivial natural number $a$, and a non zero natural number $b$. Then $a$-count $\left(p^{b}\right) \leqslant b$. The theorem is a consequence of (89) and (59).
(94) Let us consider a prime natural number $p$, and a non trivial natural number $a$. Then $(p$-count $(a)) \cdot\left(a\right.$-count $\left.\left(p^{n}\right)\right) \leqslant n$. The theorem is a consequence of (92).
(95) Let us consider non trivial natural numbers $a, b$, and a non zero natural number $c$. Then $(a$-count $(b)) \cdot(b$-count $(c)) \leqslant a$-count $(c)$. The theorem is a consequence of (17).
(96) Let us consider a non zero natural number $a$, and an odd natural number $b$. Then 2 -count $(a \cdot b)=2$-count $(a)$.
Let us consider a non trivial natural number $a$. Now we state the propositions:
(97) $a^{n+1}+a^{n}<a^{n+2}$.
(98) $(a+1)^{n}+(a+1)^{n}<(a+1)^{n+1}$.
(99) Let us consider a non trivial, odd natural number $a$. Then $a^{n}+a^{n}<a^{n+1}$. The theorem is a consequence of (98).
(100) Let us consider a non trivial natural number $p$. If $a \nmid b$, then $\left(p^{a}\right)^{c} \neq p^{b}$.
(101) Let us consider non zero integers $a, b$, and a non zero natural number $n$. Suppose there exists a prime natural number $p$ such that $n \nmid p$-count $(a)$. Then $a \neq b^{n}$.
(102) Let us consider non zero integers $a, b$, and a non zero natural number $n$. Suppose $a=b^{n}$. Let us consider a prime natural number $p$. Then $n \mid p$-count $(a)$.
(103) Let us consider positive real numbers $a, b$, and a non trivial natural number $n$. Then $(a+b)^{n}>a^{n}+b^{n}$. The theorem is a consequence of (42) and (41).
(104) Let us consider non zero integers $a, b$, and an odd, prime natural number $p$. Suppose $|a| \neq|b|$ and $p \nmid b$. Then $p$-count $\left(a^{2}-b^{2}\right)=\max (p-\operatorname{count}(a-$ $b), p$-count $(a+b))$. The theorem is a consequence of (32), (77), and (57).
(105) Let us consider a non trivial natural number $a$, and a non zero integer $b$. Then $a$-count $\left(a^{n} \cdot b\right)=n+(a$-count $(b))$.

## Acknowledgement: Ad Maiorem Dei Gloriam

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[3] Paul Erdős and János Surányi. Topics in the Theory of Numbers, chapter Divisibility, the Fundamental Theorem of Number Theory, pages 1-37. Springer New York, 2003. doi 10.1007/978-1-4613-0015-1_1.
[4] Jacek Gancarzewicz. Arytmetyka, 2000. In Polish.
[5] Andrzej Kondracki. The Chinese Remainder Theorem Formalized Mathematics, 6(4): 573-577, 1997.
[6] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179-186, 2004.
[7] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[8] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes Formalized Mathematics, 1(5):829-832, 1990.
[9] Adam Naumowicz. An example of formalizing recent mathematical results in Mizar Journal of Applied Logic, 4(4):396-413, 2006. doi $10.1016 / \mathrm{J} \cdot \mathrm{Jal} .2005 .10 .003$. Iowards Computer Aided Mathematics.
[10] Akira Nishino and Yasunari Shidama. The Maclaurin expansions. Formalized Mathematics, 13(3):421-425, 2005.
[11] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms Formalized Mathematics, 2(2):213-216, 1991.
[12] Marco Riccardi. Pocklington's theorem and Bertrand's postulate. Formalized Mathematics, 14(2):47-52, 2006. doi 10.2478/v10037-006-0007-y
[13] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem Formalized Mathematics, 6(3):335-338, 1997.
[14] Rafał Ziobro. Fermat's Little Theorem via divisibility of Newton's binomial. Formalized Mathematics, 23(3):215-229, 2015. doi 10.1515/forma-2015-0018

Received June 30, 2016

