Product Pre-Measure

Noboru Endou
Gifu National College of Technology
Gifu, Japan

Abstract

Summary. In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22, [6], 9], [21, [25, we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in 15. In this approach, we use some theorems for integrals.

MSC: 28A35 03B35
Keywords: product measure; pre-measure
MML identifier: MEASUR10, version: 8.1.04 5.36.1267

1. Preliminaries

Now we state the proposition:
(1) Let us consider non empty sets $A, A_{1}, A_{2}, B, B_{1}, B_{2}$. Then $A_{1} \times B_{1}$ misses $A_{2} \times B_{2}$ and $A \times B=A_{1} \times B_{1} \cup A_{2} \times B_{2}$ if and only if A_{1} misses A_{2} and $A=A_{1} \cup A_{2}$ and $B=B_{1}$ and $B=B_{2}$ or B_{1} misses B_{2} and $B=B_{1} \cup B_{2}$ and $A=A_{1}$ and $A=A_{2}$.
Let C, D be non empty sets, F be a sequence of D^{C}, and n be a natural number. One can check that the functor $F(n)$ yields a function from C into D.
(2) Let us consider sets X, Y, A, B, and objects x, y. Suppose $x \in X$ and $y \in Y$. Then $\chi_{A, X}(x) \cdot \chi_{B, Y}(y)=\chi_{A \times B, X \times Y}(x, y)$.
Let A, B be sets. One can verify that $\chi_{A, B}$ is non-negative.
(3) Let us consider a non empty set X, a semialgebra S of sets of X, a premeasure P of S, an induced measure m of S and P, and an induced σ measure M of S and m. Then $\operatorname{COM}(M)$ is complete on $\operatorname{COM}(\sigma$ (the field generated by $S), M)$.

The functor Intervals $\mathbb{R}_{\mathbb{R}}$ yielding a semialgebra of sets of \mathbb{R} is defined by the term
(Def. 1) the set of all I where I is an interval.
Now we state the propositions:
(4) Halflines \subseteq Intervals $_{\mathbb{R}}$.
(5) Let us consider a subset I of \mathbb{R}. If I is an interval, then $I \in$ the Borel sets.
(6) (i) $\sigma\left(\right.$ Intervals $\left._{\mathbb{R}}\right)=$ the Borel sets, and
(ii) σ (the field generated by Intervals $\left.\mathbb{S}_{\mathbb{R}}\right)=$ the Borel sets.

The theorem is a consequence of (4) and (5).

2. Family of Semialgebras, Fields and Measures

Now we state the propositions:
(7) Let us consider sets X_{1}, X_{2}, a non empty family S_{1} of subsets of X_{1}, and a non empty family S_{2} of subsets of X_{2}. Then the set of all $a \times b$ where a is an element of S_{1}, b is an element of S_{2} is a non empty family of subsets of $X_{1} \times X_{2}$.
(8) Let us consider sets X, Y, a family M of subsets of X with the empty element, and a family N of subsets of Y with the empty element. Then the set of all $A \times B$ where A is an element of M, B is an element of N is a family of subsets of $X \times Y$ with the empty element. The theorem is a consequence of (7).
(9) Let us consider a set X, and disjoint valued finite sequences O, T of elements of X. Suppose $\bigcup \operatorname{rng} O$ misses $\bigcup \operatorname{rng} T$. Then $O^{\wedge} T$ is a disjoint valued finite sequence of elements of X.
(10) Let us consider sets X_{1}, X_{2}, a semiring S_{1} of X_{1}, and a semiring S_{2} of X_{2}. Then the set of all $A \times B$ where A is an element of S_{1}, B is an element of S_{2} is a semiring of $X_{1} \times X_{2}$.
(11) Let us consider sets X_{1}, X_{2}, a semialgebra S_{1} of sets of X_{1}, and a semialgebra S_{2} of sets of X_{2}. Then the set of all $A \times B$ where A is an element of S_{1}, B is an element of S_{2} is a semialgebra of sets of $X_{1} \times X_{2}$. The theorem is a consequence of (10).
(12) Let us consider sets X_{1}, X_{2}, a field O of subsets of X_{1}, and a field T of subsets of X_{2}. Then the set of all $A \times B$ where A is an element of O, B is an element of T is a semialgebra of sets of $X_{1} \times X_{2}$. The theorem is a consequence of (11).

Let n be a non zero natural number and X be a non-empty, n-element finite sequence.

A family of semialgebras of X is an n-element finite sequence and is defined by
(Def. 2) for every natural number i such that $i \in \operatorname{Seg} n$ holds $i t(i)$ is a semialgebra of sets of $X(i)$.
Let us observe that a family of semialgebras of X is a \cap-closed yielding family of semirings of X. Now we state the proposition:
(13) Let us consider a non zero natural number n, a non-empty, n-element finite sequence X, a family S of semialgebras of X, and a natural number i. If $i \in \operatorname{Seg} n$, then $X(i) \in S(i)$.
Let us consider a non-empty, 1-element finite sequence X and a family S of semialgebras of X. Now we state the propositions:
(14) the set of all $\Pi\langle s\rangle$ where s is an element of $S(1)$ is a semialgebra of sets of the set of all $\langle x\rangle$ where x is an element of $X(1)$. The theorem is a consequence of (13).
(15) SemiringProduct (S) is a semialgebra of sets of ΠX. The theorem is a consequence of (14).
(16) Let us consider sets X_{1}, X_{2}, a semialgebra S_{1} of sets of X_{1}, and a semialgebra S_{2} of sets of X_{2}. Then the set of all $s_{1} \times s_{2}$ where s_{1} is an element of S_{1}, s_{2} is an element of S_{2} is a semialgebra of sets of $X_{1} \times X_{2}$.
(17) Let us consider a non zero natural number n, a non-empty, n-element finite sequence X, and a family S of semialgebras of X. Then SemiringProduct (S) is a semialgebra of sets of ΠX.
Proof: Define \mathcal{P} [non zero natural number] \equiv for every non-empty, $\$_{1-}$ element finite sequence X for every family S of semialgebras of X, SemiringProduct (S) is a semialgebra of sets of $\Pi X . \mathcal{P}[1]$. For every non zero natural number $k, \mathcal{P}[k]$ from [3, Sch. 10].
(18) Let us consider a non zero natural number n, a non-empty, n-element finite sequence X_{8}, a non-empty, 1-element finite sequence X_{1}, a family S_{4} of semialgebras of X_{8}, and a family S_{1} of semialgebras of X_{1}. Then SemiringProduct $\left(S_{4} \frown S_{1}\right)$ is a semialgebra of sets of $\Pi\left(X_{8} \frown X_{1}\right)$. The theorem is a consequence of (17), (16), and (13).
Let n be a non zero natural number and X be a non-empty, n-element finite sequence.

A family of fields of X is an n-element finite sequence and is defined by
(Def. 3) for every natural number i such that $i \in \operatorname{Seg} n$ holds $i t(i)$ is a field of subsets of $X(i)$.

Let S be a family of fields of X and i be a natural number. Assume $i \in \operatorname{Seg} n$. Observe that the functor $S(i)$ yields a field of subsets of $X(i)$.

Observe that a family of fields of X is a family of semialgebras of X.
Let us consider a non-empty, 1-element finite sequence X and a family S of fields of X. Now we state the propositions:
(19) the set of all $\Pi\langle s\rangle$ where s is an element of $S(1)$ is a field of subsets of the set of all $\langle x\rangle$ where x is an element of $X(1)$. The theorem is a consequence of (14).
(20) SemiringProduct (S) is a field of subsets of ΠX. The theorem is a consequence of (19).
Let n be a non zero natural number, X be a non-empty, n-element finite sequence, and S be a family of fields of X.

A family of measures of S is an n-element finite sequence and is defined by
(Def. 4) for every natural number i such that $i \in \operatorname{Seg} n$ holds $i t(i)$ is a measure on $S(i)$.

3. Product of Two Measures

Let X_{1}, X_{2} be sets, S_{1} be a field of subsets of X_{1}, and S_{2} be a field of subsets of X_{2}. The functor MeasRect $\left(S_{1}, S_{2}\right)$ yielding a semialgebra of sets of $X_{1} \times X_{2}$ is defined by the term
(Def. 5) the set of all $A \times B$ where A is an element of S_{1}, B is an element of S_{2}. Now we state the proposition:
(21) Let us consider a set X, and a field F of subsets of X. Then there exists a semialgebra S of sets of X such that
(i) $F=S$, and
(ii) $F=$ the field generated by S.

Let X_{1}, X_{2} be sets, S_{1} be a field of subsets of X_{1}, S_{2} be a field of subsets of X_{2}, m_{1} be a measure on S_{1}, and m_{2} be a measure on S_{2}. The functor ProdpreMeas $\left(m_{1}, m_{2}\right)$ yielding a non-negative, zeroed function from MeasRect $\left(S_{1}, S_{2}\right)$ into $\overline{\mathbb{R}}$ is defined by
(Def. 6) for every element C of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$, there exists an element A of S_{1} and there exists an element B of S_{2} such that $C=A \times B$ and $i t(C)=$ $m_{1}(A) \cdot m_{2}(B)$.
Now we state the propositions:
(22) Let us consider sets X_{1}, X_{2}, a field S_{1} of subsets of X_{1}, a field S_{2} of subsets of X_{2}, a measure m_{1} on S_{1}, a measure m_{2} on S_{2}, and sets A, B.

Suppose $A \in S_{1}$ and $B \in S_{2}$. Then (ProdpreMeas $\left.\left(m_{1}, m_{2}\right)\right)(A \times B)=$ $m_{1}(A) \cdot m_{2}(B)$.
(23) Let us consider sets X_{1}, X_{2}, a non empty family S_{1} of subsets of X_{1}, a non empty family S_{2} of subsets of X_{2}, a non empty family S of subsets of $X_{1} \times X_{2}$, and a finite sequence H of elements of S. Suppose $S=$ the set of all $A \times B$ where A is an element of S_{1}, B is an element of S_{2}. Then there exists a finite sequence F of elements of S_{1} and there exists a finite sequence G of elements of S_{2} such that len $H=\operatorname{len} F$ and len $H=$ len G and for every natural number k such that $k \in \operatorname{dom} H$ and $H(k) \neq \emptyset$ holds $H(k)=F(k) \times G(k)$.
Proof: For every natural number k such that $k \in$ dom H there exists an element A of S_{1} and there exists an element B of S_{2} such that $H(k)=$ $A \times B$. Define \mathcal{P} [natural number, set] \equiv there exists an element B of S_{2} such that $H\left(\$_{1}\right)=\$_{2} \times B$. Consider F being a finite sequence of elements of S_{1} such that $\operatorname{dom} F=$ Seg len H and for every natural number k such that $k \in \operatorname{Seg}$ len H holds $\mathcal{P}[k, F(k)$] from [4, Sch. 5]. Define $\mathcal{Q}[$ natural number, set] \equiv there exists an element A of S_{1} such that $H\left(\$_{1}\right)=A \times \$_{2}$. For every natural number k such that $k \in$ Seg len H there exists an element B of S_{2} such that $\mathcal{Q}[k, B]$. Consider G being a finite sequence of elements of S_{2} such that dom $G=$ Seg len H and for every natural number k such that $k \in \operatorname{Seg}$ len H holds $\mathcal{Q}[k, G(k)$] from [4, Sch. 5].
(24) Let us consider a set X, a non empty, semi-diff-closed, \cap-closed family S of subsets of X, and elements E_{1}, E_{2} of S. Then there exist disjoint valued finite sequences O, T, F of elements of S such that
(i) $\cup \operatorname{rng} O=E_{1} \backslash E_{2}$, and
(ii) $\bigcup \operatorname{rng} T=E_{2} \backslash E_{1}$, and
(iii) $\bigcup \operatorname{rng} F=E_{1} \cap E_{2}$, and
(iv) $\left(O^{\wedge} T\right)^{\wedge} F$ is a disjoint valued finite sequence of elements of S.

The theorem is a consequence of (9).
(25) Let us consider sets X_{1}, X_{2}, a field S_{1} of subsets of X_{1}, a field S_{2} of subsets of X_{2}, a measure m_{1} on S_{1}, a measure m_{2} on S_{2}, and elements E_{1}, E_{2} of MeasRect $\left(S_{1}, S_{2}\right)$. Suppose E_{1} misses E_{2} and $E_{1} \cup E_{2} \in$ $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. Then (ProdpreMeas $\left.\left(m_{1}, m_{2}\right)\right)\left(E_{1} \cup E_{2}\right)=$
$\left(\operatorname{ProdpreMeas}\left(m_{1}, m_{2}\right)\right)\left(E_{1}\right)+\left(\operatorname{ProdpreMeas}\left(m_{1}, m_{2}\right)\right)\left(E_{2}\right)$. The theorem is a consequence of (1) and (22).
(26) Let us consider a non empty set X, a non empty family S of subsets of X, a function f from \mathbb{N} into S, and a sequence F of partial functions from X into $\overline{\mathbb{R}}$. Suppose f is disjoint valued and for every natural number
$n, F(n)=\chi_{f(n), X}$. Let us consider an object x. Suppose $x \in X$. Then $\chi_{\bigcup f, X}(x)=\left(\lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(x)$.
(27) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and a real number r. Suppose $\operatorname{dom} f \in S$ and $0 \leqslant r$ and for every object x such that $x \in \operatorname{dom} f$ holds $f(x)=r$. Then $\int f \mathrm{~d} M=r \cdot M(\operatorname{dom} f)$.
Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and an element A of S. Now we state the propositions:
(28) Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and for every object x such that $x \in \operatorname{dom} f \backslash A$ holds $f(x)=0$ and f is non-negative. Then $\int f \mathrm{~d} M=\int f \upharpoonright A \mathrm{~d} M$. The theorem is a consequence of (27).
(29) If f is integrable on M and for every object x such that $x \in \operatorname{dom} f \backslash A$ holds $f(x)=0$, then $\int f \mathrm{~d} M=\int f\lceil A \mathrm{~d} M$. The theorem is a consequence of (27).
(30) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, a σ-measure M_{2} on S_{2}, a function D from \mathbb{N} into S_{1}, a function E from \mathbb{N} into S_{2}, an element A of S_{1}, an element B of S_{2}, a sequence F of partial functions from X_{2} into $\overline{\mathbb{R}}$, a sequence R of $\mathbb{R}^{X_{1}}$, and an element x of X_{1}. Suppose for every natural number $n, R(n)=\chi_{D(n), X_{1}}$ and for every natural number $n, F(n)=R(n)(x) \cdot \chi_{E(n), X_{2}}$ and for every natural number $n, E(n) \subseteq B$. Then there exists a sequence I of extended reals such that
(i) for every natural number $n, I(n)=M_{2}(E(n)) \cdot \chi_{D(n), X_{1}}(x)$, and
(ii) I is summable, and
(iii) $\int \lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}} \mathrm{d} M_{2}=\sum I$.

Proof: For every natural number n, $\operatorname{dom}(F(n))=X_{2}$. Reconsider $S_{3}=$ X_{2} as an element of S_{2}. For every natural number n and for every set y such that $y \in E(n)$ holds $F(n)(y)=0$ or $F(n)(y)=1$ by [10, (3)], [18, (1)], [12, (39)]. For every natural number n and for every set y such that $y \notin E(n)$ holds $F(n)(y)=0$. For every natural number $n, F(n)$ is nonnegative and $F(n)$ is measurable on B by [8, (51)], [17, (37)], [18, (29)]. For every element y of X_{2} such that $y \in B$ holds $F \# y$ is summable by [8, (51), (39)], [19, (16)], [29, (37)].

Consider I being a sequence of extended reals such that for every natural number $n, I(n)=\int F(n) \upharpoonright B \mathrm{~d} M_{2}$ and I is summable and $\int \lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}} \backslash B \mathrm{~d} M_{2}=\sum I$. For every natural number $n, I(n)=$
$M_{2}(E(n)) \cdot \chi_{D(n), X_{1}}(x)$ by [28, (61)], [10, (47), (49)], [18, (29)]. For every natural number $n, F(n)$ is measurable on S_{3} by [18, (29)], [17, (37)]. For every natural number $n, F(n)$ is without $-\infty$. For every element y of X_{2} such that $y \in S_{3}$ holds $\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}} \# y$ is convergent by [19, (38)]. For every object y such that $y \in \operatorname{dom} \lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}} \backslash B$ holds $\left(\lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(y)=0$ by [19, (43)], [16, (52)]. For every object y such that $y \in \operatorname{dom} \lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}$ holds $\left(\lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(y) \geqslant 0$ by [19, (36)], [8, (51)], [19, (10), (38)].
(31) Let us consider a non empty set X, a σ-field S of subsets of X, an element A of S, and an extended real number p. Then $X \longmapsto p$ is measurable on A. Proof: For every real number $r, A \cap \operatorname{GTE}-\operatorname{dom}(X \longmapsto p, r) \in S$ by [26, (7)], [7, (7)].

Let A, X be sets. The functor $\bar{\chi}_{A, X}$ yielding a function from X into $\overline{\mathbb{R}}$ is defined by
(Def. 7) for every object x such that $x \in X$ holds if $x \in A$, then $i t(x)=+\infty$ and if $x \notin A$, then $i t(x)=0$.
Now we state the proposition:
(32) Let us consider a non empty set X, a σ-field S of subsets of X, and elements A, B of S. Then $\bar{\chi}_{A, X}$ is measurable on B.
Let X, A be sets. Let us observe that $\bar{\chi}_{A, X}$ is non-negative.
(33) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and an element A of S. Then
(i) if $M(A) \neq 0$, then $\int \bar{\chi}_{A, X} \mathrm{~d} M=+\infty$, and
(ii) if $M(A)=0$, then $\int \bar{\chi}_{A, X} \mathrm{~d} M=0$.

Proof: Reconsider $X_{3}=X$ as an element of S. Reconsider $X_{2}=X_{3} \backslash A$ as an element of S. Reconsider $F=\bar{\chi}_{A, X} \upharpoonright A$ as a partial function from X to $\overline{\mathbb{R}}$. Reconsider $O=\bar{\chi}_{A, X} \upharpoonright X_{2}$ as a partial function from X to $\overline{\mathbb{R}}$. Reconsider $T=\bar{\chi}_{A, X} \upharpoonright\left(X_{2} \cup A\right)$ as a partial function from X to $\overline{\mathbb{R}} . \int F \mathrm{~d} M=0 . O$ is measurable on X_{2}. For every element x of X such that $x \in \operatorname{dom}\left(\bar{\chi}_{A, X} \upharpoonright X_{2}\right)$ holds $\left(\bar{\chi}_{A, X} \upharpoonright X_{2}\right)(x)=0$ by [10, (47)]. $\int T \mathrm{~d} M=\int O \mathrm{~d} M+0$.
(34) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, and a disjoint valued function K from \mathbb{N} into $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. Suppose $\bigcup K \in \operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. Then (ProdpreMeas $\left.\left(M_{1}, M_{2}\right)\right)(\bigcup K)=$ $\bar{\sum}\left(\right.$ ProdpreMeas $\left.\left(M_{1}, M_{2}\right) \cdot K\right)$.
Proof: Consider A being an element of S_{1}, B being an element of S_{2} such that $\cup K=A \times B$. Consider P being an element of S_{1}, Q being an element of S_{2} such that $\cup K=P \times Q$ and (ProdpreMeas $\left.\left(M_{1}, M_{2}\right)\right)(\bigcup K)=M_{1}(P)$.
$M_{2}(Q)$. Define $\mathcal{F}($ object $)=\chi_{K\left(\$_{1}\right), X_{1} \times X_{2}}$. Consider X_{6} being a sequence of partial functions from $X_{1} \times X_{2}$ into \mathbb{R} such that for every natural number $n, X_{6}(n)=\mathcal{F}(n)$ from [24, Sch. 1]. Define \mathcal{P} [natural number, object] \equiv $\$_{2}=\pi_{1}\left(K\left(\$_{1}\right)\right)$. For every element i of \mathbb{N}, there exists an element A of S_{1} such that $\mathcal{P}[i, A]$ by [2, (9)], [7, (7)]. Consider D being a function from \mathbb{N} into S_{1} such that for every element i of $\mathbb{N}, \mathcal{P}[i, D(i)]$ from [11, Sch. 3]. Define \mathcal{Q} [natural number, object] $\equiv \$_{2}=\pi_{2}\left(K\left(\$_{1}\right)\right)$. For every element i of \mathbb{N}, there exists an element B of S_{2} such that $\mathcal{Q}[i, B]$ by [2, (9)], [7, (7)].

Consider E being a function from \mathbb{N} into S_{2} such that for every element i of $\mathbb{N}, \mathcal{Q}[i, E(i)]$ from [11, Sch. 3]. Define $\mathcal{O}($ object $)=\chi_{D\left(\$_{1}\right), X_{1}}$. Consider X_{7} being a sequence of partial functions from X_{1} into $\overline{\mathbb{R}}$ such that for every natural number $n, X_{7}(n)=\mathcal{O}(n)$ from [24, Sch. 1]. Define \mathcal{T} (object) $=\chi_{E\left(\$_{1}\right), X_{2}}$. Consider X_{4} being a sequence of partial functions from X_{2} into $\overline{\mathbb{R}}$ such that for every natural number $n, X_{4}(n)=\mathcal{T}(n)$ from [24, Sch. 1]. For every natural number n and for every objects x, y such that $x \in X_{1}$ and $y \in X_{2}$ holds $X_{6}(n)(x, y)=X_{7}(n)(x) \cdot X_{4}(n)(y)$ by [14, (87)], [2, (9)], (2). (ProdpreMeas $\left.\left(M_{1}, M_{2}\right)\right)(\cup K)=M_{1}(A) \cdot M_{2}(B)$ by [14, (110)]. Reconsider $C_{1}=\chi_{A \times B, X_{1} \times X_{2}}$ as a function from $X_{1} \times X_{2}$ into $\overline{\mathbb{R}}$. For every element x of $X_{1}, M_{2}(B) \cdot \chi_{A, X_{1}}(x)=\int \operatorname{curry}\left(C_{1}, x\right) \mathrm{d} M_{2}$ by (2), [13, (5)], [19, (14)], [23, (4)]. For every object n such that $n \in \mathbb{N}$ holds $X_{7}(n) \in \mathbb{R}^{X_{1}}$ by [12, (39)]. Reconsider $R_{1}=X_{7}$ as a sequence of $\mathbb{R}^{X_{1}}$. For every natural number $n, D(n) \subseteq A$ and $E(n) \subseteq B$ by [2, (10)], [1, (1)]. For every element x of X_{1}, there exists a sequence X_{5} of partial functions from X_{2} into $\overline{\mathbb{R}}$ and there exists a sequence I of extended reals such that for every natural number $n, X_{5}(n)=R_{1}(n)(x) \cdot \chi_{E(n), X_{2}}$ and for every natural number $n, I(n)=M_{2}(E(n)) \cdot \chi_{D(n), X_{1}}(x)$ and I is summable and $\int \lim \left(\sum_{\alpha=0}^{\kappa} X_{5}(\alpha)\right)_{\kappa \in \mathbb{N}} \mathrm{d} M_{2}=\sum I$ by [13, (45)], (30).

Reconsider $L_{1}=\lim \left(\sum_{\alpha=0}^{\kappa} X_{6}(\alpha)\right)_{\kappa \in \mathbb{N}}$ as a function from $X_{1} \times$ X_{2} into $\overline{\mathbb{R}}$. For every element x of X_{1} and for every element y of X_{2}, $\left(\operatorname{curry}\left(C_{1}, x\right)\right)(y)=\left(\operatorname{curry}\left(L_{1}, x\right)\right)(y)$. For every element x of $X_{1}, \operatorname{curry}\left(C_{1}\right.$, $x)=\operatorname{curry}\left(L_{1}, x\right)$. For every element x of $X_{1}, M_{2}(B) \cdot \chi_{A, X_{1}}(x)=\int \operatorname{curry}$ $\left(L_{1}, x\right) \mathrm{d} M_{2}$. For every element x of X_{1}, there exists a sequence I of extended reals such that for every natural number $n, I(n)=M_{2}(E(n))$. $\chi_{D(n), X_{1}}(x)$ and $M_{2}(B) \cdot \chi_{A, X_{1}}(x)=\sum I$ by [8, (51)], [19, (38), (29), (30)]. Define $\mathcal{R}\left[\right.$ natural number, object] \equiv if $M_{2}\left(E\left(\$_{1}\right)\right)=+\infty$, then $\$_{2}=\bar{\chi}_{D\left(\$_{1}\right), X_{1}}$ and if $M_{2}\left(E\left(\$_{1}\right)\right) \neq+\infty$, then there exists a real number m_{2} such that $m_{2}=M_{2}\left(E\left(\$_{1}\right)\right)$ and $\$_{2}=m_{2} \cdot \chi_{D\left(\$_{1}\right), X_{1}}$. For every element n of \mathbb{N}, there exists an element y of $X_{1} \rightarrow \overline{\mathbb{R}}$ such that $\mathcal{R}[n, y]$ by [13, (45)], [8, (51)]. Consider F_{1} being a function from \mathbb{N} into $X_{1} \dot{\rightarrow} \overline{\mathbb{R}}$ such that for every element n of $\mathbb{N}, \mathcal{R}\left[n, F_{1}(n)\right]$ from [11, Sch. 3]. For every natural number
n, $\operatorname{dom}\left(F_{1}(n)\right)=X_{1}$. For every natural number $n, F_{1}(n)$ is non-negative by [8, (51)]. For every natural numbers $n, m, \operatorname{dom}\left(F_{1}(n)\right)=\operatorname{dom}\left(F_{1}(m)\right)$.

Reconsider $X_{3}=X_{1}$ as an element of S_{1}. For every natural number $n, F_{1}(n)$ is non-negative and $F_{1}(n)$ is measurable on A and $F_{1}(n)$ is measurable on X_{3} by (32), [18, (29)], [17, (37)]. For every element x of X_{1} such that $x \in A$ holds $F_{1} \# x$ is summable by [8 , (51), (39)], [20, (2)]. Consider J being a sequence of extended reals such that for every natural number $n, J(n)=\int F_{1}(n) \upharpoonright A \mathrm{~d} M_{1}$ and J is summable and $\int \lim \left(\sum_{\alpha=0}^{\kappa} F_{1}(\alpha)\right)_{\kappa \in \mathbb{N}} \upharpoonright A \mathrm{~d} M_{1}=\sum J$. For every natural number $n, J(n)=$ $\int F_{1}(n) \mathrm{d} M_{1}$. Reconsider $X_{3}=X_{1}$ as an element of S_{1}. For every element n of $\mathbb{N}, J(n)=\left(\operatorname{ProdpreMeas}\left(M_{1}, M_{2}\right) \cdot K\right)(n)$ by $(33),[8,(51)],[18,(29)]$, [16, (86), (88)]. For every element x of $X_{1},\left(\lim \left(\sum_{\alpha=0}^{\kappa} F_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(x) \geqslant 0$ by [19, (38)], [29, (37), (23)], [8, (51)]. For every natural number $n, F_{1}(n)$ is measurable on X_{3} and $F_{1}(n)$ is without $-\infty$. For every object x such that $x \in \operatorname{dom} \lim \left(\sum_{\alpha=0}^{\kappa} F_{1}(\alpha)\right)_{\kappa \in \mathbb{N}} \backslash A$ holds $\left(\lim \left(\sum_{\alpha=0}^{\kappa} F_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(x)=0$ by [19, (30), (32)], [16, (52)]. $\int \lim \left(\sum_{\alpha=0}^{\kappa} F_{1}(\alpha)\right)_{\kappa \in \mathbb{N}} \mathrm{d} M_{1}=$ $\int \lim \left(\sum_{\alpha=0}^{\kappa} F_{1}(\alpha)\right)_{\kappa \in \mathbb{N}} \upharpoonright A \mathrm{~d} M_{1} . \int \lim \left(\sum_{\alpha=0}^{\kappa} F_{1}(\alpha)\right)_{\kappa \in \mathbb{N}} \mathrm{d} M_{1}=M_{1}(A) \cdot M_{2}(B)$ by [11, (63)], [19, (30), (32)], [8, (51)].
(35) Let us consider a without $-\infty$ finite sequence f of elements of $\overline{\mathbb{R}}$, and a without $-\infty$ sequence s of extended reals. Suppose for every object n such that $n \in \operatorname{dom} f$ holds $f(n)=s(n)$.
Then $\sum f+s(0)=\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(\operatorname{len} f)$.
Proof: Consider F being a sequence of $\overline{\mathbb{R}}$ such that $\sum f=F(\operatorname{len} f)$ and $F(0)=0$ and for every natural number i such that $i<\operatorname{len} f$ holds $F(i+1)=F(i)+f(i+1)$. Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant \operatorname{len} f$, then $F\left(\$_{1}\right)+s(0)=\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)$ and $F\left(\$_{1}\right) \neq-\infty$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1$] by [3, (11)], [27, (25)], [16, (10)], [3, (13)]. For every natural number $k, \mathcal{P}[k$] from [3, Sch. 2].
(36) Let us consider a non-negative finite sequence f of elements of $\overline{\mathbb{R}}$, and a sequence s of extended reals. Suppose for every object n such that $n \in$ dom f holds $f(n)=s(n)$ and for every element n of \mathbb{N} such that $n \notin \operatorname{dom} f$ holds $s(n)=0$. Then
(i) $\sum f=\sum s$, and
(ii) $\sum f=\bar{\sum} s$.

Proof: For every object n such that $n \in \operatorname{dom} s$ holds $0 \leqslant s(n)$ by [8, (51)]. $\sum f+s(0)=\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}($ len $f)$. Define \mathcal{P} [natural number] \equiv $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(\operatorname{len} f)=\left(\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}} \uparrow\right.$ len $\left.f\right)\left(\$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [27, (25)]. For every natural number $k, \mathcal{P}[k]$ from [3, Sch. 2].
(37) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, a σ-measure M_{2} on S_{2}, and a disjoint valued finite sequence F of elements of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. Suppose $\bigcup F \in \operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. Then (ProdpreMeas $\left.\left(M_{1}, M_{2}\right)\right)(\bigcup F)=$ $\sum\left(\right.$ ProdpreMeas $\left.\left(M_{1}, M_{2}\right) \cdot F\right)$.
Proof: Set $S=\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. Define $\mathcal{P}\left[\right.$ object, object] \equiv if $\$_{1} \in$ $\operatorname{dom} F$, then $\$_{2}=F\left(\$_{1}\right)$ and if $\$_{1} \notin \operatorname{dom} F$, then $\$_{2}=\emptyset$. For every element n of \mathbb{N}, there exists an element y of S such that $\mathcal{P}[n, y]$ by [10, (3)]. Consider G being a function from \mathbb{N} into S such that for every element n of $\mathbb{N}, \mathcal{P}[n, G(n)]$ from [11, Sch. 3]. For every object x such that $x \notin$ dom F holds $G(x)=\emptyset$. For every objects x, y such that $x \neq y$ holds $G(x)$ misses $G(y)$. (ProdpreMeas $\left.\left(M_{1}, M_{2}\right)\right)(\bigcup F)=\bar{\sum}\left(\operatorname{ProdpreMeas}\left(M_{1}, M_{2}\right)\right.$. $G)$. For every object n such that $n \in \operatorname{dom}\left(\operatorname{ProdpreMeas}\left(M_{1}, M_{2}\right) \cdot F\right)$ holds $\left(\operatorname{ProdpreMeas}\left(M_{1}, M_{2}\right) \cdot F\right)(n)=\left(\operatorname{ProdpreMeas}\left(M_{1}, M_{2}\right) \cdot G\right)(n)$ by [10, (11), (12), (13)]. For every element n of \mathbb{N} such that $n \notin \operatorname{dom}$ (ProdpreMeas $\left.\left(M_{1}, M_{2}\right) \cdot F\right)$ holds (ProdpreMeas $\left.\left(M_{1}, M_{2}\right) \cdot G\right)(n)=0$ by [10, (3), (11), (13)].
(38) Let us consider non empty sets X_{1}, X_{2}, a σ-field S_{1} of subsets of X_{1}, a σ-field S_{2} of subsets of X_{2}, a σ-measure M_{1} on S_{1}, and a σ-measure M_{2} on S_{2}. Then ProdpreMeas $\left(M_{1}, M_{2}\right)$ is a pre-measure of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$. The theorem is a consequence of (37) and (34).
Let X_{1}, X_{2} be non empty sets, S_{1} be a σ-field of subsets of X_{1}, S_{2} be a σ field of subsets of X_{2}, M_{1} be a σ-measure on S_{1}, and M_{2} be a σ-measure on S_{2}. Let us observe that the functor $\operatorname{ProdpreMeas}\left(M_{1}, M_{2}\right)$ yields a pre-measure of $\operatorname{MeasRect}\left(S_{1}, S_{2}\right)$.

References

[1] Grzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207-230, 2008. doi 10.2478/v10037-008-0027-x.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3): 537-541, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences Formalized Mathematics, 1(1):107-114, 1990.
[5] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[6] Heinz Bauer. Measure and Integration Theory. Walter de Gruyter Inc.
[7] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[8] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[9] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
[10] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[11] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[12] Czesław Byliński. Basic functions and operations on functions Formalized Mathematics, 1(1):245-254, 1990.
[13] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[14] Czesław Bylinski. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[15] Noboru Endou. Construction of measure from semialgebra of sets. Formalized Mathematics, 23(4):309-323, 2015. doi 10.1515/forma-2015-0025
[16] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. doi 10.2478/v10037-006-0008-x.
[17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions Formalized Mathematics, 9(3):495-500, 2001.
[18] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions Formalized Mathematics, 9(3):525-529, 2001.
[19] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi 10.2478/v10037-008-0023-1.
[20] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Hopf extension theorem of measure. Formalized Mathematics, 17(2):157-162, 2009. doi 10.2478/v10037-009-0018-6
[21] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2 edition, 1999.
[22] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.
[23] Andrzej Nędzusiak. σ-fields and probability Formalized Mathematics, 1(2):401-407, 1990.
[24] Beata Perkowska. Functional sequence from a domain to a domain Formalized Mathematics, 3(1):17-21, 1992.
[25] M.M. Rao. Measure Theory and Integration. Marcel Dekker, 2nd edition, 2004.
[26] Andrzej Trybulec. Binary operations applied to functions Formalized Mathematics, 1 (2):329-334, 1990.
[27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
[28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[29] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. doi 10.2478/v10037-007-0026-3.

Received December 31, 2015

