Lattice of \mathbb{Z}-module

Yuichi Futa
Japan Advanced Institute of Science and Technology
Ishikawa, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize the definition of lattice of \mathbb{Z}-module and its properties in the Mizar system 5. We formally prove that scalar products in lattices are bilinear forms over the field of real numbers \mathbb{R}. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of \mathbb{Z}-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14, and cryptographic systems with lattices 15 and coding theory [9.

MSC: 15A03 15A63 11E39 03B35
Keywords: \mathbb{Z}-lattice; Gram matrix; integral \mathbb{Z}-lattice; positive definite \mathbb{Z}-lattice
MML identifier: ZMODLAT1, version: 8.1.04 5.36.1267

1. Definition of Lattices of \mathbb{Z}-module

Now we state the proposition:
(1) Let us consider non empty sets D, E, natural numbers n, m, and a matrix M over D of dimension $n \times m$. Suppose for every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j} \in E$. Then M is a matrix over E of dimension $n \times m$.

Let a, b be elements of $\mathbb{F}_{\mathbb{Q}}$ and x, y be rational numbers. We identify $x+y$ with $a+b$ and $x \cdot y$ with $a \cdot b$. Let F be a 1 -sorted structure. We consider structures of \mathbb{Z}-lattice over F which extend vector space structures over F and are systems

〈a carrier, an addition, a zero, a left multiplication,

a scalar product \rangle

where the carrier is a set, the addition is a binary operation on the carrier, the zero is an element of the carrier, the left multiplication is a function from (the carrier of $F) \times($ the carrier $)$ into the carrier, the scalar product is a function from (the carrier) \times (the carrier) into the carrier of \mathbb{R}_{F}.

Note that there exists a structure of \mathbb{Z}-lattice over F which is strict and non empty.

Let D be a non empty set, Z be an element of D, a be a binary operation on D, m be a function from (the carrier of $F) \times D$ into D, and s be a function from $D \times D$ into the carrier of \mathbb{R}_{F}. One can check that $\langle D, a, Z, m, s\rangle$ is non empty.

Let X be a non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R} and x, y be vectors of X. The functor $\langle x, y\rangle$ yielding an element of \mathbb{R}_{F} is defined by the term
(Def. 1) (the scalar product of $X)(\langle x, y\rangle)$.
Let x be a vector of X. The functor $\|x\|$ yielding an element of \mathbb{R}_{F} is defined by the term
(Def. 2) $\langle x, x\rangle$.
Let X be a non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R}. We say that X is \mathbb{Z}-lattice-like if and only if
(Def. 3) for every vector x of X such that for every vector y of $X,\langle x, y\rangle=0$ holds $x=0_{X}$ and for every vectors x, y of $X,\langle x, y\rangle=\langle y, x\rangle$ and for every vectors x, y, z of X and for every element a of $\mathbb{Z}^{\mathrm{R}},\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ and $\langle a \cdot x, y\rangle=a \cdot\langle x, y\rangle$.
Let V be a \mathbb{Z}-module and s be a function from (the carrier of $V) \times($ the carrier of V) into the carrier of \mathbb{R}_{F}. The functor $\operatorname{GenLat}(V, s)$ yielding a non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R} is defined by the term
(Def. 4) $\left\langle\right.$ the carrier of V, the addition of $V, 0_{V}$, the left multiplication of $\left.V, s\right\rangle$.
Let us note that there exists a non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R} which is vector distributive, scalar distributive, scalar associative, scalar unital, Abelian, add-associative, right zeroed, right complementable, and strict.

Let V be a \mathbb{Z}-module and s be a function from (the carrier of $V) \times($ the carrier of V) into the carrier of \mathbb{R}_{F}. One can verify that $\operatorname{GenLat}(V, s)$ is Abelian, addassociative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, and scalar unital.

Let us consider a \mathbb{Z}-module V and a function s from (the carrier of V) \times (the carrier of V) into the carrier of \mathbb{R}_{F}. Now we state the propositions:
(2) $\operatorname{GenLat}(V, s)$ is a submodule of V.
(3) V is a submodule of $\operatorname{GenLat}(V, s)$.

Note that there exists an Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R} which is free.

Let V be a free \mathbb{Z}-module and s be a function from (the carrier of V) \times (the carrier of V) into the carrier of \mathbb{R}_{F}. Let us observe that $\operatorname{GenLat}(V, s)$ is free and there exists an Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R} which is torsion-free.

Now we state the proposition:
(4) Let us consider a finite rank, free \mathbb{Z}-module V, and a function s from (the carrier of $V) \times($ the carrier of $V)$ into the carrier of \mathbb{R}_{F}.
Then GenLat (V, s) is finite rank. The theorem is a consequence of (2).
Let us note that there exists a free, Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R} which is finite rank.

Let V be a finite rank, free \mathbb{Z}-module and s be a function from (the carrier of $V) \times($ the carrier of $V)$ into the carrier of \mathbb{R}_{F}. Let us note that $\operatorname{GenLat}(V, s)$ is finite rank.

Now we state the proposition:
(5) Let us consider a finite rank, free \mathbb{Z}-module V, and a function f from (the carrier of $\left.\mathbf{0}_{V}\right) \times\left(\right.$ the carrier of $\left.\mathbf{0}_{V}\right)$ into the carrier of \mathbb{R}_{F}. Suppose $f=\left(\right.$ the carrier of $\left.\mathbf{0}_{V}\right) \times\left(\right.$ the carrier of $\left.\mathbf{0}_{V}\right) \longmapsto 0_{\mathbb{R}_{F}}$. Then $\operatorname{GenLat}\left(\mathbf{0}_{V}, f\right)$ is \mathbb{Z}-lattice-like.
Proof: Set $X=\operatorname{GenLat}\left(\mathbf{0}_{V}, f\right)$. For every vector x of X such that for every vector y of $X,\langle x, y\rangle=0$ holds $x=0_{X}$ by [10, (26)]. For every vectors x, y, z of X and for every element a of $\mathbb{Z}^{\mathrm{R}},\langle x, y\rangle=\langle y, x\rangle$ and $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ and $\langle a \cdot x, y\rangle=a \cdot\langle x, y\rangle$ by [16, (7)], [8, (87)].

Note that there exists a non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R} which is \mathbb{Z}-lattice-like and there exists a finite rank, free, Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R} which is \mathbb{Z}-lattice-like.

There exists a finite rank, free, \mathbb{Z}-lattice-like, Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R} which is strict.

A \mathbb{Z}-lattice is a finite rank, free, \mathbb{Z}-lattice-like, Abelian, add-associative,
right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z}-lattice over \mathbb{Z}^{R}. Now we state the proposition:
(6) Let us consider a non trivial, torsion-free \mathbb{Z}-module V, a submodule Z of V, a non zero vector v of V, and a function f from (the carrier of $Z) \times($ the carrier of $Z)$ into the carrier of \mathbb{R}_{F}. Suppose $Z=\operatorname{Lin}(\{v\})$ and for every vectors v_{1}, v_{2} of Z and for every elements a, b of \mathbb{Z}^{R} such that $v_{1}=a \cdot v$ and $v_{2}=b \cdot v$ holds $f\left(v_{1}, v_{2}\right)=a \cdot b$. Then $\operatorname{GenLat}(Z, f)$ is \mathbb{Z}-lattice-like.
Proof: Set $L=\operatorname{GenLat}(Z, f) . L$ is \mathbb{Z}-lattice-like by [10, (26)], [12, (19)], [10, (1)], [12, (21)].
Observe that there exists a \mathbb{Z}-lattice which is non trivial.
Let V be a torsion-free \mathbb{Z}-module. Let us observe that \mathbb{Z} - $\operatorname{MQVectSp}(V)$ is scalar distributive, vector distributive, scalar associative, scalar unital, addassociative, right zeroed, right complementable, and Abelian as a non empty vector space structure over $\mathbb{F}_{\mathbb{Q}}$.

Now we state the propositions:
(7) Let us consider a \mathbb{Z}-lattice L, and vectors v, u of L. Then
(i) $\langle v,-u\rangle=-\langle v, u\rangle$, and
(ii) $\langle-v, u\rangle=-\langle v, u\rangle$.
(8) Let us consider a \mathbb{Z}-lattice L, and vectors v, u, w of L. Then $\langle v, u+w\rangle=$ $\langle v, u\rangle+\langle v, w\rangle$.
(9) Let us consider a \mathbb{Z}-lattice L, vectors v, u of L, and an element a of \mathbb{Z}^{R}. Then $\langle v, a \cdot u\rangle=a \cdot\langle v, u\rangle$.
(10) Let us consider a \mathbb{Z}-lattice L, vectors v, u, w of L, and elements a, b of \mathbb{Z}^{R}. Then
(i) $\langle a \cdot v+b \cdot u, w\rangle=a \cdot\langle v, w\rangle+b \cdot\langle u, w\rangle$, and
(ii) $\langle v, a \cdot u+b \cdot w\rangle=a \cdot\langle v, u\rangle+b \cdot\langle v, w\rangle$.

The theorem is a consequence of (8) and (9).
(11) Let us consider a \mathbb{Z}-lattice L, and vectors v, u, w of L. Then
(i) $\langle v-u, w\rangle=\langle v, w\rangle-\langle u, w\rangle$, and
(ii) $\langle v, u-w\rangle=\langle v, u\rangle-\langle v, w\rangle$.

The theorem is a consequence of (8) and (9).
(12) Let us consider a \mathbb{Z}-lattice L, and a vector v of L. Then
(i) $\left\langle v, 0_{L}\right\rangle=0$, and
(ii) $\left\langle 0_{L}, v\right\rangle=0$.

The theorem is a consequence of (11).
Let X be a \mathbb{Z}-lattice. We say that X is integral if and only if
(Def. 5) for every vectors v, u of $X,\langle v, u\rangle \in \mathbb{Z}$.
Observe that there exists a \mathbb{Z}-lattice which is integral.
Let L be an integral \mathbb{Z}-lattice and v, u be vectors of L. Let us observe that $\langle v, u\rangle$ is integer.

Let v be a vector of L. Let us note that $\|v\|$ is integer.
Now we state the propositions:
(13) Let us consider a \mathbb{Z}-lattice L, a finite subset I of L, and a vector u of L. Suppose for every vector v of L such that $v \in I$ holds $\langle v, u\rangle \in \mathbb{Z}$. Let us consider a vector v of L. If $v \in \operatorname{Lin}(I)$, then $\langle v, u\rangle \in \mathbb{Z}$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite subset I of L such that $\overline{\bar{I}}=\$_{1}$ and for every vector v of L such that $v \in I$ holds $\langle v, u\rangle \in \mathbb{Z}$ for every vector v of L such that $v \in \operatorname{Lin}(I)$ holds $\langle v, u\rangle \in \mathbb{Z} . \mathcal{P}[0]$ by [11, (67)], (12). For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [8, (40)], [11, (72)], [1, (44)], [8, (31)]. For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 2].
(14) Let us consider a \mathbb{Z}-lattice L, and a basis I of L. Suppose for every vectors v, u of L such that $v, u \in I$ holds $\langle v, u\rangle \in \mathbb{Z}$. Let us consider vectors v, u of L. Then $\langle v, u\rangle \in \mathbb{Z}$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite subset I of L such that $\overline{\bar{I}}=\$_{1}$ and for every vectors v, u of L such that $v, u \in I$ holds $\langle v, u\rangle \in \mathbb{Z}$ for every vectors v, u of L such that $v, u \in \operatorname{Lin}(I)$ holds $\langle v, u\rangle \in \mathbb{Z}$. $\mathcal{P}[0]$ by [11, (67)], (12). For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [8, (40)], [11, (72)], [1, (44)], [8, (31)]. For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 2].
(15) Let us consider a \mathbb{Z}-lattice L, and a basis I of L. Suppose for every vectors v, u of L such that $v, u \in I$ holds $\langle v, u\rangle \in \mathbb{Z}$. Then L is integral.
Let X be a \mathbb{Z}-lattice. We say that X is positive definite if and only if
(Def. 6) for every vector v of X such that $v \neq 0_{X}$ holds $\|v\|>0$.
Let us observe that there exists a \mathbb{Z}-lattice which is non trivial, integral, and positive definite.

Let us consider a positive definite \mathbb{Z}-lattice L and a vector v of L. Now we state the propositions:
(16) $\|v\|=0$ if and only if $v=0_{L}$.
(17) $\|v\| \geqslant 0$. The theorem is a consequence of (12).

Let X be an integral \mathbb{Z}-lattice. We say that X is even if and only if (Def. 7) for every vector v of $X,\|v\|$ is even.

One can verify that there exists an integral \mathbb{Z}-lattice which is even.
Let L be a \mathbb{Z}-lattice. We introduce the notation $\operatorname{dim}(L)$ as a synonym of $\operatorname{rank} L$.

Let v, u be vectors of L. We say that v, u are orthogonal if and only if (Def. 8) $\langle v, u\rangle=0$.

Let us note that the predicate is symmetric.
Let us consider a \mathbb{Z}-lattice L and vectors v, u of L.
Let us assume that v, u are orthogonal. Now we state the propositions:
(18) (i) $v,-u$ are orthogonal, and
(ii) $-v, u$ are orthogonal, and
(iii) $-v,-u$ are orthogonal.

The theorem is a consequence of (7).
(19) $\|v+u\|=\|v\|+\|u\|$. The theorem is a consequence of (8).
(20) $\quad\|v-u\|=\|v\|+\|u\|$. The theorem is a consequence of (11).

Let L be a \mathbb{Z}-lattice.
A \mathbb{Z}-sublattice of L is a \mathbb{Z}-lattice and is defined by
(Def. 9) the carrier of it \subseteq the carrier of L and $0_{i t}=0_{L}$ and the addition of $i t=($ the addition of $L) \upharpoonright($ the carrier of $i t)$ and the left multiplication of $i t=($ the left multiplication of $L) \upharpoonright\left(\left(\right.\right.$ the carrier of $\left.\mathbb{Z}^{\mathrm{R}}\right) \times($ the carrier of $\left.i t)\right)$ and the scalar product of $i t=($ the scalar product of $L) \upharpoonright$ (the carrier of $i t)$.
Now we state the propositions:
(21) Let us consider a \mathbb{Z}-lattice L. Then every \mathbb{Z}-sublattice of L is a submodule of L.
(22) Let us consider an object x, a \mathbb{Z}-lattice L, and \mathbb{Z}-sublattices L_{1}, L_{2} of L. Suppose $x \in L_{1}$ and L_{1} is a \mathbb{Z}-sublattice of L_{2}. Then $x \in L_{2}$. The theorem is a consequence of (21).
(23) Let us consider an object x, a \mathbb{Z}-lattice L, and a \mathbb{Z}-sublattice L_{1} of L. If $x \in L_{1}$, then $x \in L$. The theorem is a consequence of (21).
(24) Let us consider a \mathbb{Z}-lattice L, and a \mathbb{Z}-sublattice L_{1} of L. Then every vector of L_{1} is a vector of L. The theorem is a consequence of (21).
(25) Let us consider a \mathbb{Z}-lattice L, and \mathbb{Z}-sublattices L_{1}, L_{2} of L. Then $0_{L_{1}}=$ $0_{L_{2}}$.
(26) Let us consider a \mathbb{Z}-lattice L, a \mathbb{Z}-sublattice L_{1} of L, vectors v_{1}, v_{2} of L, and vectors w_{1}, w_{2} of L_{1}. If $w_{1}=v_{1}$ and $w_{2}=v_{2}$, then $w_{1}+w_{2}=v_{1}+v_{2}$. The theorem is a consequence of (21).
(27) Let us consider a \mathbb{Z}-lattice L, a \mathbb{Z}-sublattice L_{1} of L, a vector v of L, a vector w of L_{1}, and an element a of \mathbb{Z}^{R}. If $w=v$, then $a \cdot w=a \cdot v$. The theorem is a consequence of (21).
(28) Let us consider a \mathbb{Z}-lattice L, a \mathbb{Z}-sublattice L_{1} of L, a vector v of L, and a vector w of L_{1}. If $w=v$, then $-w=-v$. The theorem is a consequence of (21).
(29) Let us consider a \mathbb{Z}-lattice L, a \mathbb{Z}-sublattice L_{1} of L, vectors v_{1}, v_{2} of L, and vectors w_{1}, w_{2} of L_{1}. If $w_{1}=v_{1}$ and $w_{2}=v_{2}$, then $w_{1}-w_{2}=v_{1}-v_{2}$. The theorem is a consequence of (21).
(30) Let us consider a \mathbb{Z}-lattice L, and a \mathbb{Z}-sublattice L_{1} of L. Then $0_{L} \in L_{1}$. The theorem is a consequence of (21).
(31) Let us consider a \mathbb{Z}-lattice L, and \mathbb{Z}-sublattices L_{1}, L_{2} of L. Then $0_{L_{1}} \in$ L_{2}. The theorem is a consequence of (21).
(32) Let us consider a \mathbb{Z}-lattice L, and a \mathbb{Z}-sublattice L_{1} of L. Then $0_{L_{1}} \in L$. The theorem is a consequence of (21).
(33) Let us consider a \mathbb{Z}-lattice L, a \mathbb{Z}-sublattice L_{1} of L, and vectors v_{1}, v_{2} of L. If $v_{1}, v_{2} \in L_{1}$, then $v_{1}+v_{2} \in L_{1}$. The theorem is a consequence of (21).
(34) Let us consider a \mathbb{Z}-lattice L, a \mathbb{Z}-sublattice L_{1} of L, a vector v of L, and an element a of \mathbb{Z}^{R}. If $v \in L_{1}$, then $a \cdot v \in L_{1}$. The theorem is a consequence of (21).
(35) Let us consider a \mathbb{Z}-lattice L, a \mathbb{Z}-sublattice L_{1} of L, and a vector v of L. If $v \in L_{1}$, then $-v \in L_{1}$. The theorem is a consequence of (21).
(36) Let us consider a \mathbb{Z}-lattice L, a \mathbb{Z}-sublattice L_{1} of L, and vectors v_{1}, v_{2} of L. If $v_{1}, v_{2} \in L_{1}$, then $v_{1}-v_{2} \in L_{1}$. The theorem is a consequence of (21).
(37) Let us consider a positive definite \mathbb{Z}-lattice L, a non empty set A, an element z of A, a binary operation a on A, a function m from (the carrier of $\left.\mathbb{Z}^{\mathrm{R}}\right) \times A$ into A, and a function s from $A \times A$ into the carrier of \mathbb{R}_{F}. Suppose A is a linearly closed subset of L and $z=0_{L}$ and $a=$ (the addition of $L) \upharpoonright A$ and $m=($ the left multiplication of $L) \upharpoonright\left(\left(\right.\right.$ the carrier of $\left.\left.\mathbb{Z}^{\mathrm{R}}\right) \times A\right)$ and $s=($ the scalar product of $L) \upharpoonright A$. Then $\langle A, a, z, m, s\rangle$ is a \mathbb{Z}-sublattice of L.
Proof: Set $L_{1}=\langle A, a, z, m, s\rangle$. Set $V_{1}=\langle A, a, z, m\rangle . L_{1}$ is a submodule of $V_{1} . L_{1}$ is \mathbb{Z}-lattice-like by [10, (25)], [7, (49)], [10, (28), (29)].
(38) Let us consider a \mathbb{Z}-lattice L, a \mathbb{Z}-sublattice L_{1} of L, vectors w_{1}, w_{2} of L_{1}, and vectors v_{1}, v_{2} of L. Suppose $w_{1}=v_{1}$ and $w_{2}=v_{2}$. Then $\left\langle w_{1}, w_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$.

Let L be an integral \mathbb{Z}-lattice. Note that every \mathbb{Z}-sublattice of L is integral. Let L be a positive definite \mathbb{Z}-lattice. Let us observe that every \mathbb{Z}-sublattice of L is positive definite.

Let V, W be vector space structures over \mathbb{Z}^{R}.
An \mathbb{R}-form of V and W is a function from (the carrier of V) \times (the carrier of W) into the carrier of \mathbb{R}_{F}. The functor $\operatorname{NulFrForm}(V, W)$ yielding an \mathbb{R}-form of V and W is defined by the term
(Def. 10) (the carrier of $V) \times($ the carrier of $W) \longmapsto 0_{\mathbb{R}_{F}}$.
Let V, W be non empty vector space structures over \mathbb{Z}^{R} and f, g be \mathbb{R}-forms of V and W. The functor $f+g$ yielding an \mathbb{R}-form of V and W is defined by
(Def. 11) for every vector v of V and for every vector w of $W, i t(v, w)=f(v, w)+$ $g(v, w)$.
Let f be an \mathbb{R}-form of V and W and a be an element of \mathbb{R}_{F}. The functor $a \cdot f$ yielding an \mathbb{R}-form of V and W is defined by
(Def. 12) for every vector v of V and for every vector w of $W, i t(v, w)=a \cdot f(v, w)$. The functor $-f$ yielding an \mathbb{R}-form of V and W is defined by
(Def. 13) for every vector v of V and for every vector w of W, it $(v, w)=-f(v, w)$.
One can verify that the functor $-f$ is defined by the term
(Def. 14) $\quad\left(-1_{\mathbb{R}_{F}}\right) \cdot f$.
Let f, g be \mathbb{R}-forms of V and W. The functor $f-g$ yielding an \mathbb{R}-form of V and W is defined by the term
(Def. 15) $f+-g$.
Observe that the functor $f-g$ is defined by
(Def. 16) for every vector v of V and for every vector w of $W, i t(v, w)=f(v, w)-$ $g(v, w)$.
Let us note that the functor $f+g$ is commutative.
Now we state the propositions:
(39) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and an \mathbb{R}-form f of V and W. Then $f+\operatorname{NulFrForm}(V, W)=f$.
(40) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and \mathbb{R}-forms f, g, h of V and W. Then $(f+g)+h=f+(g+h)$.
(41) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and an \mathbb{R}-form f of V and W. Then $f-f=\operatorname{NulFrForm}(V, W)$.
(42) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an element a of \mathbb{R}_{F}, and \mathbb{R}-forms f, g of V and W. Then $a \cdot(f+g)=a \cdot f+a \cdot g$.
Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, elements a, b of \mathbb{R}_{F}, and an \mathbb{R}-form f of V and W. Now we state the propositions:

$$
\begin{align*}
& \text { (43) }(a+b) \cdot f=a \cdot f+b \cdot f \text {. } \tag{43}\\
& \text { (44) }(a \cdot b) \cdot f=a \cdot(b \cdot f) \text {. } \\
& \text { (45) Let us consider non empty vector space structures } V, W \text { over } \mathbb{Z}^{\mathrm{R}} \text {, and } \\
& \text { an } \mathbb{R} \text {-form } f \text { of } V \text { and } W \text {. Then } 1_{\mathbb{R}_{F}} \cdot f=f \text {. }
\end{align*}
$$

Let V be a vector space structure over \mathbb{Z}^{R}.
An \mathbb{R}-functional of V is a function from the carrier of V into the carrier of \mathbb{R}_{F}. Let V be a non empty vector space structure over \mathbb{Z}^{R} and f, g be \mathbb{R} functionals of V. The functor $f+g$ yielding an \mathbb{R}-functional of V is defined by
(Def. 17) for every element x of $V, i t(x)=f(x)+g(x)$.
Let f be an \mathbb{R}-functional of V. The functor $-f$ yielding an \mathbb{R}-functional of V is defined by
(Def. 18) for every element x of V, it $(x)=-f(x)$.
Let f, g be \mathbb{R}-functionals of V. The functor $f-g$ yielding an \mathbb{R}-functional of V is defined by the term
(Def. 19) $f+-g$.
Let v be an element of \mathbb{R}_{F} and f be an \mathbb{R}-functional of V. The functor $v \cdot f$ yielding an \mathbb{R}-functional of V is defined by
(Def. 20) for every element x of $V, i t(x)=v \cdot f(x)$.
Let V be a vector space structure over \mathbb{Z}^{R}. The functor $0 \operatorname{FrFunctional}(V)$ yielding an \mathbb{R}-functional of V is defined by the term
(Def. 21) $\quad \Omega_{V} \longmapsto 0_{\mathbb{R}_{\mathrm{F}}}$.
Let V be a non empty vector space structure over \mathbb{Z}^{R} and F be an \mathbb{R} functional of V. We say that F is homogeneous if and only if
(Def. 22) for every vector x of V and for every scalar r of $V, F(r \cdot x)=r \cdot F(x)$.
We say that F is 0 -preserving if and only if
(Def. 23) $\quad F\left(0_{V}\right)=0_{\mathbb{R}_{\boldsymbol{F}}}$.
Let V be a \mathbb{Z}-module. Note that every \mathbb{R}-functional of V which is homogeneous is also 0 -preserving.

Let V be a non empty vector space structure over \mathbb{Z}^{R}. One can verify that $0 \operatorname{FrFunctional}(V)$ is additive and $0 \operatorname{FrFunctional}(V)$ is homogeneous and $0 \mathrm{FrFunctional}(V)$ is 0 -preserving and there exists an \mathbb{R}-functional of V which is additive, homogeneous, and 0 -preserving.

Now we state the propositions:
(46) Let us consider a non empty vector space structure V over \mathbb{Z}^{R}, and \mathbb{R}-functionals f, g of V. Then $f+g=g+f$.
(47) Let us consider a non empty vector space structure V over \mathbb{Z}^{R}, and \mathbb{R}-functionals f, g, h of V. Then $(f+g)+h=f+(g+h)$.
(48) Let us consider a non empty vector space structure V over \mathbb{Z}^{R}, and an element x of V. Then $(0 \operatorname{FrFunctional}(V))(x)=0_{\mathbb{R}_{F}}$.
Let us consider a non empty vector space structure V over \mathbb{Z}^{R} and an \mathbb{R} functional f of V. Now we state the propositions:
(49) $\quad f+0 \operatorname{FrFunctional}(V)=f$.
(50) $\quad f-f=0 \operatorname{FrFunctional}(V)$.
(51) Let us consider a non empty vector space structure V over \mathbb{Z}^{R}, an element r of \mathbb{R}_{F}, and \mathbb{R}-functionals f, g of V. Then $r \cdot(f+g)=r \cdot f+r \cdot g$.
Let us consider a non empty vector space structure V over \mathbb{Z}^{R}, elements r, s of \mathbb{R}_{F}, and an \mathbb{R}-functional f of V. Now we state the propositions:
(52) $\quad(r+s) \cdot f=r \cdot f+s \cdot f$.
(53) $(r \cdot s) \cdot f=r \cdot(s \cdot f)$.
(54) Let us consider a non empty vector space structure V over \mathbb{Z}^{R}, and an \mathbb{R}-functional f of V. Then $1_{\mathbb{R}_{F}} \cdot f=f$.
Let V be a non empty vector space structure over \mathbb{Z}^{R} and f, g be additive \mathbb{R}-functionals of V. Observe that $f+g$ is additive.

Let f be an additive \mathbb{R}-functional of V. One can check that $-f$ is additive.
Let v be an element of \mathbb{R}_{F}. Let us note that $v \cdot f$ is additive.
Let f, g be homogeneous \mathbb{R}-functionals of V. Let us observe that $f+g$ is homogeneous.

Let f be a homogeneous \mathbb{R}-functional of V. Note that $-f$ is homogeneous.
Let v be an element of \mathbb{R}_{F}. Observe that $v \cdot f$ is homogeneous.
Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathrm{R}}, f$ be an \mathbb{R}-form of V and W, and v be a vector of V. The functor $\operatorname{FrFunctionalFAF}(f, v)$ yielding an \mathbb{R}-functional of W is defined by the term
(Def. 24) (curry f) (v).
Let w be a vector of W. The functor $\operatorname{FrFunctionalSAF}(f, w)$ yielding an \mathbb{R} functional of V is defined by the term
(Def. 25) (curry' $f)(w)$.
Now we state the propositions:
(55) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an \mathbb{R} form f of V and W, and a vector v of V. Then
(i) dom $\operatorname{FrFunctionalFAF}(f, v)=$ the carrier of W, and
(ii) rng $\operatorname{FrFunctionalFAF}(f, v) \subseteq$ the carrier of \mathbb{R}_{F}, and
(iii) for every vector w of W, $(\operatorname{FrFunctionalFAF}(f, v))(w)=f(v, w)$.
(56) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an \mathbb{R} form f of V and W, and a vector w of W. Then
(i) dom $\operatorname{FrFunctionalSAF}(f, w)=$ the carrier of V, and
(ii) rng $\operatorname{FrFunctionalSAF}(f, w) \subseteq$ the carrier of \mathbb{R}_{F}, and
(iii) for every vector v of V, $(\operatorname{FrFunctionalSAF}(f, w))(v)=f(v, w)$.
(57) Let us consider a non empty vector space structure V over \mathbb{Z}^{R}, and an element x of V. Then $(0 \operatorname{FrFunctional}(V))(x)=0_{\mathbb{R}_{F}}$.
(58) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and a vector v of V. Then $\operatorname{FrFunctionalFAF}(\operatorname{NulFrForm}(V, W), v)=$ $0 \mathrm{FrFunctional}(W)$. The theorem is a consequence of (55).
(59) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and a vector w of W. Then FrFunctionalSAF(NulFrForm $(V, W), w)=$ 0 FrFunctional (V). The theorem is a consequence of (56).
(60) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathrm{R}}, \mathbb{R}$ forms f, g of V and W, and a vector w of W. Then $\operatorname{FrFunctionalSAF~}(f+$ $g, w)=\operatorname{FrFunctionalSAF}(f, w)+\operatorname{FrFunctionalSAF}(g, w)$. The theorem is a consequence of (56).
(61) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathrm{R}}, \mathbb{R}$ forms f, g of V and W, and a vector v of V. Then $\operatorname{FrFunctionalFAF~}(f+$ $g, v)=\operatorname{FrFunctionalFAF}(f, v)+\operatorname{FrFunctionalFAF}(g, v)$. The theorem is a consequence of (55).
(62) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an \mathbb{R} form f of V and W, an element a of \mathbb{R}_{F}, and a vector w of W. Then $\operatorname{FrFunctionalSAF}(a \cdot f, w)=a \cdot \operatorname{FrFunctionalSAF}(f, w)$. The theorem is a consequence of (56).
(63) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an \mathbb{R} form f of V and W, an element a of \mathbb{R}_{F}, and a vector v of V. Then $\operatorname{FrFunctionalFAF}(a \cdot f, v)=a \cdot \operatorname{FrFunctionalFAF}(f, v)$. The theorem is a consequence of (55).
(64) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an \mathbb{R} form f of V and W, and a vector w of W. Then $\operatorname{FrFunctionalSAF~}(-f, w)=$ -FrFunctionalSAF (f, w). The theorem is a consequence of (56).
(65) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an \mathbb{R} form f of V and W, and a vector v of V. Then $\operatorname{FrFunctionalFAF~}(-f, v)=$ $-\operatorname{FrFunctionalFAF}(f, v)$. The theorem is a consequence of (55).
(66) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathrm{R}}, \mathbb{R}$ forms f, g of V and W, and a vector w of W. Then $\operatorname{FrFunctionalSAF~}(f-$
$g, w)=\operatorname{FrFunctionalSAF}(f, w)-\operatorname{FrFunctionalSAF}(g, w)$. The theorem is a consequence of (56).
(67) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathrm{R}}, \mathbb{R}$ forms f, g of V and W, and a vector v of V. Then $\operatorname{FrFunctionalFAF}(f-$ $g, v)=\operatorname{FrFunctionalFAF}(f, v)-\operatorname{FrFunctionalFAF}(g, v)$. The theorem is a consequence of (55).
Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathrm{R}}, f$ be an \mathbb{R}-functional of V, and g be an \mathbb{R}-functional of W. The functor $\operatorname{FrFormFunctional}(f, g)$ yielding an \mathbb{R}-form of V and W is defined by
(Def. 26) for every vector v of V and for every vector w of $W, i t(v, w)=f(v) \cdot g(w)$.
(68) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an \mathbb{R} functional f of V, a vector v of V, and a vector w of W.
Then $(\operatorname{FrFormFunctional}(f, 0 \operatorname{FrFunctional}(W)))(v, w)=0_{\mathbb{Z}^{\mathrm{R}}}$.
(69) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an \mathbb{R} functional g of W, a vector v of V, and a vector w of W. Then $(\operatorname{FrFormFunctional}(0 \operatorname{FrFunctional}(V), g))(v, w)=0_{\mathbb{Z}^{\mathrm{R}}}$.
(70) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and an \mathbb{R}-functional f of V. Then $\operatorname{FrFormFunctional}(f, 0 \operatorname{FrFunctional}(W))=$ $\operatorname{NulFrForm}(V, W)$. The theorem is a consequence of (68).
(71) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and an \mathbb{R}-functional g of W. Then FrFormFunctional $(0 \operatorname{FrFunctional}(V), g)=$ $\operatorname{NulFrForm}(V, W)$. The theorem is a consequence of (69).
(72) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an \mathbb{R} functional f of V, an \mathbb{R}-functional g of W, and a vector v of V. Then $\operatorname{FrFunctionalFAF}(\operatorname{FrFormFunctional}(f, g), v)=f(v) \cdot g$. The theorem is a consequence of (55).
(73) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an \mathbb{R} functional f of V, an \mathbb{R}-functional g of W, and a vector w of W. Then FrFunctionalSAF $(\operatorname{FrFormFunctional}(f, g), w)=g(w) \cdot f$. The theorem is a consequence of (56).

2. Bilinear Forms over Field of Reals and Their Properties

Let V, W be non empty vector space structures over \mathbb{Z}^{R} and f be an \mathbb{R}-form of V and W. We say that f is additive w.r.t. second argument if and only if
(Def. 27) for every vector v of V, $\operatorname{FrFunctionalFAF}(f, v)$ is additive.
We say that f is additive w.r.t. first argument if and only if
(Def. 28) for every vector w of W, $\operatorname{FrFunctionalSAF}(f, w)$ is additive.

We say that f is homogeneous w.r.t. second argument if and only if
(Def. 29) for every vector v of $V, \operatorname{FrFunctionalFAF}(f, v)$ is homogeneous.
We say that f is homogeneous w.r.t. first argument if and only if
(Def. 30) for every vector w of $W, \operatorname{FrFunctionalSAF}(f, w)$ is homogeneous.
Observe that $\operatorname{NulFrForm}(V, W)$ is additive w.r.t. second argument and
$\operatorname{NulFrForm}(V, W)$ is additive w.r.t. first argument and there exists an \mathbb{R} form of V and W which is additive w.r.t. second argument and additive w.r.t. first argument and $\operatorname{NulFrForm}(V, W)$ is homogeneous w.r.t. second argument and $\operatorname{NulFrForm}(V, W)$ is homogeneous w.r.t. first argument.

There exists an \mathbb{R}-form of V and W which is additive w.r.t. second argument, homogeneous w.r.t. second argument, additive w.r.t. first argument, and homogeneous w.r.t. first argument.

An \mathbb{R}-bilinear form of V and W is an additive w.r.t. first argument, homogeneous w.r.t. first argument, additive w.r.t. second argument, homogeneous w.r.t. second argument \mathbb{R}-form of V and W. Let f be an additive w.r.t. second argument \mathbb{R}-form of V and W and v be a vector of V. One can check that FrFunctionalFAF (f, v) is additive.

Let f be an additive w.r.t. first argument \mathbb{R}-form of V and W and w be a vector of W. Observe that FrFunctionalSAF (f, w) is additive.

Let f be a homogeneous w.r.t. second argument \mathbb{R}-form of V and W and v be a vector of V. One can check that $\operatorname{FrFunctionalFAF}(f, v)$ is homogeneous.

Let f be a homogeneous w.r.t. first argument \mathbb{R}-form of V and W and w be a vector of W. Observe that FrFunctionalSAF (f, w) is homogeneous.

Let f be an \mathbb{R}-functional of V and g be an additive \mathbb{R}-functional of W. Observe that $\operatorname{FrFormFunctional}(f, g)$ is additive w.r.t. second argument.

Let f be an additive \mathbb{R}-functional of V and g be an \mathbb{R}-functional of W. One can check that $\operatorname{FrFormFunctional}(f, g)$ is additive w.r.t. first argument.

Let f be an \mathbb{R}-functional of V and g be a homogeneous \mathbb{R}-functional of W. Observe that $\operatorname{FrFormFunctional}(f, g)$ is homogeneous w.r.t. second argument.

Let f be a homogeneous \mathbb{R}-functional of V and g be an \mathbb{R}-functional of W. One can check that $\operatorname{FrFormFunctional}(f, g)$ is homogeneous w.r.t. first argument.

Let V be a non trivial vector space structure over $\mathbb{Z}^{\mathrm{R}}, W$ be a non empty vector space structure over \mathbb{Z}^{R}, and f be an \mathbb{R}-functional of V. One can verify that $\operatorname{FrFormFunctional}(f, g)$ is non trivial and $\operatorname{FrFormFunctional}(f, g)$ is non trivial.

Let F be an \mathbb{R}-functional of V. We say that F is 0 -preserving if and only if (Def. 31) $\quad F\left(0_{V}\right)=0_{\mathbb{R}_{\mathrm{F}}}$.

Let V be a \mathbb{Z}-module. One can check that every \mathbb{R}-functional of V which is homogeneous is also 0 -preserving.

Let V be a non empty vector space structure over \mathbb{Z}^{R}. Let us observe that 0 FrFunctional (V) is 0 -preserving and there exists an \mathbb{R}-functional of V which is additive, homogeneous, and 0-preserving.

Let V be a non trivial, free \mathbb{Z}-module. Note that there exists an \mathbb{R}-functional of V which is additive, homogeneous, non constant, and non trivial.
(74) Let us consider a non trivial, free \mathbb{Z}-module V, and a non constant, 0preserving \mathbb{R}-functional f of V. Then there exists a vector v of V such that
(i) $v \neq 0_{V}$, and
(ii) $f(v) \neq 0_{\mathbb{R}_{F}}$.

Let V, W be non trivial, free \mathbb{Z}-modules, f be a non constant, 0 -preserving \mathbb{R}-functional of V, and g be a non constant, 0 -preserving \mathbb{R}-functional of W. Note that FrFormFunctional (f, g) is non constant.

Let V be a non empty vector space structure over \mathbb{Z}^{R}.
An \mathbb{R}-linear functional of V is an additive, homogeneous \mathbb{R}-functional of V. Let V, W be non trivial, free \mathbb{Z}-modules. Observe that there exists an \mathbb{R} form of V and W which is non trivial, non constant, additive w.r.t. second argument, homogeneous w.r.t. second argument, additive w.r.t. first argument, and homogeneous w.r.t. first argument.

Let V, W be non empty vector space structures over \mathbb{Z}^{R} and f, g be additive w.r.t. first argument \mathbb{R}-forms of V and W. Let us observe that $f+g$ is additive w.r.t. first argument. Let f, g be additive w.r.t. second argument \mathbb{R}-forms of V and W. One can check that $f+g$ is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument \mathbb{R}-form of V and W and a be an element of \mathbb{R}_{F}. Let us observe that $a \cdot f$ is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument \mathbb{R}-form of V and W. Note that $a \cdot f$ is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument \mathbb{R}-form of V and W. Let us observe that $-f$ is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument \mathbb{R}-form of V and W. Let us observe that $-f$ is additive w.r.t. second argument.

Let f, g be additive w.r.t. first argument \mathbb{R}-forms of V and W. Observe that $f-g$ is additive w.r.t. first argument.

Let f, g be additive w.r.t. second argument \mathbb{R}-forms of V and W. One can check that $f-g$ is additive w.r.t. second argument.

Let f, g be homogeneous w.r.t. first argument \mathbb{R}-forms of V and W. Observe that $f+g$ is homogeneous w.r.t. first argument.

Let f, g be homogeneous w.r.t. second argument \mathbb{R}-forms of V and W. One can verify that $f+g$ is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument \mathbb{R}-form of V and W and a be an element of \mathbb{R}_{F}. Observe that $a \cdot f$ is homogeneous w.r.t. first argument.

Let f be a homogeneous w.r.t. second argument \mathbb{R}-form of V and W. One can check that $a \cdot f$ is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument \mathbb{R}-form of V and W. Observe that $-f$ is homogeneous w.r.t. first argument. Let f be a homogeneous w.r.t. second argument \mathbb{R}-form of V and W. Observe that $-f$ is homogeneous w.r.t. second argument.

Let f, g be homogeneous w.r.t. first argument \mathbb{R}-forms of V and W. Let us note that $f-g$ is homogeneous w.r.t. first argument.

Let f, g be homogeneous w.r.t. second argument \mathbb{R}-forms of V and W. One can verify that $f-g$ is homogeneous w.r.t. second argument.
(75) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, vectors v, u of V, a vector w of W, and an \mathbb{R}-form f of V and W. If f is additive w.r.t. first argument, then $f(v+u, w)=f(v, w)+f(u, w)$. The theorem is a consequence of (56).
(76) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a vector v of V, vectors u, w of W, and an \mathbb{R}-form f of V and W. If f is additive w.r.t. second argument, then $f(v, u+w)=f(v, u)+f(v, w)$. The theorem is a consequence of (55).
(77) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, vectors v, u of V, vectors w, t of W, and an additive w.r.t. first argument, additive w.r.t. second argument \mathbb{R}-form f of V and W. Then $f(v+u, w+t)=$ $f(v, w)+f(v, t)+(f(u, w)+f(u, t))$. The theorem is a consequence of (75) and (76).
(78) Let us consider right zeroed, non empty vector space structures V, W over \mathbb{Z}^{R}, an additive w.r.t. second argument \mathbb{R}-form f of V and W, and a vector v of V. Then $f\left(v, 0_{W}\right)=0_{\mathbb{Z}^{R}}$. The theorem is a consequence of (76).
(79) Let us consider right zeroed, non empty vector space structures V, W over \mathbb{Z}^{R}, an additive w.r.t. first argument \mathbb{R}-form f of V and W, and a vector w of W. Then $f\left(0_{V}, w\right)=0_{\mathbb{Z}^{\mathrm{R}}}$. The theorem is a consequence of (75).

Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a vector v of V, a vector w of W, an element a of \mathbb{Z}^{R}, and an \mathbb{R}-form f of V and W. Now we state the propositions:
(80) If f is homogeneous w.r.t. first argument, then $f(a \cdot v, w)=a \cdot f(v, w)$.

The theorem is a consequence of (56).
(81) If f is homogeneous w.r.t. second argument, then $f(v, a \cdot w)=a \cdot f(v, w)$. The theorem is a consequence of (55).
(82) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over \mathbb{Z}^{R}, a homogeneous w.r.t. first argument \mathbb{R}-form f of V and W, and a vector w of W. Then $f\left(0_{V}, w\right)=0_{\mathbb{R}_{F}}$. The theorem is a consequence of (80).
(83) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over \mathbb{Z}^{R}, a homogeneous w.r.t. second argument \mathbb{R}-form f of V and W, and a vector v of V. Then $f\left(v, 0_{W}\right)=0_{\mathbb{R}_{F}}$. The theorem is a consequence of (81).
(84) Let us consider \mathbb{Z}-modules V, W, vectors v, u of V, a vector w of W, and an additive w.r.t. first argument, homogeneous w.r.t. first argument \mathbb{R}-form f of V and W. Then $f(v-u, w)=f(v, w)-f(u, w)$. The theorem is a consequence of (75) and (80).
(85) Let us consider \mathbb{Z}-modules V, W, a vector v of V, vectors w, t of W, and an additive w.r.t. second argument, homogeneous w.r.t. second argument \mathbb{R}-form f of V and W. Then $f(v, w-t)=f(v, w)-f(v, t)$. The theorem is a consequence of (76) and (81).
(86) Let us consider \mathbb{Z}-modules V, W, vectors v, u of V, vectors w, t of W, and an \mathbb{R}-bilinear form f of V and W. Then $f(v-u, w-t)=f(v, w)-$ $f(v, t)-(f(u, w)-f(u, t))$. The theorem is a consequence of (84) and (85).
(87) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over \mathbb{Z}^{R}, vectors v, u of V, vectors w, t of W, elements a, b of \mathbb{Z}^{R}, and an \mathbb{R}-bilinear form f of V and W. Then $f(v+a \cdot u, w+b \cdot t)=f(v, w)+b \cdot f(v, t)+(a \cdot f(u, w)+a \cdot(b \cdot f(u, t)))$. The theorem is a consequence of (77), (81), and (80).
(88) Let us consider \mathbb{Z}-modules V, W, vectors v, u of V, vectors w, t of W, elements a, b of \mathbb{Z}^{R}, and an \mathbb{R}-bilinear form f of V and W. Then $f(v-a \cdot u, w-b \cdot t)=f(v, w)-b \cdot f(v, t)-(a \cdot f(u, w)-a \cdot(b \cdot f(u, t)))$. The theorem is a consequence of (86), (81), and (80).
(89) Let us consider right zeroed, non empty vector space structures V, W over \mathbb{Z}^{R}, and an \mathbb{R}-form f of V and W. Suppose f is additive w.r.t. second argument or additive w.r.t. first argument. Then f is constant if and only if for every vector v of V and for every vector w of $W, f(v, w)=0_{\mathbb{Z}^{R}}$. The theorem is a consequence of (78) and (79).

3. Matrices of Bilinear Form over Field of Real Numbers

Let V_{1}, V_{2} be finite rank, free \mathbb{Z}-modules, b_{1} be an ordered basis of V_{1}, b_{2} be an ordered basis of V_{2}, and f be an \mathbb{R}-bilinear form of V_{1} and V_{2}. The functor $\operatorname{Bilinear}\left(f, b_{1}, b_{2}\right)$ yielding a matrix over \mathbb{R}_{F} of dimension len $b_{1} \times \operatorname{len} b_{2}$ is defined by
(Def. 32) for every natural numbers i, j such that $i \in \operatorname{dom} b_{1}$ and $j \in \operatorname{dom} b_{2}$ holds $i t_{i, j}=f\left(b_{1 i}, b_{2 j}\right)$.
Now we state the propositions:
(90) Let us consider a finite rank, free \mathbb{Z}-module V, an \mathbb{R}-linear functional F of V, a finite sequence y of elements of V, a finite sequence x of elements of \mathbb{Z}^{R}, and finite sequences X, Y of elements of \mathbb{R}_{F}. Suppose $X=x$ and len $y=\operatorname{len} x$ and len $X=\operatorname{len} Y$ and for every natural number k such that $k \in \operatorname{Seg}$ len x holds $Y(k)=F\left(y_{k}\right)$. Then $X \cdot Y=F\left(\sum \operatorname{lmlt}(x, y)\right)$.
Proof: Define \mathcal{P} [finite sequence of elements of $V] \equiv$ for every finite sequence x of elements of \mathbb{Z}^{R} for every finite sequences X, Y of elements of \mathbb{R}_{F} such that $X=x$ and len $\$_{1}=\operatorname{len} x$ and len $X=\operatorname{len} Y$ and for every natural number k such that $k \in \operatorname{Seg} \operatorname{len} x$ holds $Y(k)=F\left(\$_{1 k}\right)$ holds $X \cdot Y=F\left(\sum \operatorname{lmlt}\left(x, \$_{1}\right)\right)$. For every finite sequence y of elements of V and for every element w of V such that $\mathcal{P}[y]$ holds $\mathcal{P}\left[y^{\sim}\langle w\rangle\right.$] by [4, (22), (39), (59)], [3, (11)]. $\mathcal{P}\left[\varepsilon_{\alpha}\right]$, where α is the carrier of V by [17, (43)]. For every finite sequence p of elements of $V, \mathcal{P}[p]$ from [6, Sch. 2].
(91) Let us consider finite rank, free \mathbb{Z}-modules V_{1}, V_{2}, an ordered basis b_{2} of V_{2}, an ordered basis b_{3} of V_{2}, an \mathbb{R}-bilinear form f of V_{1} and V_{2}, a vector v_{1} of V_{1}, a vector v_{2} of V_{2}, and finite sequences X, Y of elements of \mathbb{R}_{F}. Suppose len $X=\operatorname{len} b_{2}$ and len $Y=\operatorname{len} b_{2}$ and for every natural number k such that $k \in \operatorname{Seg}$ len b_{2} holds $Y(k)=f\left(v_{1}, b_{2 k}\right)$ and $X=v_{2} \rightarrow b_{2}$. Then $Y \cdot X=f\left(v_{1}, v_{2}\right)$. The theorem is a consequence of (55) and (90).
(92) Let us consider finite rank, free \mathbb{Z}-modules V_{1}, V_{2}, an ordered basis b_{1} of V_{1}, an \mathbb{R}-bilinear form f of V_{1} and V_{2}, a vector v_{1} of V_{1}, a vector v_{2} of V_{2}, and finite sequences X, Y of elements of \mathbb{R}_{F}. Suppose len $X=\operatorname{len} b_{1}$ and len $Y=\operatorname{len} b_{1}$ and for every natural number k such that $k \in \operatorname{Seg}$ len b_{1} holds $Y(k)=f\left(b_{1 k}, v_{2}\right)$ and $X=v_{1} \rightarrow b_{1}$. Then $X \cdot Y=f\left(v_{1}, v_{2}\right)$. The theorem is a consequence of (56) and (90).
(93) Every matrix over \mathbb{Z}^{R} is a matrix over \mathbb{R}_{F}.

Let M be a matrix over \mathbb{Z}^{R}. The functor $\mathbb{Z} 2 \mathbb{R}(M)$ yielding a matrix over \mathbb{R}_{F} is defined by the term
(Def. 33) M.

Let n, m be natural numbers and M be a matrix over \mathbb{Z}^{R} of dimension $n \times m$. Note that the functor $\mathbb{Z} 2 \mathbb{R}(M)$ yields a matrix over \mathbb{R}_{F} of dimension $n \times m$. Let n be a natural number and M be a square matrix over \mathbb{Z}^{R} of dimension n. Let us note that the functor $\mathbb{Z} 2 \mathbb{R}(M)$ yields a square matrix over \mathbb{R}_{F} of dimension n. Now we state the propositions:
(94) Let us consider natural numbers m, l, n, a matrix S over \mathbb{Z}^{R} of dimension $l \times m$, a matrix T over \mathbb{Z}^{R} of dimension $m \times n$, a matrix S_{1} over \mathbb{R}_{F} of dimension $l \times m$, and a matrix T_{1} over \mathbb{R}_{F} of dimension $m \times n$. If $S=S_{1}$ and $T=T_{1}$ and $0<l$ and $0<m$, then $S \cdot T=S_{1} \cdot T_{1}$.
Proof: Reconsider $S_{3}=S \cdot T$ as a matrix over \mathbb{Z}^{R} of dimension $l \times n$. Reconsider $S_{2}=S_{1} \cdot T_{1}$ as a matrix over \mathbb{R}_{F} of dimension $l \times n$. For every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of S_{3} holds $S_{3 i, j}=S_{2 i, j}$ by [8, (87)], [13, (2), (3), (37)].
(95) Let us consider a natural number n. Then $I_{\mathbb{Z}^{\mathrm{R}}}^{n \times n}=I_{\mathbb{R}_{\mathrm{F}}}^{n \times n}$.
(96) Let us consider finite rank, free \mathbb{Z}-modules V_{1}, V_{2}, an ordered basis b_{1} of V_{1}, an ordered basis b_{2} of V_{2}, an ordered basis b_{3} of V_{2}, and an \mathbb{R}-bilinear form f of V_{1} and V_{2}. Suppose $0<\operatorname{rank} V_{1}$. Then $\operatorname{Bilinear}\left(f, b_{1}, b_{3}\right)=$ Bilinear $\left(f, b_{1}, b_{2}\right) \cdot\left(\mathbb{Z} 2 \mathbb{R}\left(\operatorname{AutMt}\left(\mathrm{id}_{V_{2}}, b_{3}, b_{2}\right)\right)\right)^{\mathrm{T}}$.
Proof: Set $n=\operatorname{len} b_{2}$. Reconsider $I_{2}=\operatorname{AutMt}\left(\mathrm{id}_{V_{2}}, b_{3}, b_{2}\right)$ as a square matrix over \mathbb{Z}^{R} of dimension n. Reconsider $M_{1}=\mathbb{Z} 2 \mathbb{R}\left(I_{2}{ }^{\mathrm{T}}\right)$ as a square matrix over \mathbb{R}_{F} of dimension n. Set $M_{2}=\operatorname{Bilinear}\left(f, b_{1}, b_{2}\right) \cdot M_{1}$. For every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of $\operatorname{Bilinear}\left(f, b_{1}, b_{3}\right)$ holds $\left(\operatorname{Bilinear}\left(f, b_{1}, b_{3}\right)\right)_{i, j}=M_{2 i, j}$ by [8, (87)], [13, (1)], (91).
(97) Let us consider finite rank, free \mathbb{Z}-modules V_{1}, V_{2}, an ordered basis b_{1} of V_{1}, an ordered basis b_{2} of V_{2}, an ordered basis b_{3} of V_{1}, and an \mathbb{R}-bilinear form f of V_{1} and V_{2}. Suppose $0<\operatorname{rank} V_{1}$. Then $\operatorname{Bilinear}\left(f, b_{3}, b_{2}\right)=$ $\mathbb{Z} 2 \mathbb{R}\left(\operatorname{AutMt}\left(\mathrm{id}_{V_{1}}, b_{3}, b_{1}\right)\right) \cdot \operatorname{Bilinear}\left(f, b_{1}, b_{2}\right)$.
Proof: Set $n=\operatorname{len} b_{3}$. Reconsider $I_{2}=\operatorname{AutMt}\left(\mathrm{id}_{V_{1}}, b_{3}, b_{1}\right)$ as a square matrix over \mathbb{Z}^{R} of dimension n. Reconsider $M_{1}=\mathbb{Z} 2 \mathbb{R}\left(I_{2}\right)$ as a square matrix over \mathbb{R}_{F} of dimension n. Set $M_{2}=M_{1} \cdot \operatorname{Bilinear}\left(f, b_{1}, b_{2}\right)$. For every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of $\operatorname{Bilinear}\left(f, b_{3}, b_{2}\right)$ holds (Bilinear $\left.\left(f, b_{3}, b_{2}\right)\right)_{i, j}=M_{2 i, j}$ by [8, (87)], [4, (1)], [13, (1)], (92).
(98) Let us consider a finite rank, free \mathbb{Z}-module V, ordered bases b_{1}, b_{2} of V, and an \mathbb{R}-bilinear form f of V and V. Suppose $0<\operatorname{rank} V$. Then Bilinear $\left(f, b_{2}, b_{2}\right)=\mathbb{Z} 2 \mathbb{R}\left(\operatorname{AutMt}\left(\mathrm{id}_{V}, b_{2}, b_{1}\right)\right) \cdot \operatorname{Bilinear}\left(f, b_{1}, b_{1}\right) \cdot(\mathbb{Z} 2 \mathbb{R}($ AutMt $\left.\left.\left(\operatorname{id}_{V}, b_{2}, b_{1}\right)\right)\right)^{\mathrm{T}}$. The theorem is a consequence of (97) and (96).
Let us consider a finite rank, free \mathbb{Z}-module V, ordered bases b_{1}, b_{2} of V, and a square matrix M over \mathbb{R}_{F} of dimension rank V.

Let us assume that $M=\operatorname{AutMt}\left(\mathrm{id}_{V}, b_{1}, b_{2}\right)$. Now we state the propositions:
(99) (i) Det $M=1$ and $\operatorname{Det} M^{\mathrm{T}}=1$, or
(ii) $\operatorname{Det} M=-1$ and $\operatorname{Det} M^{\mathrm{T}}=-1$.

The theorem is a consequence of (94) and (95).
(100) $|\operatorname{Det} M|=1$. The theorem is a consequence of (99).

Let us consider a finite rank, free \mathbb{Z}-module V, ordered bases b_{1}, b_{2} of V, and an \mathbb{R}-bilinear form f of V and V. Now we state the propositions:
(101) Det $\operatorname{Bilinear}\left(f, b_{2}, b_{2}\right)=\operatorname{Det} \operatorname{Bilinear}\left(f, b_{1}, b_{1}\right)$. The theorem is a consequence of (98) and (99).
(102) $\left|\operatorname{Det} \operatorname{Bilinear}\left(f, b_{2}, b_{2}\right)\right|=\left|\operatorname{Det} \operatorname{Bilinear}\left(f, b_{1}, b_{1}\right)\right|$.

Let V be a finite rank, free \mathbb{Z}-module, f be an \mathbb{R}-bilinear form of V and V, and b be an ordered basis of V. The functor $\operatorname{GramMatrix}(f, b)$ yielding a square matrix over \mathbb{R}_{F} of dimension rank V is defined by the term
(Def. 34) Bilinear (f, b, b).
The functor $\operatorname{GramDet}(f)$ yielding an element of \mathbb{R}_{F} is defined by
(Def. 35) for every ordered basis b of V, it $=\operatorname{Det} \operatorname{GramMatrix}(f, b)$.
Let L be a \mathbb{Z}-lattice. The functor InnerProduct L yielding an \mathbb{R}-form of L and L is defined by the term
(Def. 36) the scalar product of L.
One can check that InnerProduct L is additive w.r.t. first argument, homogeneous w.r.t. first argument, additive w.r.t. second argument, and homogeneous w.r.t. second argument.

Let b be an ordered basis of L. The functor $\operatorname{GramMatrix}(b)$ yielding a square matrix over \mathbb{R}_{F} of dimension $\operatorname{dim}(L)$ is defined by the term
(Def. 37) GramMatrix(InnerProduct L, b).
The functor $\operatorname{GramDet}(L)$ yielding an element of \mathbb{R}_{F} is defined by the term
(Def. 38) GramDet(InnerProduct L).
(103) Let us consider an integral \mathbb{Z}-lattice L. Then InnerProduct L is a bilinear form of L, L.
Proof: For every object z such that $z \in($ the carrier of $L) \times($ the carrier of L) holds (InnerProduct $L)(z) \in$ the carrier of \mathbb{Z}^{R}. Reconsider $f=$ InnerProduct L as a form of L, L. For every vector v of $L, f(\cdot, v)$ is additive by [2, (70)], (8). For every vector v of $L, f(\cdot, v)$ is homogeneous by [2, (70)], (9). For every vector v of $L, f(v, \cdot)$ is additive by [2, (69)], (8). For every vector v of $L, f(v, \cdot)$ is homogeneous by [2, (69)], (9).
(104) Let us consider an integral \mathbb{Z}-lattice L, and an ordered basis b of L. Then $\operatorname{GramMatrix}(b)$ is a square matrix over \mathbb{Z}^{R} of dimension $\operatorname{dim}(L)$.

Proof: For every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of GramMatrix (b) holds $(\operatorname{GramMatrix}(b))_{i, j} \in$ the carrier of \mathbb{Z}^{R} by [8, (87)].

Let L be an integral \mathbb{Z}-lattice. Note that $\operatorname{GramDet}(L)$ is integer.

References

[1] Grzegorz Bancerek. Cardinal arithmetics Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions Formalized Mathematics, 1(3): 537-541, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[8] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[9] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.
[10] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47-59, 2012. doi $10.2478 / \mathrm{v} 10037-012-0007-\mathrm{z}$.
[11] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of \mathbb{Z}-module. Formalized Mathematics, 20(3):205-214, 2012. doi $10.2478 / \mathrm{v} 10037-012-0024-\mathrm{y}$
[12] Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, and Yasunari Shidama. Torsion \mathbb{Z}-module and torsion-free \mathbb{Z}-module. Formalized Mathematics, 22(4):277-289, 2014. doi 10.2478/forma-2014-0028.
[13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Matrix of \mathbb{Z}-module. Formalized Mathematics, 23(1):29-49, 2015. doi 10.2478/forma-2015-0003
[14] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982.
[15] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective. The International Series in Engineering and Computer Science, 2002.
[16] Andrzej Trybulec. Binary operations applied to functions Formalized Mathematics, 1 (2):329-334, 1990.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

Received December 30, 2015

