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Summary. First we give an implementation in Mizar [2] basic important
definitions of stochastic finance, i.e. filtration ([9], pp. 183 and 185), adapted
stochastic process ([9], p. 185) and predictable stochastic process ([6], p. 224).
Second we give some concrete formalization and verification to real world exam-
ples.

In article [8] we started to define random variables for a similar presentation
to the book [6]. Here we continue this study. Next we define the stochastic process.
For further definitions based on stochastic process we implement the definition
of filtration.

To get a better understanding we give a real world example and connect the
statements to the theorems. Other similar examples are given in [10], pp. 143–
159 and in [12], pp. 110–124. First we introduce sets which give informations
referring to today (Ωnow, Def.6), tomorrow (Ωfut1 , Def.7) and the day after
tomorrow (Ωfut2 , Def.8). We give an overview for some events in the σ-algebras
Ωnow,Ωfut1 and Ωfut2, see theorems (22) and (23).

The given events are necessary for creating our next functions. The imple-
mentations take the form of: Ωnow ⊂ Ωfut1 ⊂ Ωfut2 see theorem (24). This tells
us growing informations from now to the future 1=now, 2=tomorrow, 3=the day
after tomorrow.

We install functions f : {1, 2, 3, 4} → R as following:
f1 : x→ 100, ∀x ∈ dom f , see theorem (36),
f2 : x→ 80, for x = 1 or x = 2 and
f2 : x→ 120, for x = 3 or x = 4, see theorem (37),
f3 : x→ 60, for x = 1, f3 : x→ 80, for x = 2 and
f3 : x→ 100, for x = 3, f3 : x→ 120, for x = 4 see theorem (38).
These functions are real random variable: f1 over Ωnow, f2 over Ωfut1, f3

over Ωfut2, see theorems (46), (43) and (40). We can prove that these functions
can be used for giving an example for an adapted stochastic process. See theorem
(49).
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We want to give an interpretation to these functions: suppose you have an
equity A which has now (= w1) the value 100. Tomorrow A changes depending
which scenario occurs − e.g. another marketing strategy. In scenario 1 (= w11)
it has the value 80, in scenario 2 (= w12) it has the value 120. The day after
tomorrow A changes again. In scenario 1 (= w111) it has the value 60, in scenario
2 (= w112) the value 80, in scenario 3 (= w121) the value 100 and in scenario 4
(= w122) it has the value 120. For a visualization refer to the tree:

Now tomorrow the day after tomorrow

w111 = {1}
w11 = {1, 2} <

w112 = {2}
w1 = {1, 2, 3, 4} <

w121 = {3}
w12 = {3, 4} <

w122 = {4}
The sets w1,w11,w12,w111,w112,w121,w122 which are subsets of {1, 2, 3, 4}, see

(22), tell us which market scenario occurs. The functions tell us the values to the
relevant market scenario:

Now tomorrow the day after tomorrow

f3(wi) = 60, wi in w111
f2(wi) = 80 <

wi in w11 f3(wi) = 80, wi in w112
f1(wi) = 100 <

wi in w1 f3(wi) = 100, wi in w121
f2(wi) = 120 <

wi in w12 f3(wi) = 120, wi in w122

For a better understanding of the definition of the random variable and the
relation to the functions refer to [7], p. 20. For the proof of certain sets as σ-fields
refer to [7], pp. 10–11 and [9], pp. 1–2.

This article is the next step to the arbitrage opportunity. If you use for exam-
ple a simple probability measure, refer, for example to literature [3], pp. 28–34,
[6], p. 6 and p. 232 you can calculate whether an arbitrage exists or not. Note,
that the example given in literature [3] needs 8 instead of 4 informations as in
our model. If we want to code the first 3 given time points into our model we
would have the following graph, see theorems (47), (44) and (41):

Now tomorrow the day after tomorrow

f3(wi) = 180, wi in w111
f2(wi) = 150 <

wi in w11 f3(wi) = 120, wi in w112
f1(wi) = 125 <

wi in w1 f3(wi) = 120, wi in w121
f2(wi) = 100 <

wi in w12 f3(wi) = 80, wi in w122

The function for the “Call-Option” is given in literature [3], p. 28. The func-
tion is realized in Def.5. As a background, more examples for using the definition
of filtration are given in [9], pp. 185–188.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider objects a, b. If a 6= b, then {a} ⊂ {a, b}.
Let I be a non empty subset of N. Observe that I(∈ 2R) is non empty.
Let us consider an element T of N. Now we state the propositions:

(2) {w, where w is an element of N : w > 0 and w ¬ T} ⊆ {w, where w is
an element of N : w ¬ T}.

(3) {w, where w is an element of N : w ¬ T} is a non empty subset of N.

(4) If T > 0, then {w, where w is an element of N : w > 0 and w ¬ T} is
a non empty subset of N.
Proof: {w, where w is an element of N : w > 0 and w ¬ T} is a subset
of N. 1 > 0 and 1 ¬ T by [1, (24)]. �

Now we state the proposition:

(5) Let us consider a non empty set Ω. Then Ω 7−→ 1 is a function from Ω
into R.

2. Special Random Variables

Now we state the proposition:

(6) Let us consider a natural number d, a sequence ϕ of real numbers, a non
empty set Ω, a σ-field F of subsets of Ω, a non empty set X, a sequence
G of X, and an element w of Ω. Then {the portfolio value for future
extension of d, ϕ, F , G and w} is an event of the Borel sets.

Let d be a natural number, ϕ be a sequence of real numbers, Ω be a non
empty set, F be a σ-field of subsets of Ω, X be a non empty set, G be a sequence
ofX, and w be an element of Ω. Note that the portfolio value for future extension
of d, ϕ, F , G and w yields an element of R. The RV-portfolio value for future
extension of ϕ, F , G and d yielding a function from Ω into R is defined by

(Def. 1) for every element w of Ω, it(w) = the portfolio value for future extension
of d, ϕ, F , G and w.

http://zbmath.org/classification/?q=cc:60G05
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/finance3.miz
http://ftp.mizar.org/
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Let us observe that the RV-portfolio value for future extension of ϕ, F , G
and d yields a random variable of F and the Borel sets. Let w be an element
of Ω. Let us note that the portfolio value for future of d, ϕ, F , G and w yields
a real number and is defined by the term

(Def. 2) (
∑κ
α=0((the elements of the random variables for the future elements of

portfolio value of (ϕ,F ,G,w)) ↑ 1)(α))κ∈N(d− 1).

Let us note that the portfolio value for future of d, ϕ, F , G and w yields
an element of R. The RV-portfolio value for future of ϕ, F , G and d yielding
a function from Ω into R is defined by

(Def. 3) for every element w of Ω, it(w) = the portfolio value for future of d+ 1,
ϕ, F , G and w.

Let us note that the RV-portfolio value for future of ϕ, F , G and d yields
a random variable of F and the Borel sets. Now we state the propositions:

(7) Let us consider a natural number d, a sequence ϕ of real numbers, a non
empty set Ω, a σ-field F of subsets of Ω, a non empty set X, a sequence
G of X, and an element w of Ω. Then

(i) the portfolio value for future of d+ 1, ϕ, F , G and

w = (the RV-portfolio value for future of ϕ, F , G and d)(w), and

(ii) {the portfolio value for future of d + 1, ϕ, F , G and w} is an event
of the Borel sets.

(8) Let us consider a non empty set Ω, a σ-field F of subsets of Ω, a non
empty set X, a sequence G of X, a sequence ϕ of real numbers, and
a natural number d. Then the RV-portfolio value for future extension of
ϕ, F , G and d + 1 = (the RV-portfolio value for future of ϕ, F , G and
d) + (the random variables for the future elements of portfolio value of
(ϕ,F ,G,0)).

(9) Let us consider non empty sets Ω, Ω2, a σ-field Σ of subsets of Ω, a σ-
field Σ2 of subsets of Ω2, and an element s of Ω2. Then Ω 7−→ s is random
variable on Σ and Σ2.

(10) Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, a random
variable RV of Σ and the Borel sets, and an element K of R. Then RV −
(Ω 7−→ K) is a random variable of Σ and the Borel sets. The theorem is
a consequence of (9).

Let Ω be a non empty set, RV be a function from Ω into R, and w be
an element of Ω. The functor Set-Call-Option(RV, w) yielding an element of R
is defined by the term

(Def. 4)

{
RV(w), if RV(w) ­ 0,
0, otherwise.
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Let Σ be a σ-field of subsets of Ω, RV be a random variable of Σ and
the Borel sets, and K be an element of R. The Call-Option on RV and K

yielding a function from Ω into R is defined by

(Def. 5) for every element w of Ω, if (RV − (Ω 7−→ K))(w) ­ 0, then it(w) =
(RV − (Ω 7−→ K))(w) and if (RV − (Ω 7−→ K))(w) < 0, then it(w) = 0.

3. Special σ-Fields

Let us consider a sequence A1 of subsets of {1, 2, 3, 4} and a real number w.
Now we state the propositions:

(11) Suppose w = 1 or w = 3. Then suppose for every natural number n,
A1(n) = ∅ or A1(n) = {1, 2} or A1(n) = {3, 4} or A1(n) = {1, 2, 3, 4}.
Then {w} 6= IntersectionA1.

(12) Suppose w = 2 or w = 4. Then suppose for every natural number n,
A1(n) = ∅ or A1(n) = {1, 2} or A1(n) = {3, 4} or A1(n) = {1, 2, 3, 4}.
Then {w} 6= IntersectionA1.

Now we state the propositions:

(13) Let us consider sets M , A1, A2. Suppose M = {∅, {1, 2, 3, 4}} and A1,
A2 ∈M . Then A1 ∩A2 ∈M .

(14) Let us consider a sequence A1 of subsets of {1, 2, 3, 4}. Suppose for every
natural number n and for every natural number k, A1(n)∩A1(k) 6= ∅ and
rngA1 ⊆ {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}. Then

(i) IntersectionA1 = ∅, or

(ii) IntersectionA1 = {1, 2}, or

(iii) IntersectionA1 = {3, 4}, or

(iv) IntersectionA1 = {1, 2, 3, 4}.
Proof: For every natural number n, A1(n) ∈ {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}
by [1, (20)], [4, (3)]. For every natural number n, A1(n) = ∅ or A1(n) =
{1, 2} or A1(n) = {3, 4} or A1(n) = {1, 2, 3, 4}. �

Let us consider a sequence A1 of subsets of {1, 2, 3, 4} and a set M . Now we
state the propositions:

(15) Suppose M = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} and
IntersectionA1 = {1, 2, 3, 4}. Then IntersectionA1 ∈M .

(16) Suppose M = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} and IntersectionA1 = {3, 4}.
Then IntersectionA1 ∈M .

(17) Suppose M = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} and IntersectionA1 = {1, 2}.
Then IntersectionA1 ∈M .
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(18) Suppose M = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} and IntersectionA1 = ∅.
Then IntersectionA1 ∈M .

Now we state the propositions:

(19) Let us consider a set M , and a sequence A1 of subsets of {1, 2, 3, 4}.
Suppose rngA1 ⊆M and M = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}.
Then IntersectionA1 ∈M .
Proof: IntersectionA1 ∈ {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} by [11, (13)], (14).
�

(20) Let us consider sets M , M1, and a sequence A1 of subsets of M1. Sup-
pose M1 = {1, 2, 3, 4} and rngA1 ⊆ M and M = {∅, {1, 2, 3, 4}}. If
IntersectionA1 6= ∅, then IntersectionA1 ∈M .
Proof: For every natural number n, A1(n) = ∅ or A1(n) = {1, 2, 3, 4} by
[1, (20)], [4, (3)]. If there exists a natural number n such that A1(n) = ∅,
then IntersectionA1 = ∅ by [11, (13)]. IntersectionA1 = {1, 2, 3, 4} by [11,
(13)]. �

(21) Let us consider sets M , M1, and a sequence A1 of subsets of M1. Suppose
M1 = {1, 2, 3, 4} and rngA1 ⊆M andM = {∅, {1, 2, 3, 4}}. Let us consider
a natural number k1, and a natural number k2. Then A1(k1)∩A1(k2) ∈M .
Proof: k1 ∈ domA1 by [1, (20)]. k2 ∈ domA1 by [1, (20)]. A1(k1) ∩
A1(k2) ∈M . �

The functor Ωnow yielding a σ-field of subsets of {1, 2, 3, 4} is defined by the
term

(Def. 6) {∅, {1, 2, 3, 4}}.
The functor Ωfut1 yielding a σ-field of subsets of {1, 2, 3, 4} is defined by the

term

(Def. 7) {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}.
The functor Ωfut2 yielding a σ-field of subsets of {1, 2, 3, 4} is defined by the

term

(Def. 8) 2{1,2,3,4}.

Let us consider a set Ω.
Let us assume that Ω = {1, 2, 3, 4}. Now we state the propositions:

(22) (i) {1} ⊆ Ω, and

(ii) {2} ⊆ Ω, and

(iii) {3} ⊆ Ω, and

(iv) {4} ⊆ Ω, and

(v) {1, 2} ⊆ Ω, and

(vi) {3, 4} ⊆ Ω, and
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(vii) ∅ ⊆ Ω ⊆ Ω.

(23) (i) Ω, ∅ ∈ Ωnow, and

(ii) {1, 2}, {3, 4}, Ω, ∅ ∈ Ωfut1, and

(iii) Ω, ∅, {1}, {2}, {3}, {4} ∈ Ωfut2.

Now we state the proposition:

(24) Ωnow ⊂ Ωfut1 ⊂ Ωfut2.

4. Construction of Filtration and Examples

Now we state the propositions:

(25) There exists a non empty set Ω and there exist σ-fields F1, F2, F3 of
subsets of Ω such that F1 ⊂ F2 ⊂ F3.

(26) There exist non empty sets Ω1, Ω2, Ω3, Ω4 such that

(i) Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ Ω4, and

(ii) there exists a σ-field F1 of subsets of Ω1 and there exists a σ-field F2

of subsets of Ω2 and there exists a σ-field F3 of subsets of Ω3 and there
exists a σ-field F4 of subsets of Ω4 such that F1 ⊆ F2 ⊆ F3 ⊆ F4.

Let I, Ω be non empty sets, Σ be a σ-field of subsets of Ω, M be a many
sorted σ-field over I and Σ, and i be an element of I. The functorMσ -field(M, i)
yielding a σ-field of subsets of Ω is defined by the term

(Def. 9) M(i).

Let Ω be a non empty set and I be a non empty subset of R.
A filtration of I and Σ is a many sorted σ-field over I and Σ and is defined

by

(Def. 10) for every elements s, t of I such that s ¬ t holds it(s) is a subset of it(t)
and for every element t of I, it(t) ⊆ Σ.

Let F be a filtration of I and Σ and i be an element of I. The i-EF of F
yielding a σ-field of subsets of Ω is defined by the term

(Def. 11) F (i).

Let k be an element of {1, 2, 3}. The functor Select12-σ-field(k) yielding
a subset of 2{1,2,3,4} is defined by the term

(Def. 12)

{
Ωnow, if k = 1,
Ωfut1, otherwise.

The functor Select123-σ-field(k) yielding a subset of 2{1,2,3,4} is defined by
the term
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(Def. 13)

{
Select12-σ-field(k), if k ¬ 2,
Ωfut2, otherwise.

Now we state the propositions:

(27) Let us consider a σ-field Σ of subsets of {1, 2, 3, 4}, and a set I. Suppose
I = {1, 2, 3} and Σ = 2{1,2,3,4}. Then there exists a many sorted σ-field M
over I and Σ such that

(i) M(1) = Ωnow, and

(ii) M(2) = Ωfut1, and

(iii) M(3) = Ωfut2.

Proof: Define U(element of {1, 2, 3}) = Select123-σ-field($1). Consider f4

being a function from {1, 2, 3} into 22{1,2,3,4} such that for every element d
of {1, 2, 3}, f4(d) = U(d) from [5, Sch. 4]. For every set i such that i ∈ I
holds f4(i) is a σ-field of subsets of {1, 2, 3, 4}. �

(28) Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, and
a non empty subset I of R. Suppose I = {1, 2, 3} and Σ = 2{1,2,3,4} and
Ω = {1, 2, 3, 4}. Then there exists a many sorted σ-field M over I and Σ
such that

(i) M(1) = Ωnow, and

(ii) M(2) = Ωfut1, and

(iii) M(3) = Ωfut2, and

(iv) M is a filtration of I and Σ.

The theorem is a consequence of (27).

(29) Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, and
a σ-field Σ2 of subsets of {1}. Suppose Ω = {1, 2, 3, 4}. Then there exists
a function X1 from Ω into {1} such that X1 is random variable of Ωnow

and Σ2, random variable of Ωfut1 and Σ2, and random variable of Ωfut2

and Σ2.

(30) Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, and
a non empty subset I of R. Suppose I = {1, 2, 3} and Σ = 2{1,2,3,4} and
Ω = {1, 2, 3, 4}. Then there exists a many sorted σ-field M over I and Σ
such that

(i) M(1) = Ωnow, and

(ii) M(2) = Ωfut1, and

(iii) M(3) = Ωfut2, and

(iv) M is a filtration of I and Σ.

The theorem is a consequence of (27).
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(31) There exist non empty sets Ω, Ω2 and there exists a σ-field Σ of subsets
of Ω and there exists a σ-field Σ2 of subsets of Ω2 and there exists a non
empty subset I of R and there exists a many sorted σ-field Q over I and Σ
such that Q is a filtration of I and Σ and there exists a function RV from
Ω into Ω2 such that for every element i of I, RV is a random variable of
Mσ -field(Q, i) and Σ2. The theorem is a consequence of (30) and (29).

(32) Let us consider non empty sets Ω, Ω2, a σ-field Σ of subsets of Ω, a σ-
field Σ2 of subsets of Ω2, a non empty subset I of R, and a filtration Q of
I and Σ. Then there exists a function RV from Ω into Ω2 such that for
every element i of I, RV is a random variable of Mσ -field(Q, i) and Σ2.
Proof: Consider w being an object such that w ∈ Ω2. Set m1 = w.
Consider m being a function from Ω into Ω2 such that m = Ω 7−→ m1.
For every element i of I, m is a random variable of Mσ -field(Q, i) and Σ2

by [13, (7)], [11, (5), (4)]. �

5. Stochastic Process: Adapted and Predictable

Now we state the proposition:

(33) Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, and a σ-
field Σ2 of subsets of Ω. If Σ2 ⊆ Σ, then every event of Σ2 is an event of
Σ.

Let Ω, Ω2 be non empty sets, Σ be a σ-field of subsets of Ω, Σ2 be a σ-field
of subsets of Ω2, I be a non empty subset of R, and P be a probability on Σ.

A stochastic process of I, Σ, Σ2 and P is a function from I into the set of
random variables on Σ and Σ2 and is defined by

(Def. 14) for every element k of I, there exists a function RV from Ω into Ω2 such
that it(k) = RV and RV is random variable on Σ and Σ2.

Let S be a stochastic process of I, Σ, Σ2 and P and k be an element of I.
The k-RV of S yielding a random variable of Σ and Σ2 is defined by the term

(Def. 15) S(k).

An adapted stochastic process of I, Σ, Σ2, P and S is a function from I into
the set of random variables on Σ and Σ2 and is defined by

(Def. 16) there exists a filtration k of I and Σ such that for every element i of I,
the i-RV of S is random variable on the i-EF of k and Σ2.

Let I be a non empty subset of N, J be a non empty subset of N, and S be
a stochastic process of J(∈ 2R), Σ, Σ2 and P .

A predictable stochastic process of I, J , Σ, Σ2, P and S is a function from
J into the set of random variables on Σ and Σ2 and is defined by
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(Def. 17) there exists a filtration k of I(∈ 2R) and Σ such that for every element
j of J(∈ 2R) for every element i of I(∈ 2R) such that j − 1 = i holds
the j-RV of S is random variable on the i-EF of k and Σ2.

Let I be a non empty subset of R, M be a filtration of I and Σ, and S be
a stochastic process of I, Σ, Σ2 and P . We say that S is M -stochastic process
w.r.t. filtration if and only if

(Def. 18) for every element i of I, the i-RV of S is random variable on the i-EF
of M and Σ2.

Now we state the proposition:

(34) Let us consider non empty sets Ω, Ω2, a σ-field Σ of subsets of Ω, a σ-
field Σ2 of subsets of Ω2, a non empty subset I of R, a probability P on Σ,
a filtration M of I and Σ, and a stochastic process S of I, Σ, Σ2 and P .
Suppose S is M -stochastic process w.r.t. filtration. Then S is an adapted
stochastic process of I, Σ, Σ2, P and S.

6. Example for a Stochastic Process

Let k1, k2 be elements of R, Ω be a non empty set, and k be an element of
Ω. The functors: Set1-RV(k1, k2, k) and Set4-RV(k1, k2, k) yielding elements of
R are defined by terms

(Def. 19)

{
k1, if k = 1 or k = 2,
k2, otherwise,

(Def. 20)

{
k1, if k = 3,
k2, otherwise,

respectively. Let k2, k3, k4 be elements of R. The functor Set3-RV(k2, k3, k4, k)
yielding an element of R is defined by the term

(Def. 21)

{
k2, if k = 2,
Set4-RV(k3, k4, k), otherwise.

Let k1, k2, k3, k4 be elements of R. The functor Set2-RV(k1, k2, k3, k4, k)
yielding an element of R is defined by the term

(Def. 22)

{
k1, if k = 1,
Set3-RV(k2, k3, k4, k), otherwise.

Now we state the proposition:

(35) Let us consider elements k1, k2, k3, k4 of R, and a set Ω. Suppose Ω =
{1, 2, 3, 4}. Then there exists a function f from Ω into R such that

(i) f(1) = k1, and

(ii) f(2) = k2, and
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(iii) f(3) = k3, and

(iv) f(4) = k4.

Proof: Define U(element of Ω) = Set2-RV(k1, k2, k3, k4, $1). Consider
f being a function from Ω into R such that for every element d of Ω,
f(d) = U(d) from [5, Sch. 4]. f(1) = k1. f(2) = k2. f(3) = k3. f(4) = k4.
�

Let us consider a set Ω.
Let us assume that Ω = {1, 2, 3, 4}. Now we state the propositions:

(36) There exists a function f from Ω into R such that

(i) f(1) = 100, and

(ii) f(2) = 100, and

(iii) f(3) = 100, and

(iv) f(4) = 100.

The theorem is a consequence of (35).

(37) There exists a function f from Ω into R such that

(i) f(1) = 80, and

(ii) f(2) = 80, and

(iii) f(3) = 120, and

(iv) f(4) = 120.

The theorem is a consequence of (35).

(38) There exists a function f from Ω into R such that

(i) f(1) = 60, and

(ii) f(2) = 80, and

(iii) f(3) = 100, and

(iv) f(4) = 120.

The theorem is a consequence of (35).

(39) Let us consider elements k1, k2, k3, k4 of R, and a non empty set Ω.
Suppose Ω = {1, 2, 3, 4}. Let us consider a σ-field Σ of subsets of Ω, a non
empty subset I of R, and a filtration M of I and Σ. Suppose M(1) = Ωnow

and M(2) = Ωfut1 and M(3) = Ωfut2. Let us consider an element k of I.
Suppose k = 3. Then there exists a function f from Ω into R such that

(i) f(1) = k1, and

(ii) f(2) = k2, and

(iii) f(3) = k3, and
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(iv) f(4) = k4, and

(v) f is random variable on the k-EF of M and the Borel sets.

Proof: Consider f being a function from Ω into R such that f(1) = k1

and f(2) = k2 and f(3) = k3 and f(4) = k4. 1, 2, 3, 4 ∈ dom f . f is
random variable on the k-EF of M and the Borel sets by [4, (1)], [11, (4)].
�

Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, a non empty
subset I of R, a filtration M of I and Σ, and an element k of I.

Let us assume that Ω = {1, 2, 3, 4}. Now we state the propositions:

(40) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 3. Then there exists a function f from Ω into R such that

(i) f(1) = 60, and

(ii) f(2) = 80, and

(iii) f(3) = 100, and

(iv) f(4) = 120, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (39).

(41) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 3. Then there exists a function f from Ω into R such that

(i) f(1) = 180, and

(ii) f(2) = 120, and

(iii) f(3) = 120, and

(iv) f(4) = 80, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (39).

(42) Let us consider elements k1, k2 of R, and a non empty set Ω. Suppose
Ω = {1, 2, 3, 4}. Let us consider a σ-field Σ of subsets of Ω, a non empty
subset I of R, and a filtration M of I and Σ. Suppose M(1) = Ωnow and
M(2) = Ωfut1 and M(3) = Ωfut2. Let us consider an element k of I.
Suppose k = 2. Then there exists a function f from Ω into R such that

(i) f(1) = k1, and

(ii) f(2) = k1, and

(iii) f(3) = k2, and

(iv) f(4) = k2, and

(v) f is random variable on the k-EF of M and the Borel sets.
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Proof: Consider f being a function from Ω into R such that f(1) = k1

and f(2) = k1 and f(3) = k2 and f(4) = k2. Set i = k. For every set x,
f−1(x) ∈ the i-EF of M by [4, (1)]. �

Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, a non empty
subset I of R, a filtration M of I and Σ, and an element k of I.

Let us assume that Ω = {1, 2, 3, 4}. Now we state the propositions:

(43) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 2. Then there exists a function f from Ω into R such that

(i) f(1) = 80, and

(ii) f(2) = 80, and

(iii) f(3) = 120, and

(iv) f(4) = 120, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (42).

(44) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 2. Then there exists a function f from Ω into R such that

(i) f(1) = 150, and

(ii) f(2) = 150, and

(iii) f(3) = 100, and

(iv) f(4) = 100, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (42).

(45) Let us consider an element k1 of R, and a non empty set Ω. Suppose
Ω = {1, 2, 3, 4}. Let us consider a σ-field Σ of subsets of Ω, a non empty
subset I of R, and a filtration M of I and Σ. Suppose M(1) = Ωnow and
M(2) = Ωfut1 and M(3) = Ωfut2. Let us consider an element k of I.
Suppose k = 1. Then there exists a function f from Ω into R such that

(i) f(1) = k1, and

(ii) f(2) = k1, and

(iii) f(3) = k1, and

(iv) f(4) = k1, and

(v) f is random variable on the k-EF of M and the Borel sets.

Proof: Consider f being a function from Ω into R such that f(1) = k1

and f(2) = k1 and f(3) = k1 and f(4) = k1. Set i = k. For every set x
such that x ∈ the Borel sets holds f−1(x) ∈ the i-EF of M by [4, (1)]. �
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Let us consider a non empty set Ω, a σ-field Σ of subsets of Ω, a non empty
subset I of R, a filtration M of I and Σ, and an element k of I.

Let us assume that Ω = {1, 2, 3, 4}. Now we state the propositions:

(46) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 1. Then there exists a function f from Ω into R such that

(i) f(1) = 100, and

(ii) f(2) = 100, and

(iii) f(3) = 100, and

(iv) f(4) = 100, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (45).

(47) Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2. Then
suppose k = 1. Then there exists a function f from Ω into R such that

(i) f(1) = 125, and

(ii) f(2) = 125, and

(iii) f(3) = 125, and

(iv) f(4) = 125, and

(v) f is random variable on the k-EF of M and the Borel sets.

The theorem is a consequence of (45).

Now we state the proposition:

(48) Let us consider a non empty set Ω. Suppose Ω = {1, 2, 3, 4}. Let us
consider a σ-field Σ of subsets of Ω, and a non empty subset I of R.
Suppose I = {1, 2, 3} and Σ = 2{1,2,3,4}. Let us consider a filtration M of
I and Σ. Suppose M(1) = Ωnow and M(2) = Ωfut1 and M(3) = Ωfut2.
Let us consider a probability P on Σ, and an element i of I. Then there
exists a function RV from Ω into R such that RV is random variable on
the i-EF of M and the Borel sets. The theorem is a consequence of (46),
(43), and (40).

Let I be a non empty subset of R. Assume I = {1, 2, 3}. Let i be an element
of I. Assume i = 2 or i = 3. Let Ω be a non empty set. Assume Ω = {1, 2, 3, 4}.
Let Σ be a σ-field of subsets of Ω. Assume Σ = 2Ω. Let f1 be a function from
Ω into R. Assume f1(1) = 60 and f1(2) = 80 and f1(3) = 100 and f1(4) = 120.
Let f2 be a function from Ω into R. Assume f2(1) = 80 and f2(2) = 80 and
f2(3) = 120 and f2(4) = 120. Let f3 be a function from Ω into R. The functor
Select12-RV(i,Σ, f1, f2, f3) yielding an element of the set of random variables
on Σ and the Borel sets is defined by the term
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(Def. 23)

{
f2, if i = 2,
f1, otherwise.

Assume I = {1, 2, 3}. Assume Ω = {1, 2, 3, 4}. Assume Σ = 2Ω. Let f1, f2 be
functions from Ω into R. Assume f3(1) = 100 and f3(2) = 100 and f3(3) = 100
and f3(4) = 100. The functor Select123-RV(i,Σ, f1, f2, f3) yielding an element
of the set of random variables on Σ and the Borel sets is defined by the term

(Def. 24)

{
Select12-RV(i,Σ, f1, f2, f3), if i = 2 or i = 3,
f3, otherwise.

Now we state the proposition:

(49) Let us consider non empty sets Ω, Ω2. Suppose Ω = {1, 2, 3, 4}. Let us
consider a σ-field Σ of subsets of Ω, and a non empty subset I of R. Suppose
I = {1, 2, 3} and Σ = 2{1,2,3,4}. Let us consider a probability P on Σ, and
a filtration M of I and Σ. Suppose M(1) = Ωnow and M(2) = Ωfut1 and
M(3) = Ωfut2. Then there exists a stochastic process S of I, Σ, the Borel
sets and P such that

(i) for every element k of I, there exists a function RV from Ω into R
such that S(k) = RV and RV is random variable on Σ and the Borel
sets and random variable on the k-EF of M and the Borel sets and
there exists a function f from Ω into R such that if k = 1, then
f(1) = 100 and f(2) = 100 and f(3) = 100 and f(4) = 100 and
S(k) = f and there exists a function f from Ω into R such that if
k = 2, then f(1) = 80 and f(2) = 80 and f(3) = 120 and f(4) = 120
and S(k) = f and there exists a function f from Ω into R such that if
k = 3, then f(1) = 60 and f(2) = 80 and f(3) = 100 and f(4) = 120
and S(k) = f and S is M -stochastic process w.r.t. filtration, and

(ii) S is an adapted stochastic process of I, Σ, the Borel sets, P and S.

Proof: Consider f3 being a function from Ω into R such that f3(1) =
100 and f3(2) = 100 and f3(3) = 100 and f3(4) = 100. Consider f2

being a function from Ω into R such that f2(1) = 80 and f2(2) = 80 and
f2(3) = 120 and f2(4) = 120. Consider f1 being a function from Ω into R
such that f1(1) = 60 and f1(2) = 80 and f1(3) = 100 and f1(4) = 120.
Define U(element of I) = Select123-RV($1,Σ, f1, f2, f3). Consider f4 being
a function from I into the set of random variables on Σ and the Borel sets
such that for every element d of I, f4(d) = U(d) from [5, Sch. 4]. For
every element k of I, there exists a function RV from Ω into R such that
f4(k) = RV and RV is random variable on Σ and the Borel sets. For
every element k of I, there exists a function RV from Ω into R such that
f4(k) = RV and RV is random variable on Σ and the Borel sets and
random variable on the k-EF of M and the Borel sets and there exists
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a function f from Ω into R such that if k = 1, then f(1) = 100 and
f(2) = 100 and f(3) = 100 and f(4) = 100 and f4(k) = f and there
exists a function f from Ω into R such that if k = 2, then f(1) = 80
and f(2) = 80 and f(3) = 120 and f(4) = 120 and f4(k) = f and there
exists a function f from Ω into R such that if k = 3, then f(1) = 60
and f(2) = 80 and f(3) = 100 and f(4) = 120 and f4(k) = f and f4 is
M -stochastic process w.r.t. filtration and adapted stochastic process of I,
Σ, the Borel sets, P and f4. �
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