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Summary. The article continues the formalization of the lattice theory
(as structures with two binary operations, not in terms of ordering relations). In
the paper, the notion of a pseudocomplement in a lattice is formally introduced
in Mizar, and based on this we define the notion of the skeleton and the set of
dense elements in a pseudocomplemented lattice, giving the meet-decomposition
of arbitrary element of a lattice as the infimum of two elements: one belonging
to the skeleton, and the other which is dense.

The core of the paper is of course the idea of Stone identity

a? t a?? = >,

which is fundamental for us: Stone lattices are those lattices L, which are distri-
butive, bounded, and satisfy Stone identity for all elements a ∈ L. Stone algebras
were introduced by Grätzer and Schmidt in [18]. Of course, the pseudocomple-
ment is unique (if exists), so in a pseudcomplemented lattice we defined a? as
the Mizar functor (unary operation mapping every element to its pseudocom-
plement). In Section 2 we prove formally a collection of ordinary properties of
pseudocomplemented lattices.

All Boolean lattices are Stone, and a natural example of the lattice which is
Stone, but not Boolean, is the lattice of all natural divisors of p2 for arbitrary
prime number p (Section 6). At the end we formalize the notion of the Stone
lattice B[2] (of pairs of elements a, b of B such that a ¬ b) constructed as a
sublattice of B2, where B is arbitrary Boolean algebra (and we describe skeleton
and the set of dense elements in such lattices). In a natural way, we deal with
Cartesian product of pseudocomplemented lattices.

Our formalization was inspired by [17], and is an important step in forma-
lizing Jouni Järvinen Lattice theory for rough sets [19], so it follows rather the
latter paper. We deal essentially with Section 4.3, pages 423–426. The descrip-
tion of handling complemented structures in Mizar [6] can be found in [12]. The
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current article together with [15] establishes the formal background for algebraic
structures which are important for [10], [16] by means of mechanisms of merging
theories as described in [11].
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1. Preliminaries

Now we state the proposition:

(1) Let us consider a distributive lattice L. Then every sublattice of L is
distributive.

Let L be a distributive lattice. One can verify that every sublattice of L is
distributive.

Let L1, L2 be bounded lattices. One can check that L1 × L2 is bounded.
From now on L denotes a lattice and I, P denote non empty closed subset

of L.
Now we state the propositions:

(2) If L is lower-bounded and ⊥L ∈ I, then LLI is lower-bounded and ⊥LLI
=

⊥L.
Proof: Set c = ⊥L. Reconsider c′ = c as an element of LLI . There exists
an element c′ of LLI such that for every element a′ of LLI , c′ u a′ = c′ and
a′ u c′ = c′ by [3, (68), (73)]. For every element a′ of LLI , c′ u a′ = c′ and
a′ u c′ = c′ by [3, (68), (73)]. �

(3) If L is upper-bounded and >L ∈ I, then LLI is upper-bounded and >LLI
=

>L.
Proof: Set c = >L. Reconsider c′ = c as an element of LLI . There exists
an element c′ of LLI such that for every element a′ of LLI , c′ t a′ = c′ and
a′ t c′ = c′ by [3, (68), (73)]. For every element a′ of LLI , c′ t a′ = c′ and
a′ t c′ = c′ by [3, (68), (73)]. �
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2. Pseudocomplements in Lattices

Let L be a non empty lattice structure and a, b be elements of L. We say
that a is a pseudocomplement of b if and only if

(Def. 1) a u b = ⊥L and for every element x of L such that b u x = ⊥L holds
x v a.

We say that L is pseudocomplemented if and only if

(Def. 2) for every element x of L, there exists an element y of L such that y is
a pseudocomplement of x.

Now we state the proposition:

(4) Every Boolean lattice is pseudocomplemented.

Let us note that every lattice which is Boolean is also pseudocomplemented
and there exists a lattice which is Boolean, pseudocomplemented, and bounded.

Now we state the proposition:

(5) Let us consider a pseudocomplemented, lower-bounded lattice L, and
elements a, b, x of L. If a is a pseudocomplement of x and b is a pseudo-
complement of x, then a = b.

Let L be a non empty lattice structure and x be an element of L. Assume
L is a pseudocomplemented, lower-bounded lattice. The functor x∗ yielding
an element of L is defined by

(Def. 3) it is a pseudocomplement of x.

Now we state the proposition:

(6) Let us consider a pseudocomplemented, lower-bounded lattice L, and
an element x of L. Then x∗ u x = ⊥L.

From now on L denotes a lower-bounded, pseudocomplemented lattice.
Now we state the propositions:

(7) Let us consider an element a of L. Then a v (a∗)∗.

(8) Let us consider elements a, b of L. If a v b, then b∗ v a∗. The theorem
is a consequence of (6).

(9) Let us consider an element a of L. Then a∗ = ((a∗)∗)∗. The theorem is
a consequence of (8) and (7).

Let us consider a pseudocomplemented, bounded lattice L. Now we state
the propositions:

(10) (⊥L)∗ = >L.

(11) (>L)∗ = ⊥L.

(12) Let us consider a Boolean lattice L, and an element x of L. Then xc = x∗.
Proof: x∗ v xc by (6), [28, (25)]. xc v x∗ by [28, (20)]. �
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(13) Let us consider a pseudocomplemented, bounded lattice L, and elements
x, y of L. Suppose y is a pseudocomplement of x. Then y ∈ the set of
pseudo-complements of x.

(14) Let us consider a pseudocomplemented, bounded lattice L, and an ele-
ment x of L. Then x∗ ∈ the set of pseudo-complements of x. The theorem
is a consequence of (13).

3. Skeleton of a Pseudocomplemented Lattice

Let L be a lower-bounded, pseudocomplemented lattice. The functor SkeletonL
yielding a subset of L is defined by the term

(Def. 4) the set of all a∗ where a is an element of L.

Now we state the propositions:

(15) Let us consider a lower-bounded, pseudocomplemented lattice L. Then
SkeletonL = {a, where a is an element of L : (a∗)∗ = a}. The theorem is
a consequence of (9).

(16) Let us consider a lower-bounded, pseudocomplemented lattice L, and
an element x of L. Then x ∈ SkeletonL if and only if (x∗)∗ = x. The
theorem is a consequence of (9).

Let L be a bounded, pseudocomplemented lattice. Let us note that SkeletonL
is non empty.

Now we state the proposition:

(17) Let us consider a pseudocomplemented, distributive, lower-bounded lat-
tice L, and elements a, b of L. If a, b ∈ SkeletonL, then aub ∈ SkeletonL.
The theorem is a consequence of (16), (8), and (7).

4. Stone Identity

Let L be a non empty lattice structure. We say that L satisfies the Stone
identity if and only if

(Def. 5) for every element x of L, x∗ t (x∗)∗ = >L.

Now we state the proposition:

(18) Every Boolean lattice satisfies the Stone identity.
Proof: x∗ t (x∗)∗ = >L by (12), [28, (21)]. �

Let us note that every lattice which is Boolean satisfies also the Stone iden-
tity and there exists a lattice which is pseudocomplemented and Boolean and
satisfies the Stone identity.

Now we state the proposition:
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(19) Let us consider a pseudocomplemented, distributive, bounded lattice L.
Then L satisfies the Stone identity if and only if for every elements a, b of
L, (a u b)∗ = a∗ t b∗. The theorem is a consequence of (6) and (10).

Let L be a lattice. We say that L is Stone if and only if

(Def. 6) L is pseudocomplemented, distributive, and bounded and satisfies the
Stone identity.

Let us note that every lattice which is Stone is also pseudocomplemented,
distributive, and bounded and satisfies also the Stone identity and every lattice
which is pseudocomplemented, distributive, and bounded and satisfies the Stone
identity is also Stone.

Now we state the proposition:

(20) Let us consider a pseudocomplemented, distributive, bounded lattice L.
Then L satisfies the Stone identity if and only if for every elements a, b
of L such that a, b ∈ SkeletonL holds a t b ∈ SkeletonL. The theorem is
a consequence of (19), (16), (8), (9), (6), and (10).

In the sequel L denotes a Stone lattice.
Now we state the proposition:

(21) >L, ⊥L ∈ SkeletonL. The theorem is a consequence of (11) and (10).

Let L be a Stone lattice and a be an element of L. We say that a is skeletal
if and only if

(Def. 7) a ∈ SkeletonL.

One can verify that >L is skeletal and ⊥L is skeletal and SkeletonL is join-
closed and meet-closed.

Let us observe that the functor SkeletonL yields a closed subset of L. The
functor SkelLattL yielding a sublattice of L is defined by the term

(Def. 8) LLSkeletonL.

Observe that SkelLattL is distributive.
Now we state the proposition:

(22) (i) ⊥L = ⊥SkelLattL, and

(ii) >L = >SkelLattL.
The theorem is a consequence of (21), (2), and (3).

Let L be a Stone lattice. Observe that SkelLattL is Boolean.
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5. Dense Elements in Lattices

Let L be a lower-bounded lattice. The functor DenseElementsL yielding
a subset of L is defined by the term

(Def. 9) {a, where a is an element of L : a∗ = ⊥L}.

Now we state the proposition:

(23) >L ∈ DenseElementsL. The theorem is a consequence of (11).

Let L be a Stone lattice. Note that DenseElementsL is non empty.
Let a be an element of L. We say that a is dense if and only if

(Def. 10) a ∈ DenseElementsL.

Note that >L is dense.
Now we state the proposition:

(24) Let us consider a Stone lattice L, and an element x of L.
If x ∈ DenseElementsL, then x∗ = ⊥L.

Let L be a Stone lattice. Note that DenseElementsL is join-closed and meet-
closed.

Let us note that the functor DenseElementsL yields a closed subset of L.
The functor DenseLattL yielding a sublattice of L is defined by the term

(Def. 11) LLDenseElementsL.

Note that DenseLattL is distributive.
Now we state the proposition:

(25) Let us consider a Stone lattice L, and an element a of L. Then there
exist elements b, c of L such that

(i) a = b u c, and

(ii) b ∈ SkeletonL, and

(iii) c ∈ DenseElementsL.

The theorem is a consequence of (7), (6), and (8).

6. An Example: Lattice of Natural Divisors

Let us consider a prime number p. Now we state the propositions:

(26) The set of positive divisors of p = {1, p}.
Proof: {pk, where k is an element of N : k ¬ 1} = {1, p} by [22, (4)]. �

(27) The set of positive divisors of p · p = {1, p, p · p}.
Proof: {pk, where k is an element of N : k ¬ 2} = {1, p, p · p} by [22,
(81), (4)]. �
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Let n be a non zero natural number. Let us observe that the lattice of positive
divisors of n is finite and there exists a Boolean lattice which is complete.

Let p be a prime number. One can check that the lattice of positive divisors
of p is Boolean and the lattice of positive divisors of p·p is pseudocomplemented.

Now we state the proposition:

(28) Let us consider a lattice L, a prime number p, and an element x of L.
Suppose L = the lattice of positive divisors of p · p and x = p. Then
x∗ = ⊥L.
Proof: Reconsider y1 = ⊥L as an element of L. For every element y of L
such that x u y = ⊥L holds y v y1 by (27), [14, (64)]. �

Let p be a prime number. Observe that the lattice of positive divisors of
p · p satisfies the Stone identity and the lattice of positive divisors of p · p is non
Boolean and Stone and there exists a lattice which is Stone and non Boolean.

7. Products of Pseudocomplemented Lattices

From now on L1, L2 denote lattices, p1, q1 denote elements of L1, and p2,
q2 denote elements of L2.

Let us assume that L1 is a bounded lattice and L2 is a bounded lattice. Now
we state the propositions:

(29) p1 is a pseudocomplement of q1 and p2 is a pseudocomplement of q2 if
and only if 〈〈p1, p2〉〉 is a pseudocomplement of 〈〈q1, q2〉〉.
Proof: If p1 is a pseudocomplement of q1 and p2 is a pseudocomplement
of q2, then 〈〈p1, p2〉〉 is a pseudocomplement of 〈〈q1, q2〉〉 by [2, (35), (42),
(36)]. For every element x3 of L1 such that q1 u x3 = ⊥L1 holds x3 v p1
by [2, (42), (35), (36)]. For every element x4 of L2 such that q2ux4 = ⊥L2
holds x4 v p2 by [2, (42), (35), (36)]. �

(30) L1 is pseudocomplemented and L2 is pseudocomplemented if and only
if L1 ×L2 is pseudocomplemented. The theorem is a consequence of (29).

Let L1, L2 be pseudocomplemented bounded lattices. Let us observe that
L1 × L2 is pseudocomplemented.

Now we state the proposition:

(31) Suppose L1 is a pseudocomplemented bounded lattice and L2 is a pseu-
docomplemented bounded lattice. Then 〈〈p1, p2〉〉∗ = 〈〈p1∗, p2∗〉〉. The the-
orem is a consequence of (29).

In the sequel L1, L2 denote non empty lattices.
Now we state the propositions:

(32) If L1 is a pseudocomplemented bounded lattice and L2 is a pseudocom-
plemented bounded lattice, then L1 × L2 satisfies the Stone identity.
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Proof: Set L = L1 × L2. For every element x of L, x∗ t (x∗)∗ = >L by
(31), [2, (43), (35)]. �

(33) If L1 is Stone and L2 is Stone, then L1 × L2 is Stone.

Let L1, L2 be Stone lattices. Let us observe that L1 × L2 is Stone.

8. Special Construction: B[2]

From now on B denotes a Boolean lattice.
Let B be a Boolean lattice. The functor carrier(B[2]) yielding a subset of

B ×B is defined by the term

(Def. 12) {〈〈a, b〉〉, where a, b are elements of B : a v b}.

Let us note that carrier(B[2]) is non empty and carrier(B[2]) is join-closed
and meet-closed.

Observe that the functor carrier(B[2]) yields a non empty closed subset of
B ×B. The functor B[2] yielding a lattice is defined by the term

(Def. 13) LB×Bcarrier(B[2]).
Now we state the propositions:

(34) The carrier of B[2] = carrier(B[2]).

(35) 〈〈⊥B, ⊥B〉〉 ∈ the carrier of B[2]. The theorem is a consequence of (34).

(36) 〈〈>B, >B〉〉 ∈ the carrier of B[2]. The theorem is a consequence of (34).

Let B be a Boolean lattice. One can verify that B[2] is lower-bounded and
B[2] is upper-bounded.

Now we state the propositions:

(37) ⊥B[2] = 〈〈⊥B, ⊥B〉〉. The theorem is a consequence of (2).

(38) >B[2] = 〈〈>B, >B〉〉. The theorem is a consequence of (3).

Let B be a Boolean lattice. One can check that B[2] is pseudocomplemented.
Now we state the proposition:

(39) Let us consider a lattice L, elements x1, x2 of B, and an element x of L.
Suppose L = B[2] and x = 〈〈x1, x2〉〉. Then x∗ = 〈〈x2c, x2c〉〉.
Proof: x ∈ carrier(B[2]). Consider x3, x4 being elements of B such that
x = 〈〈x3, x4〉〉 and x3 v x4. Reconsider y = 〈〈x2c, x2c〉〉 as an element of L.
For every element w of L such that x uw = ⊥L holds w v y by (34), [24,
(11)], (37), [2, (35)]. y is a pseudocomplement of x. �

Let B be a Boolean lattice. One can verify that B[2] satisfies the Stone
identity and B[2] is Stone.

Now we state the propositions:
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(40) SkeletonB[2] = the set of all 〈〈a, a〉〉 where a is an element of B.
Proof: SkeletonB[2] = the set of all 〈〈a, a〉〉 where a is an element of B
by (34), (39), [3, (72)]. �

(41) DenseElementsB[2] = the set of all 〈〈a, >B〉〉 where a is an element of B.
Proof: Set L = B[2]. DenseElementsL ⊆ the set of all 〈〈a, >B〉〉 where
a is an element of B by (34), (37), (39), [21, (30)]. Consider a being an ele-
ment of B such that x = 〈〈a, >B〉〉. Reconsider y = x as an element of L.
y∗ = 〈〈(>B)c, (>B)c〉〉. �
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