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Summary. In our previous article [22], we showed complete additivity as
a condition for extension of a measure. However, this condition premised the
existence of a o-field and the measure on it. In general, the existence of the
measure on o-field is not obvious. On the other hand, the proof of existence of
a measure on a semialgebra is easier than in the case of a o-field. Therefore, in
this article we define a measure (pre-measure) on a semialgebra and extend it
to a measure on a o-field. Furthermore, we give a o-measure as an extension of
the measure on a o-field. We follow [24], [10], and [31].
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1. JOINING FINITE SEQUENCES

Now we state the propositions:
(1) Let us consider a binary relation K. If rng K is empty-membered, then
Urng K = 0.
(2) Let us consider a function K. Then rng K is empty-membered if and
only if for every object z, K (z) = 0.
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Let D be a set, F' be a set of finite sequences of D, f be a finite sequence
of elements of F', and n be a natural number. Note that the functor f(n) yields
a finite sequence of elements of D. Let Y be a set of finite sequences of D and
F' be a finite sequence of elements of Y. The functor Length F yielding a finite
sequence of elements of N is defined by

(Def. 1) dom it = dom F' and for every natural number n such that n € dom it
holds it(n) = len(F(n)).
Now we state the propositions:

(3) Let us consider a set D, a set Y of finite sequences of D, and a finite
sequence F' of elements of Y. Suppose for every natural number n such
that n € dom F holds F(n) = ep. Then Y Length F' = 0.

(4) Let us consider aset D, a set Y of finite sequences of D, a finite sequence
F' of elements of Y, and a natural number k. Suppose k < len F'. Then
Length(F'[(k + 1)) = Length(F[k) ™ (len(F(k + 1))).

(5) Let us consider a set D, a set Y of finite sequences of D, a finite sequence
F of elements of Y, and a natural number n. Suppose 1 < n < Y Length F.
Then there exist natural numbers k, m such that

(i) 1<m<len(F(k+1)), and

(ii) k <lenF, and
(iii) m + Y Length(F'[k) = n, and
(iv) n < Y Length(F[(k + 1)).
The theorem is a consequence of (4).

(6) Let us consider a set D, a set Y of finite sequences of D, and finite
sequences Fy, Fy of elements of Y. Then Length(F; ~ F») = Length F} ™
Length F5.

(7) Let us consider a set D, a set Y of finite sequences of D, a finite sequence
F of elements of Y, and natural numbers k1, k2. Suppose k1 < k2. Then
> Length(F[k1) < Y Length(F'[k2). The theorem is a consequence of (6).

(8) Let us consider aset D, a set Y of finite sequences of D, a finite sequence
F of elements of Y, and natural numbers m1, ma, k1, ko. Suppose 1 < my
and 1 < mg and m; + " Length(F'[k1) = ma+ Y Length(F'[ke) and m; +
> Length(F[k;) < > Length(F[(k1 + 1)) and mgo + Y Length(F'Tke) <
> Length(F[(k2 + 1)). Then

(i) mp = mg, and
(i) k1 = ko.

The theorem is a consequence of (7).
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Let D be a non empty set, Y be a set of finite sequences of D, and F' be
a finite sequence of elements of Y. The functor joinedFinSeq F' yielding a finite
sequence of elements of D is defined by

(Def. 2) lenit = Y Length F and for every natural number n such that n € dom it
there exist natural numbers k, m such that 1 < m < len(F(k + 1)) and
k <len F and m+ )" Length(F'[k) = n and n < > Length(F[(k+1)) and
it(n) = F(k+1)(m).

Let D be a set, Y be a set of finite sequences of D and s be a sequence of
Y. The functor Length s yielding a sequence of N is defined by

(Def. 3) for every natural number n, it(n) = len(s(n)).

Let s be a sequence of N. One can check that the functor (3°5_g s(a))ken
yields a sequence of N. Let D be a non empty set. Let us note that there exists
a set of finite sequences of D which is non empty and has a non-empty element.

Let us consider a non empty set D, a non empty set Y of finite sequences
of D with a non-empty element, a non-empty sequence s of Y, and a natural
number n. Now we state the propositions:

(9) (i) len(s(n)) > 1, and
(ii) n < (> h—o(Lengths)(a))ken(n) < (3 a_o(Length s)())ken(n + 1).
PROOF: Define P[natural number] = $; < (35_,(Length s)())ken($1).
For every natural number k, len(s(k)) > 1 by [0, (20)]. For every natural
number k such that P[k] holds P[k +1]. For every natural number k, P[k]
from [3), Sch. 2]. O

(10) There exist natural numbers k, m such that
(i) m € dom(s(k)), and
(i) (5% (Length s)())nen(k) — len(s(k)) + m — 1 =n.
The theorem is a consequence of (9).

(11) Let us consider a non empty set D, a non empty set Y of finite sequences
of D with a non-empty element, and a non-empty sequence s of Y. Then
(> b _o(Length s)(a))xen is increasing.

(12) Let us consider a non empty set D, a non empty set Y of finite se-
quences of D with a non-empty element, a non-empty sequence s of Y,
and natural numbers my, ma, ki, k. Suppose m; € dom(s(ki)) and
ma € dom(s(ke)) and (>-h_(Length s)(a))xen(k1) — len(s(k1)) + my =
>k _o(Length s)(«))xen(k2) — len(s(k2)) + mo. Then

(i) my = mg, and
(i) k1 = ka.

The theorem is a consequence of (11).
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(13) Let us consider a non empty set D, a set Y of finite sequences of D
with a non-empty element, and a non-empty sequence s of Y. Then there
exists an increasing sequence N of N such that for every natural number
B, N (k) = (X5_o(Length )(0))xers () — 1.

PROOF: Define P[natural number, natural number] = $5 =

(>r_o(Length s)(«))en($1) — 1. For every element k of N, there exists

an element n of N such that P[k,n] by (9), [3, (20)]. Consider N being

a function from N into N such that for every element k of N, P[k, N (k)]

from [14], Sch. 3]. For every natural number k, N (k) =

(>or_o(Length s)(a))wen(k) — 1. For every natural number n, N(n) <

N(n+1).0

Let D be a non empty set, Y be a set of finite sequences of D with a non-

empty element, and s be a non-empty sequence of Y. The functor joinedSeq s
yielding a sequence of D is defined by

(Def. 4) for every natural number n, there exist natural numbers k, m such that
m € dom(s(k)) and (-5 _y(Length s)(a))xen(k) —len(s(k)) +m —1=n
and it(n) = s(k)(m).
Now we state the propositions:

(14) Let us consider a non empty set D, a set Y of finite sequences of D with
a non-empty element, a non-empty sequence s of Y, and a sequence s; of
D. Suppose for every natural number n, si(n) =
(joinedSeq s) (X5 _o(Length s)(a))ken(n) — 1). Then s; is a subsequence
of joinedSeq s.
Proor: Consider NV being an increasing sequence of N such that for every
natural number n, N(n) = (3 &_,(Lengths)(a))ken(n) — 1. For every
element n of N, s1(n) = (joinedSeq s - N)(n) by [14, (15)]. O

(15) Let us consider a non empty set D, a set Y of finite sequences of D with
a non-empty element, a non-empty sequence s of Y, and natural numbers
k, m. Suppose m € dom(s(k)). Then there exists a natural number n such
that

(i) n = (Zh=o(Length s)(@))wen(k) —len(s(k)) +m — 1, and
(ii) (joinedSeqs)(n) = s(k)(m).
The theorem is a consequence of (12).

Let us consider a non empty set D, a set Y of finite sequences of D, and
a finite sequence F' of elements of Y. Now we state the propositions:

(16) Suppose for every natural numbers n, m such that n # m holds
Urng(F(n)) misses |Jrng(F'(m)) and for every natural number n, F(n) is
disjoint valued. Then joinedFinSeq F' is disjoint valued.
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(17) rngjoinedFinSeq F' = [J{rng(F(n)), where n is a natural number : n €
dom F'}. The theorem is a consequence of (4), (7), and (8).

2. EXTENDED REAL-VALUED MATRIX

Let x be an extended real number. One can check that the functor (x) yields
a finite sequence of elements of R. Let e be a finite sequence of elements of R".
The functor 3 e yielding a finite sequence of elements of R is defined by

(Def. 5) lenit = lene and for every natural number k such that k& € dom it holds
it(k) = 3(e(k)).

Let M be a matrix over R. The functor SumAll M yielding an element of R
is defined by the term

(Def. 6) S5 M.

Now we state the propositions:

(18) Let us consider a matrix M over R. Then
(i) len>> M =len M, and

(ii) for every natural number i such that ¢ € Seglen M holds (3 M) (i) =
S Line(M, 7).

(19) Let us consider a finite sequence F of elements of R. Suppose for every
natural number ¢ such that ¢ € dom F' holds F(i) # —oo. Then ) F #
—00.

ProoF: Consider f being a function from N into R such that . F =

f(len F') and f(0) = 0 and for every natural number ¢ such that ¢ < len F’
holds f(i+1) = f(i)+ F(i+1). Define P[natural number| = if $; < len F,
then f($1) # —oo. For every natural number j such that P[j] holds P[j+1]
by [B, (13), (11)], [33, (25)]. For every natural number i, P[i] from [3]
Sch. 2]. O

(20) Let us consider finite sequences F, G, H of elements of R. Suppose
—o0 ¢ rng F'and —oo ¢ rng G and dom F' = dom G and H = F'+G. Then
YH=YF+YG.

Proor: Consider h being a function from N into R such that S>> H =
h(len H) and h(0) = Og and for every natural number i such that i < len H
holds h(i+1) = h(i) + H(i + 1). Consider f being a function from N into
R such that Y F = f(len F) and f(0) = O and for every natural number
i such that ¢ < len F" holds f(i +1) = f(i) + F'(i + 1). Consider g being
a function from N into R such that > G = g(len G) and g(0) = O and for
every natural number ¢ such that ¢ < len G holds g(i+1) = g(i)+G(i+1).
Define P[natural number| = if $; < len H, then h($1) = f($1) +¢(3$1). For
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every natural number k such that P[k] holds P[k + 1] by [3, (13), (11)],
[33, (25)], [13, (3)]. For every natural number i, Pi] from [3, Sch. 2]. O

(21) Let us consider an extended real number r, and a finite sequence F' of
elements of R. Then S (F ™ (r)) =Y F +r.
PROOF: Consider f being a function from N into R such that 3" (F " (r)) =
f(en(F ™ (r))) and f(0) = 0 and for every natural number i such that
i <len(F ™ (r)) holds f(i+1) = f(i) + (F ~(r))(i+ 1). Consider g being
a function from N into R such that >° F = g(len ') and g(0) = 0 and for
every natural number ¢ such that ¢ < len F' holds g(i+1) = g(i)+ F(i+1).
Define P[natural number| = if $; < len F, then f($1) = ¢($1). For every
natural number k such that P[k] holds P[k + 1] by [3, (13)], [5, (64)], [3,
(11)]. For every natural number ¢, P[i| from [3, Sch. 2]. O

(22) Let us consider an extended real number 7, and a natural number 4. If r
is real, then Y (i — r) =i - 7.
PROOF: Define P[natural number] = >~($; — r) = $1-r. For every natural
number ¢ such that P[i] holds P[i+1] by [12} (60)], (21). For every natural
number ¢, P[i] from [3, Sch. 2]. O

(23) Let us consider a matrix M over R. If len M = 0, then SumAll M = 0.

(24) Let us consider a natural number m, and a matrix M over R of dimension
mx0. Then SumAll M = 0. The theorem is a consequence of (23) and (22).

(25) Let us consider natural numbers n, m, k, a matrix M; over R of dimen-
sion nxk, and a matrix My over R of dimension mxk. Then Y (M~ Ms) =
> My 70 M.
Let us consider matrices My, M, over R. Now we state the propositions:

(26) Suppose for every natural number ¢ such that ¢ € dom M; holds —oo ¢
rng(Mi(i)) and for every natural number ¢ such that i € dom My holds
—o00 ¢ rng(Ms(i)). Then Y My + > My = > (M1 — Ms). The theorem is
a consequence of (19).

(27) Suppose len My = len M5 and for every natural number ¢ such that i €
dom M holds —oo ¢ rng(M; (7)) and for every natural number i such that
i € dom Mj holds —oo ¢ rng(Ma(i)). Then SumAll M; + SumAll My =
SumAll(M; — Ms). The theorem is a consequence of (19), (26), and (20).

Now we state the propositions:
(28) Let us consider a finite sequence p of elements of R. Suppose —cc ¢ rng p.
Then SumAll{p) = SumAll(p)*.
PROOF: Define z[finite sequence of elements of R] = if —oo ¢ rng $1, then

SumAll($;) = SumAIll($;)T. For every finite sequence p of elements of R
and for every element z of R such that z[p] holds x[p ~ (z)] by [5, (31),
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38), (6)]. xlez]. For every finite sequence p of elements of R, z[p] from
R
[12, Sch. 2]. O

(29) Let us consider an extended real number p, and a matrix M over R. Sup-
pose for every natural number ¢ such that i € dom M holds p ¢ rng(M(7)).
Let us consider a natural number j. If j € dom MT, then p ¢ rng(M™(5)).

(30) Let us consider a matrix M over R. Suppose for every natural num-

ber ¢ such that ¢ € dom M holds —oo ¢ rng(M(7)). Then SumAll M =
SumAll M.
PROOF: Define z[natural number] = for every matrix M over R such
that len M = $; and for every natural number i such that ¢ € dom M
holds —co ¢ rng(M (7)) holds SumAll M = SumAll MT. For every natural
number n such that z[n] holds xz[n + 1] by [3, (11)], [33, (25)], [5, (40)],
(28). z[0]. For every natural number n, z[n] from [3, Sch. 2]. O

3. DEFINITION OF PRE-MEASURE

Let x be an object. Let us observe that (x) is disjoint valued.
Now we state the proposition:

(31) Let us consider a set X, a semi-diff-closed, N-closed family S of subsets
of X with the empty element, a finite sequence F' of elements of S, and
an element G of S. Then there exists a disjoint valued finite sequence H
of elements of S such that G\ JF =UH.
PROOF: Define P[natural number| = for every finite sequence f of elements
of S such that len f = $; there exists a disjoint valued finite sequence H
of elements of S such that G\ Jf = U H. For every finite sequence f
of elements of S such that len f = 0 there exists a disjoint valued finite
sequence H of elements of S such that G\ U f = UH by [16, (2)], [5,
(38)], [16, (25)]. For every natural number ¢ such that P[i] holds P[i + 1]
by [B, (11)], [5, (59)], [33, (55)], [5, (36), (38)]. For every natural number
i, Pli] from [3, Sch. 2]. O
Let X be a set and P be a semi-diff-closed, N-closed family of subsets of X
with the empty element. Let us note that there exists a sequence of P which is
disjoint valued.
Let P be a non empty family of subsets of X. Note that there exists a function
from P into R which is non-negative, additive, and zeroed.
Let P be a family of subsets of X with the empty element. One can check
that there exists a function from N into P which is disjoint valued.
A pre-measure of P is a non-negative, zeroed function from P into R and is
defined by

315
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(Def. 7) for every disjoint valued finite sequence F' of elements of P such that
UF € P holds it(UF) = Y_(it - F) and for every disjoint valued function
K from N into P such that |JK € P holds it(UK) < Y.(it - K).

Now we state the propositions:

(32) Let us consider a set X with the empty element, and a finite sequence
F of elements of X. Then there exists a function G from N into X such
that

(i) for every natural number i, F'(i) = G(i), and

(i) UF = UG.

PROOF: Define Plelement of N,set] = if $; € dom F', then F($1) = $
and if $§; ¢ dom F', then $2 = ). For every element i of N, there exists
an element y of X such that P[i, y] by [13, (3)]. Consider G being a function
from N into X such that for every element i of N, P[i,G(i)] from [I4]
Sch. 3]. O

(33) Let us consider a non empty set X, a finite sequence F' of elements of
X, and a function G from N into X. Suppose for every natural number i,
F(i) = G(i). Then F is disjoint valued if and only if G is disjoint valued.

(34) Let us consider a finite sequence F' of elements of R, and a sequence G
of extended reals. Suppose for every natural number ¢, F'(i) = G(i). Then
F' is non-negative if and only if G is non-negative.

Let us observe that there exists a finite sequence of elements of R which is
non-negative and there exists a finite sequence of elements of R which is without
—o0o and there exists a finite sequence of elements of R which is non-positive
and there exists a finite sequence of elements of R which is without +oco and
every finite sequence of elements of R which is non-negative is also without —oo
and every finite sequence of elements of R which is non-positive is also without
+00.

Let X, Y be non empty sets, F' be a without —oo function from Y into R,
and G be a function from X into Y. One can check that F' - G is without —oo
as a function from X into R.

Let F be a non-negative function from Y into R. One can check that F - G
is non-negative as a function from X into R.

Now we state the propositions:

(35) Let us consider an extended real number a. Then ) (a) = a.
(36) Let us consider a finite sequence F' of elements of R, and a natural
number k. Then
(i) if F' is without —oo, then F'[k is without —oo, and
(ii) if F" is without 400, then F'[k is without +o0.



CONSTRUCTION OF MEASURE FROM SEMIALGEBRA OF SETS 317

(37) Let us consider a without —oo finite sequence F' of elements of R,
and a sequence G of extended reals. Suppose for every natural number
i, F(i) = G(i). Let us consider a natural number i. Then Y (F'|i) =
(>a=0 G(a))ken(i). The theorem is a consequence of (36) and (35).

(38) Let us consider a without —oo finite sequence F' of elements of R, and
a sequence G of extended reals. Suppose for every natural number i, F(i) =
G(i). Then

(i) G is summable, and
(i) > F=>G.

PRrROOF: Y (F[len F) = (3 F_, G(a))ken(len F'). Define P[natural number]
=Y F = (3Xf_G(a))ken(len F + $;). For every natural number &k such
that P[k| holds Plk + 1] by [3, (11), (19)], [33, (25)]. For every natural
number k, P[k] from [3, Sch. 2]. O

(39) Let us consider a set X, a semi-diff-closed, N-closed family S of subsets of
X with the empty element, a disjoint valued finite sequence F' of elements
of S, and a non empty, preboolean family R of subsets of X. Suppose
S C Rand | F € R. Let us consider a natural number i. Then | J(F'[i) € R.
PROOF: Define P[natural number] = J(F[$;) € R. For every natural
number ¢ such that P[i] holds P[i + 1] by [3, (12)], [5, (58)], [3, (13)], [5}
(82), (17)]. For every natural number ¢, P[i] from [3, Sch. 2]. O

(40) Let us consider a set X, a semi-diff-closed, N-closed family S of subsets of
X with the empty element, a pre-measure P of .S, and disjoint valued finite
sequences Fp, F5 of elements of S. Suppose |JF1 € S and | Fy = U Fb.
Then P(UF1) = P(U F2).

(41) Let us consider a non empty, N-closed set S, and finite sequences F},
Fy of elements of S. Then there exists a matrix M over S of dimension
len F; xlen F5 such that for every natural numbers ¢, j such that (i, j) €
the indices of M holds M; ; = Fi(i) N Fa(j).

PROOF: Define P[natural number, natural number,set] = $35 = F1($;) N
F5($2). For every natural numbers 4, j such that (i, j) € Seglen Fy x
Seglen Fy there exists an element K of S such that P|i, j, K] by [16] (87)],
[13, (3)]. Consider M being a matrix over S of dimension len Fj xlen Fs
such that for every natural numbers ¢, j such that (i, j) € the indices of
M holds Pli, j, M; ;]. O
Let us consider a set X, a N-closed family S of subsets of X with the empty
element, non empty, disjoint valued finite sequences Fy, Fb of elements of S,
a non-negative, zeroed function P from S into R, and a matrix M over R of
dimension len Fj xlen F5.
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Let us assume that |JF1 = J F> and for every natural numbers 4, j such
that (i, j) € the indices of M holds M;; = P(Fi(i) N F»(j)) and for every
disjoint valued finite sequence F' of elements of S such that |JF € S holds
P(UF)=>(P-F). Now we state the propositions:

(42) (i) for every natural number i such that i < len(P - Fy) holds (P -

F1)(i) = (32 M)(i), and

(ii) (P - Fy) = SumAll M.
PRrOOF: Consider K being a matrix over S of dimension len F} xlen Fb
such that for every natural numbers 4, j such that (i, j) € the indices
of K holds K;; = Fi(i) N Fa(j). For every natural number i such that
i <len(P - Fy) holds (P - Fy)(i) = (3 M)(3) by [33, (24)], [3, (14)], [33,
(25)], [13, (11), (3)]. Consider @ being a function from N into R such that
Y(P-Fi)=QIen(P - Fy)) and Q(0) = 0 and for every natural number 4
such that ¢ < len(P - Fy) holds Q(i+ 1) = Q(¢) + (P - F1)(i + 1). Consider
L being a function from N into R such that SumAllM = L(leny. M)
and L(0) = O and for every natural number i such that i < len} M
holds L(i + 1) = L(i) + (3> M)(i + 1). Define R[natural number| = if
$1 < len(P - Fy), then Q($1) = L($1). For every natural number ¢ such
that R[i] holds R[i+ 1] by [3, (13)]. For every natural number i, R[i] from
[3, Sch. 2]. O

(43) (i) for every natural number i such that i < len(P - F») holds (P -

Fy)(i) = (32 M*)(i), and

(ii) (P - Fy) = SumAl MT.
PRrROOF: Consider K being a matrix over S of dimension len Fj xlen Fb
such that for every natural numbers 4, j such that (i, j) € the indices
of K holds K;; = Fi(i) N F3(j). For every natural number ¢ such that
i <len(P - Fy) holds (P - Fy)(i) = (X M™1)(i) by [33, (24)], [3, (14)], [33,
(25)], [13, (11), (3)]. Consider @ being a function from N into R such that
Y (P - F3) =Q(len(P - Fy)) and Q(0) = 0 and for every natural number 4
such that ¢ < len(P - Fy) holds Q(i + 1) = Q(i) + (P - F»)(i + 1). Consider
L being a function from N into R such that SumAllM™T = L(len 3 M)
and L(0) = Og and for every natural number i such that ¢ < len > MT
holds L(i 4+ 1) = L(i) + (X, MT)(i + 1). Define R[natural number] = if
$1 < len(P - F3), then Q($1) = L($1). For every natural number i such
that R[i] holds R[i+ 1] by [3], (13)]. For every natural number ¢, R[] from
[3, Sch. 2]. O

(44) Let us consider a set X, a semi-diff-closed, N-closed family S of subsets of
X with the empty element, a pre-measure P of S, and a set A. Suppose A €
the ring generated by S. Let us consider disjoint valued finite sequences F7,
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Fs of elements of S. If A = J Fy and A = |J F, then Y (P-Fy) = Y (P-F3).
The theorem is a consequence of (42), (43), and (30).

(45) Let us consider finite sequences fi, fa. Suppose fi is disjoint valued and
fo is disjoint valued and |Jrng f; misses |Jrng fo. Then f; © fo is disjoint
valued.

(46) Let us consider a set X, a semi-diff-closed family P of subsets of X
with the empty element, a pre-measure M of P, and sets A, B. If A, B,
A\B € P and B C A, then M(A) > M(B). The theorem is a consequence
of (45).

(47) Let us consider non empty sets Y, S, a partial function F' from Y to
S, and a function M from S into R. If M is non-negative, then M - F is
non-negative.

(48) Let us consider a set X, a semi-diff-closed, N-closed family S of subsets
of X with the empty element, and a pre-measure P of S. Then there exists
a non-negative, additive, zeroed function M from the ring generated by
S into R such that for every set A such that A € the ring generated by
S for every disjoint valued finite sequence F' of elements of S such that
A=F holds M(A) =>(P-F).
PROOF: Define Plobject, object] = for every disjoint valued finite sequence
F of elements of S such that $; = |J F holds $3 = > (P - F'). For every
object A such that A € the ring generated by S there exists an object
p such that p € R and P[A4,p] by [23, (18)], (44). Consider M being
a function from the ring generated by S into R such that for every object
A such that A € the ring generated by S holds P[A, M (A)] from [I14],
Sch. 1]. For every element A of the ring generated by S, 0 < M (A) by [23|
(18)], [3, (11)], [33, (25)], [13, (12)]. For every elements A, B of the ring
generated by S such that A misses B and AU B € the ring generated by
S holds M(AUB) = M(A)+ M(B) by [23, (18)], (45), [5 (31)], [16], (78)].
O

(49) Let us consider sets X, Y, and functions F', G from N into 2% . Suppose for
every natural number i, G(i) = F(i)NY and JF =Y. Then UG = F.

(50) Let us consider a set X, a semi-diff-closed, N-closed family S of subsets
of X with the empty element, and a pre-measure P of S. Then there exists
a function M from the ring generated by S into R such that

(i) M(0) =0, and

(ii) for every disjoint valued finite sequence K of elements of S such that
U K € the ring generated by S holds M(UK) =3 (P - K).

The theorem is a consequence of (48).
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(51) Let us consider sets X, Z, a semi-diff-closed, N-closed family P of subsets
of X with the empty element, and a disjoint valued function K from N
into the ring generated by P. Suppose Z = {(n, F'), where n is a natural
number, F' is a disjoint valued finite sequence of elements of P : JF =
K(n) and if K(n) =0, then F' = (0)}. Then

(i) m2(Z) is a set of finite sequences of P, and

(ii) for every object x, € rng K iff there exists a finite sequence F of
elements of P such that F' € m3(Z) and |J F = z, and

(iii) m2(Z) has non empty elements.

(52) Let us consider a set X, a semi-diff-closed, N-closed family P of subsets
of X with the empty element, and a disjoint valued function K from N
into the ring generated by P. Suppose rng K has a non-empty element.
Then there exists a non empty set Y of finite sequences of P such that

(i) Y = {F, where F is a disjoint valued finite sequence of elements of
P:UF €rmgK and F # 0}, and

(ii) Y has non empty elements.

4. PRE-MEASURE ON SEMIALGEBRA AND CONSTRUCTION OF MEASURE

Now we state the propositions:

(53) Let us consider sets X, Z, a semialgebra P of sets of X, and a disjoint
valued function K from N into the field generated by P. Suppose Z = {(n,
F'), where n is a natural number, F' is a disjoint valued finite sequence of
elements of P : |JF = K(n) and if K(n) = (), then F = (0)}. Then

(i) ma(Z) is a set of finite sequences of P, and

(ii) for every object x, z € rng K iff there exists a finite sequence F' of
elements of P such that F' € my(Z) and |J F = z, and

(iii) m2(Z) has non empty elements.

(54) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P
of S, a set A, and disjoint valued finite sequences FY, F5 of elements of S.
If A=UF; and A = Fy, then Y (P - Fy) =Y (P - F3). The theorem is
a consequence of (42), (43), and (30).

(55) Let us consider a set X, a semialgebra S of sets of X, and a pre-measure
P of S. Then there exists a measure M on the field generated by S such
that for every set A such that A € the field generated by S for every
disjoint valued finite sequence F' of elements of S such that A = JF
holds M(A) =Y (P - F).
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PROOF: Define P[object, object] = for every disjoint valued finite sequence
F of elements of S such that $; = [JF holds $3 = > (P - F'). For every
object A such that A € the field generated by S there exists an object
p such that p € R and P[A,p] by [23, (22)], (54). Consider M being
a function from the field generated by S into R such that for every object
A such that A € the field generated by S holds P[A, M (A)] from [14]
Sch. 1]. For every element A of the field generated by S, 0 < M(A) by [23,
(22)], 8L (11)], B3, (25)], [13}, (12)]. For every elements A, B of the field
generated by S such that A misses B holds M(AU B) = M(A) + M(B)
by [23 (22)], (45), [, (31)], [16, (78)]. O

(56) Let us consider a sequence F' of extended reals, a natural number n, and
an extended real number a. Suppose for every natural number k, F(k) = a.
Then (35 _o F(a))ken(n) =a- (n+1).

PROOF: Define P[natural number] = (34 F(a))ken($1) = a - ($1 4+ 1).
For every natural number 4 such that P[i] holds P[i+1]. For every natural
number 4, P[i] from [3 Sch. 2]. O

(57) Let us consider a non empty set X, a sequence F' of X, and a natural
number n. Then rng(F'[Zy,+1) = mg(F[Z,) U{F(n)}.

(58) Let us consider a set X, a field S of subsets of X, a measure M on S,
a sequence F' of separated subsets of S, and a natural number n. Then

(i) Urng(FZyp+1) € S, and
(i) (XCa=o(M - F)(@))ren(n) = M(Urng(F|Zn1)).

PROOF: rng(F'[Zo4+1) = rng(F[Zo) U{F(0)}. Define R[natural number] =
Urng(F[Zg, 1) € S. For every natural number k such that R[k] holds
R[k+1] by (57), [16] (78), (25)], [27, (3)]. For every natural number k, R[k]
from [3, Sch. 2]. Define P[natural number] = (35 _o(M - F)(«))xen($1) =
M(Urng(F[Zg, +1)). For every natural number n such that P[n| holds
Pln + 1] by [14, (15)], [35L (57)], [3, (44)], [138 (47)]. For every natural
number n, P[n] from [3, Sch. 2]. O

(59) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P
of S, and a measure M on the field generated by S. Suppose for every set
A such that A € the field generated by S for every disjoint valued finite
sequence F' of elements of S such that A = |J F holds M(A) =Y (P - F).
Then M is completely-additive. The theorem is a consequence of (53),

(15), (13), (58), and (1).
Let X be a set, S be a semialgebra of sets of X, and P be a pre-measure of S.
An induced measure of S and P is a measure on the field generated by S

and is defined by
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(Def. 8) for every set A such that A € the field generated by S for every disjoint
valued finite sequence F' of elements of S such that A = [J F holds it(A) =
(P F).
Now we state the propositions:

(60) Let us consider a set X, a semialgebra S of sets of X, and a pre-measure
P of S. Then every induced measure of S and P is completely-additive.
The theorem is a consequence of (59).

(61) Let us consider a non empty set X, a semialgebra S of sets of X,
a pre-measure P of S, and an induced measure M of S and P. Then
o-Meas(the Caratheodory measure determined by M) [o(the field generated
by S) is a o-measure on o (the field generated by S). The theorem is a con-
sequence of (60).

Let X be a non empty set, S be a semialgebra of sets of X, P be a pre-
measure of S, and M be an induced measure of S and P.

An induced o-measure of S and M is a o-measure on o(the field generated
by S) and is defined by

(Def. 9) it = o-Meas(the Caratheodory measure determined by M)[o(the field
generated by 5).

Now we state the proposition:

(62) Let us consider a non empty set X, a semialgebra S of sets of X, a pre-
measure P of S, and an induced measure m of S and P. Then every
induced o-measure of S and m is an extension of m. The theorem is
a consequence of (60).
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