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Construction of Measure from Semialgebra
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Noboru Endou
Gifu National College of Technology

Gifu, Japan

Summary. In our previous article [22], we showed complete additivity as
a condition for extension of a measure. However, this condition premised the
existence of a σ-field and the measure on it. In general, the existence of the
measure on σ-field is not obvious. On the other hand, the proof of existence of
a measure on a semialgebra is easier than in the case of a σ-field. Therefore, in
this article we define a measure (pre-measure) on a semialgebra and extend it
to a measure on a σ-field. Furthermore, we give a σ-measure as an extension of
the measure on a σ-field. We follow [24], [10], and [31].

MSC: 28A12 03B35

Keywords: measure theory; pre-measure

MML identifier: MEASURE9, version: 8.1.04 5.34.1256

The notation and terminology used in this paper have been introduced in the
following articles: [1], [2], [19], [11], [5], [12], [17], [32], [13], [14], [26], [6], [7],
[22], [20], [18], [21], [3], [4], [15], [27], [28], [35], [36], [30], [29], [23], [34], [8], [9],
[25], and [16].

1. Joining Finite Sequences

Now we state the propositions:

(1) Let us consider a binary relation K. If rngK is empty-membered, then⋃
rngK = ∅.

(2) Let us consider a function K. Then rngK is empty-membered if and
only if for every object x, K(x) = ∅.
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Let D be a set, F be a set of finite sequences of D, f be a finite sequence
of elements of F , and n be a natural number. Note that the functor f(n) yields
a finite sequence of elements of D. Let Y be a set of finite sequences of D and
F be a finite sequence of elements of Y. The functor LengthF yielding a finite
sequence of elements of N is defined by

(Def. 1) dom it = domF and for every natural number n such that n ∈ dom it
holds it(n) = len(F (n)).

Now we state the propositions:

(3) Let us consider a set D, a set Y of finite sequences of D, and a finite
sequence F of elements of Y. Suppose for every natural number n such
that n ∈ domF holds F (n) = εD. Then

∑
LengthF = 0.

(4) Let us consider a set D, a set Y of finite sequences of D, a finite sequence
F of elements of Y, and a natural number k. Suppose k < lenF . Then
Length(F �(k + 1)) = Length(F �k) a 〈len(F (k + 1))〉.

(5) Let us consider a set D, a set Y of finite sequences of D, a finite sequence
F of elements of Y, and a natural number n. Suppose 1 ¬ n ¬

∑
LengthF .

Then there exist natural numbers k, m such that

(i) 1 ¬ m ¬ len(F (k + 1)), and

(ii) k < lenF , and

(iii) m+
∑

Length(F �k) = n, and

(iv) n ¬
∑

Length(F �(k + 1)).

The theorem is a consequence of (4).

(6) Let us consider a set D, a set Y of finite sequences of D, and finite
sequences F1, F2 of elements of Y. Then Length(F1 a F2) = LengthF1 a

LengthF2.

(7) Let us consider a set D, a set Y of finite sequences of D, a finite sequence
F of elements of Y, and natural numbers k1, k2. Suppose k1 ¬ k2. Then∑

Length(F �k1) ¬
∑

Length(F �k2). The theorem is a consequence of (6).

(8) Let us consider a set D, a set Y of finite sequences of D, a finite sequence
F of elements of Y, and natural numbers m1, m2, k1, k2. Suppose 1 ¬ m1
and 1 ¬ m2 and m1+

∑
Length(F �k1) = m2+

∑
Length(F �k2) and m1+∑

Length(F �k1) ¬
∑

Length(F �(k1 + 1)) and m2 +
∑

Length(F �k2) ¬∑
Length(F �(k2 + 1)). Then

(i) m1 = m2, and

(ii) k1 = k2.

The theorem is a consequence of (7).
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Let D be a non empty set, Y be a set of finite sequences of D, and F be
a finite sequence of elements of Y. The functor joinedFinSeqF yielding a finite
sequence of elements of D is defined by

(Def. 2) len it =
∑

LengthF and for every natural number n such that n ∈ dom it
there exist natural numbers k, m such that 1 ¬ m ¬ len(F (k + 1)) and
k < lenF and m+

∑
Length(F �k) = n and n ¬

∑
Length(F �(k+ 1)) and

it(n) = F (k + 1)(m).

Let D be a set, Y be a set of finite sequences of D and s be a sequence of
Y. The functor Length s yielding a sequence of N is defined by

(Def. 3) for every natural number n, it(n) = len(s(n)).

Let s be a sequence of N. One can check that the functor (
∑κ
α=0 s(α))κ∈N

yields a sequence of N. Let D be a non empty set. Let us note that there exists
a set of finite sequences of D which is non empty and has a non-empty element.

Let us consider a non empty set D, a non empty set Y of finite sequences
of D with a non-empty element, a non-empty sequence s of Y, and a natural
number n. Now we state the propositions:

(9) (i) len(s(n)) ­ 1, and

(ii) n < (
∑κ
α=0(Length s)(α))κ∈N(n) < (

∑κ
α=0(Length s)(α))κ∈N(n+ 1).

Proof: Define P[natural number] ≡ $1 < (
∑κ
α=0(Length s)(α))κ∈N($1).

For every natural number k, len(s(k)) ­ 1 by [5, (20)]. For every natural
number k such that P[k] holds P[k+ 1]. For every natural number k, P[k]
from [3, Sch. 2]. �

(10) There exist natural numbers k, m such that

(i) m ∈ dom(s(k)), and

(ii) (
∑κ
α=0(Length s)(α))κ∈N(k)− len(s(k)) +m− 1 = n.

The theorem is a consequence of (9).

(11) Let us consider a non empty set D, a non empty set Y of finite sequences
of D with a non-empty element, and a non-empty sequence s of Y. Then
(
∑κ
α=0(Length s)(α))κ∈N is increasing.

(12) Let us consider a non empty set D, a non empty set Y of finite se-
quences of D with a non-empty element, a non-empty sequence s of Y,
and natural numbers m1, m2, k1, k2. Suppose m1 ∈ dom(s(k1)) and
m2 ∈ dom(s(k2)) and (

∑κ
α=0(Length s)(α))κ∈N(k1) − len(s(k1)) + m1 =

(
∑κ
α=0(Length s)(α))κ∈N(k2)− len(s(k2)) +m2. Then

(i) m1 = m2, and

(ii) k1 = k2.

The theorem is a consequence of (11).
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(13) Let us consider a non empty set D, a set Y of finite sequences of D
with a non-empty element, and a non-empty sequence s of Y. Then there
exists an increasing sequence N of N such that for every natural number
k, N(k) = (

∑κ
α=0(Length s)(α))κ∈N(k)− 1.

Proof: Define P[natural number, natural number] ≡ $2 =
(
∑κ
α=0(Length s)(α))κ∈N($1) − 1. For every element k of N, there exists

an element n of N such that P[k, n] by (9), [3, (20)]. Consider N being
a function from N into N such that for every element k of N, P[k,N(k)]
from [14, Sch. 3]. For every natural number k, N(k) =
(
∑κ
α=0(Length s)(α))κ∈N(k) − 1. For every natural number n, N(n) <

N(n+ 1). �

Let D be a non empty set, Y be a set of finite sequences of D with a non-
empty element, and s be a non-empty sequence of Y. The functor joinedSeq s
yielding a sequence of D is defined by

(Def. 4) for every natural number n, there exist natural numbers k, m such that
m ∈ dom(s(k)) and (

∑κ
α=0(Length s)(α))κ∈N(k) − len(s(k)) + m − 1 = n

and it(n) = s(k)(m).

Now we state the propositions:

(14) Let us consider a non empty set D, a set Y of finite sequences of D with
a non-empty element, a non-empty sequence s of Y, and a sequence s1 of
D. Suppose for every natural number n, s1(n) =
(joinedSeq s)((

∑κ
α=0(Length s)(α))κ∈N(n) − 1). Then s1 is a subsequence

of joinedSeq s.
Proof: Consider N being an increasing sequence of N such that for every
natural number n, N(n) = (

∑κ
α=0(Length s)(α))κ∈N(n) − 1. For every

element n of N, s1(n) = (joinedSeq s ·N)(n) by [14, (15)]. �

(15) Let us consider a non empty set D, a set Y of finite sequences of D with
a non-empty element, a non-empty sequence s of Y, and natural numbers
k, m. Suppose m ∈ dom(s(k)). Then there exists a natural number n such
that

(i) n = (
∑κ
α=0(Length s)(α))κ∈N(k)− len(s(k)) +m− 1, and

(ii) (joinedSeq s)(n) = s(k)(m).

The theorem is a consequence of (12).

Let us consider a non empty set D, a set Y of finite sequences of D, and
a finite sequence F of elements of Y. Now we state the propositions:

(16) Suppose for every natural numbers n, m such that n 6= m holds⋃
rng(F (n)) misses

⋃
rng(F (m)) and for every natural number n, F (n) is

disjoint valued. Then joinedFinSeqF is disjoint valued.
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(17) rng joinedFinSeqF =
⋃
{rng(F (n)), where n is a natural number : n ∈

domF}. The theorem is a consequence of (4), (7), and (8).

2. Extended Real-Valued Matrix

Let x be an extended real number. One can check that the functor 〈x〉 yields
a finite sequence of elements of R. Let e be a finite sequence of elements of R∗.
The functor

∑
e yielding a finite sequence of elements of R is defined by

(Def. 5) len it = len e and for every natural number k such that k ∈ dom it holds
it(k) =

∑
(e(k)).

Let M be a matrix over R. The functor SumAllM yielding an element of R
is defined by the term

(Def. 6)
∑∑

M .

Now we state the propositions:

(18) Let us consider a matrix M over R. Then

(i) len
∑
M = lenM , and

(ii) for every natural number i such that i ∈ Seg lenM holds (
∑
M)(i) =∑

Line(M, i).

(19) Let us consider a finite sequence F of elements of R. Suppose for every
natural number i such that i ∈ domF holds F (i) 6= −∞. Then

∑
F 6=

−∞.
Proof: Consider f being a function from N into R such that

∑
F =

f(lenF ) and f(0) = 0 and for every natural number i such that i < lenF
holds f(i+1) = f(i)+F (i+1). Define P[natural number] ≡ if $1 ¬ lenF ,
then f($1) 6= −∞. For every natural number j such that P[j] holds P[j+1]
by [3, (13), (11)], [33, (25)]. For every natural number i, P[i] from [3,
Sch. 2]. �

(20) Let us consider finite sequences F , G, H of elements of R. Suppose
−∞ /∈ rngF and −∞ /∈ rngG and domF = domG and H = F +G. Then∑
H =

∑
F +
∑
G.

Proof: Consider h being a function from N into R such that
∑
H =

h(lenH) and h(0) = 0R and for every natural number i such that i < lenH
holds h(i+ 1) = h(i) +H(i+ 1). Consider f being a function from N into
R such that

∑
F = f(lenF ) and f(0) = 0R and for every natural number

i such that i < lenF holds f(i + 1) = f(i) + F (i + 1). Consider g being
a function from N into R such that

∑
G = g(lenG) and g(0) = 0R and for

every natural number i such that i < lenG holds g(i+1) = g(i)+G(i+1).
Define P[natural number] ≡ if $1 ¬ lenH, then h($1) = f($1)+g($1). For
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every natural number k such that P[k] holds P[k + 1] by [3, (13), (11)],
[33, (25)], [13, (3)]. For every natural number i, P[i] from [3, Sch. 2]. �

(21) Let us consider an extended real number r, and a finite sequence F of
elements of R. Then

∑
(F a 〈r〉) =

∑
F + r.

Proof: Consider f being a function from N into R such that
∑

(F a 〈r〉) =
f(len(F a 〈r〉)) and f(0) = 0 and for every natural number i such that
i < len(F a 〈r〉) holds f(i+ 1) = f(i) + (F a 〈r〉)(i+ 1). Consider g being
a function from N into R such that

∑
F = g(lenF ) and g(0) = 0 and for

every natural number i such that i < lenF holds g(i+1) = g(i)+F (i+1).
Define P[natural number] ≡ if $1 ¬ lenF , then f($1) = g($1). For every
natural number k such that P[k] holds P[k + 1] by [3, (13)], [5, (64)], [3,
(11)]. For every natural number i, P[i] from [3, Sch. 2]. �

(22) Let us consider an extended real number r, and a natural number i. If r
is real, then

∑
(i 7→ r) = i · r.

Proof: Define P[natural number] ≡
∑

($1 7→ r) = $1 ·r. For every natural
number i such that P[i] holds P[i+1] by [12, (60)], (21). For every natural
number i, P[i] from [3, Sch. 2]. �

(23) Let us consider a matrix M over R. If lenM = 0, then SumAllM = 0.

(24) Let us consider a natural number m, and a matrix M over R of dimension
m×0. Then SumAllM = 0. The theorem is a consequence of (23) and (22).

(25) Let us consider natural numbers n, m, k, a matrix M1 over R of dimen-
sion n×k, and a matrix M2 over R of dimension m×k. Then

∑
(M1aM2) =∑

M1
a∑M2.

Let us consider matrices M1, M2 over R. Now we state the propositions:

(26) Suppose for every natural number i such that i ∈ domM1 holds −∞ /∈
rng(M1(i)) and for every natural number i such that i ∈ domM2 holds
−∞ /∈ rng(M2(i)). Then

∑
M1 +

∑
M2 =

∑
(M1 _M2). The theorem is

a consequence of (19).

(27) Suppose lenM1 = lenM2 and for every natural number i such that i ∈
domM1 holds −∞ /∈ rng(M1(i)) and for every natural number i such that
i ∈ domM2 holds −∞ /∈ rng(M2(i)). Then SumAllM1 + SumAllM2 =
SumAll(M1 _M2). The theorem is a consequence of (19), (26), and (20).

Now we state the propositions:

(28) Let us consider a finite sequence p of elements of R. Suppose −∞ /∈ rng p.
Then SumAll〈p〉 = SumAll〈p〉T.
Proof: Define x[finite sequence of elements of R] ≡ if −∞ /∈ rng $1, then
SumAll〈$1〉 = SumAll〈$1〉T. For every finite sequence p of elements of R
and for every element x of R such that x[p] holds x[p a 〈x〉] by [5, (31),



Construction of measure from semialgebra of sets 315

(38), (6)]. x[εR]. For every finite sequence p of elements of R, x[p] from
[12, Sch. 2]. �

(29) Let us consider an extended real number p, and a matrix M over R. Sup-
pose for every natural number i such that i ∈ domM holds p /∈ rng(M(i)).
Let us consider a natural number j. If j ∈ domMT, then p /∈ rng(MT(j)).

(30) Let us consider a matrix M over R. Suppose for every natural num-
ber i such that i ∈ domM holds −∞ /∈ rng(M(i)). Then SumAllM =
SumAllMT.
Proof: Define x[natural number] ≡ for every matrix M over R such
that lenM = $1 and for every natural number i such that i ∈ domM

holds −∞ /∈ rng(M(i)) holds SumAllM = SumAllMT. For every natural
number n such that x[n] holds x[n + 1] by [3, (11)], [33, (25)], [5, (40)],
(28). x[0]. For every natural number n, x[n] from [3, Sch. 2]. �

3. Definition of Pre-Measure

Let x be an object. Let us observe that 〈x〉 is disjoint valued.
Now we state the proposition:

(31) Let us consider a set X, a semi-diff-closed, ∩-closed family S of subsets
of X with the empty element, a finite sequence F of elements of S, and
an element G of S. Then there exists a disjoint valued finite sequence H
of elements of S such that G \

⋃
F =

⋃
H.

Proof: Define P[natural number] ≡ for every finite sequence f of elements
of S such that len f = $1 there exists a disjoint valued finite sequence H
of elements of S such that G \

⋃
f =

⋃
H. For every finite sequence f

of elements of S such that len f = 0 there exists a disjoint valued finite
sequence H of elements of S such that G \

⋃
f =

⋃
H by [16, (2)], [5,

(38)], [16, (25)]. For every natural number i such that P[i] holds P[i+ 1]
by [3, (11)], [5, (59)], [33, (55)], [5, (36), (38)]. For every natural number
i, P[i] from [3, Sch. 2]. �

Let X be a set and P be a semi-diff-closed, ∩-closed family of subsets of X
with the empty element. Let us note that there exists a sequence of P which is
disjoint valued.

Let P be a non empty family of subsets ofX. Note that there exists a function
from P into R which is non-negative, additive, and zeroed.

Let P be a family of subsets of X with the empty element. One can check
that there exists a function from N into P which is disjoint valued.

A pre-measure of P is a non-negative, zeroed function from P into R and is
defined by
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(Def. 7) for every disjoint valued finite sequence F of elements of P such that⋃
F ∈ P holds it(

⋃
F ) =

∑
(it · F ) and for every disjoint valued function

K from N into P such that
⋃
K ∈ P holds it(

⋃
K) ¬

∑
(it ·K).

Now we state the propositions:

(32) Let us consider a set X with the empty element, and a finite sequence
F of elements of X. Then there exists a function G from N into X such
that

(i) for every natural number i, F (i) = G(i), and

(ii)
⋃
F =

⋃
G.

Proof: Define P[element of N, set] ≡ if $1 ∈ domF , then F ($1) = $2
and if $1 /∈ domF , then $2 = ∅. For every element i of N, there exists
an element y ofX such that P[i, y] by [13, (3)]. ConsiderG being a function
from N into X such that for every element i of N, P[i, G(i)] from [14,
Sch. 3]. �

(33) Let us consider a non empty set X, a finite sequence F of elements of
X, and a function G from N into X. Suppose for every natural number i,
F (i) = G(i). Then F is disjoint valued if and only if G is disjoint valued.

(34) Let us consider a finite sequence F of elements of R, and a sequence G
of extended reals. Suppose for every natural number i, F (i) = G(i). Then
F is non-negative if and only if G is non-negative.

Let us observe that there exists a finite sequence of elements of R which is
non-negative and there exists a finite sequence of elements of R which is without
−∞ and there exists a finite sequence of elements of R which is non-positive
and there exists a finite sequence of elements of R which is without +∞ and
every finite sequence of elements of R which is non-negative is also without −∞
and every finite sequence of elements of R which is non-positive is also without
+∞.

Let X, Y be non empty sets, F be a without −∞ function from Y into R,
and G be a function from X into Y. One can check that F · G is without −∞
as a function from X into R.

Let F be a non-negative function from Y into R. One can check that F ·G
is non-negative as a function from X into R.

Now we state the propositions:

(35) Let us consider an extended real number a. Then
∑
〈a〉 = a.

(36) Let us consider a finite sequence F of elements of R, and a natural
number k. Then

(i) if F is without −∞, then F �k is without −∞, and

(ii) if F is without +∞, then F �k is without +∞.
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(37) Let us consider a without −∞ finite sequence F of elements of R,
and a sequence G of extended reals. Suppose for every natural number
i, F (i) = G(i). Let us consider a natural number i. Then

∑
(F �i) =

(
∑κ
α=0G(α))κ∈N(i). The theorem is a consequence of (36) and (35).

(38) Let us consider a without −∞ finite sequence F of elements of R, and
a sequenceG of extended reals. Suppose for every natural number i, F (i) =
G(i). Then

(i) G is summable, and

(ii)
∑
F =

∑
G.

Proof:
∑

(F � lenF ) = (
∑κ
α=0G(α))κ∈N(lenF ). Define P[natural number]

≡
∑
F = (

∑κ
α=0G(α))κ∈N(lenF + $1). For every natural number k such

that P[k] holds P[k + 1] by [3, (11), (19)], [33, (25)]. For every natural
number k, P[k] from [3, Sch. 2]. �

(39) Let us consider a set X, a semi-diff-closed, ∩-closed family S of subsets of
X with the empty element, a disjoint valued finite sequence F of elements
of S, and a non empty, preboolean family R of subsets of X. Suppose
S ⊆ R and

⋃
F ∈ R. Let us consider a natural number i. Then

⋃
(F �i) ∈ R.

Proof: Define P[natural number] ≡
⋃

(F �$1) ∈ R. For every natural
number i such that P[i] holds P[i + 1] by [3, (12)], [5, (58)], [3, (13)], [5,
(82), (17)]. For every natural number i, P[i] from [3, Sch. 2]. �

(40) Let us consider a set X, a semi-diff-closed, ∩-closed family S of subsets of
X with the empty element, a pre-measure P of S, and disjoint valued finite
sequences F1, F2 of elements of S. Suppose

⋃
F1 ∈ S and

⋃
F1 =

⋃
F2.

Then P (
⋃
F1) = P (

⋃
F2).

(41) Let us consider a non empty, ∩-closed set S, and finite sequences F1,
F2 of elements of S. Then there exists a matrix M over S of dimension
lenF1×lenF2 such that for every natural numbers i, j such that 〈〈i, j〉〉 ∈
the indices of M holds Mi,j = F1(i) ∩ F2(j).
Proof: Define P[natural number,natural number, set] ≡ $3 = F1($1) ∩
F2($2). For every natural numbers i, j such that 〈〈i, j〉〉 ∈ Seg lenF1 ×
Seg lenF2 there exists an element K of S such that P[i, j,K] by [16, (87)],
[13, (3)]. Consider M being a matrix over S of dimension lenF1×lenF2
such that for every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
M holds P[i, j,Mi,j ]. �

Let us consider a set X, a ∩-closed family S of subsets of X with the empty
element, non empty, disjoint valued finite sequences F1, F2 of elements of S,
a non-negative, zeroed function P from S into R, and a matrix M over R of
dimension lenF1×lenF2.
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Let us assume that
⋃
F1 =

⋃
F2 and for every natural numbers i, j such

that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j = P (F1(i) ∩ F2(j)) and for every
disjoint valued finite sequence F of elements of S such that

⋃
F ∈ S holds

P (
⋃
F ) =

∑
(P · F ). Now we state the propositions:

(42) (i) for every natural number i such that i ¬ len(P · F1) holds (P ·
F1)(i) = (

∑
M)(i), and

(ii)
∑

(P · F1) = SumAllM .
Proof: Consider K being a matrix over S of dimension lenF1×lenF2
such that for every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices
of K holds Ki,j = F1(i) ∩ F2(j). For every natural number i such that
i ¬ len(P · F1) holds (P · F1)(i) = (

∑
M)(i) by [33, (24)], [3, (14)], [33,

(25)], [13, (11), (3)]. Consider Q being a function from N into R such that∑
(P · F1) = Q(len(P · F1)) and Q(0) = 0 and for every natural number i

such that i < len(P ·F1) holds Q(i+ 1) = Q(i) + (P ·F1)(i+ 1). Consider
L being a function from N into R such that SumAllM = L(len

∑
M)

and L(0) = 0R and for every natural number i such that i < len
∑
M

holds L(i + 1) = L(i) + (
∑
M)(i + 1). Define R[natural number] ≡ if

$1 ¬ len(P · F1), then Q($1) = L($1). For every natural number i such
that R[i] holds R[i+1] by [3, (13)]. For every natural number i, R[i] from
[3, Sch. 2]. �

(43) (i) for every natural number i such that i ¬ len(P · F2) holds (P ·
F2)(i) = (

∑
MT)(i), and

(ii)
∑

(P · F2) = SumAllMT.
Proof: Consider K being a matrix over S of dimension lenF1×lenF2
such that for every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices
of K holds Ki,j = F1(i) ∩ F2(j). For every natural number i such that
i ¬ len(P · F2) holds (P · F2)(i) = (

∑
MT)(i) by [33, (24)], [3, (14)], [33,

(25)], [13, (11), (3)]. Consider Q being a function from N into R such that∑
(P · F2) = Q(len(P · F2)) and Q(0) = 0 and for every natural number i

such that i < len(P ·F2) holds Q(i+ 1) = Q(i) + (P ·F2)(i+ 1). Consider
L being a function from N into R such that SumAllMT = L(len

∑
MT)

and L(0) = 0R and for every natural number i such that i < len
∑
MT

holds L(i + 1) = L(i) + (
∑
MT)(i + 1). Define R[natural number] ≡ if

$1 ¬ len(P · F2), then Q($1) = L($1). For every natural number i such
that R[i] holds R[i+1] by [3, (13)]. For every natural number i, R[i] from
[3, Sch. 2]. �

(44) Let us consider a set X, a semi-diff-closed, ∩-closed family S of subsets of
X with the empty element, a pre-measure P of S, and a set A. Suppose A ∈
the ring generated by S. Let us consider disjoint valued finite sequences F1,



Construction of measure from semialgebra of sets 319

F2 of elements of S. If A =
⋃
F1 and A =

⋃
F2, then

∑
(P ·F1) =

∑
(P ·F2).

The theorem is a consequence of (42), (43), and (30).

(45) Let us consider finite sequences f1, f2. Suppose f1 is disjoint valued and
f2 is disjoint valued and

⋃
rng f1 misses

⋃
rng f2. Then f1

a f2 is disjoint
valued.

(46) Let us consider a set X, a semi-diff-closed family P of subsets of X
with the empty element, a pre-measure M of P , and sets A, B. If A, B,
A\B ∈ P and B ⊆ A, then M(A) ­M(B). The theorem is a consequence
of (45).

(47) Let us consider non empty sets Y, S, a partial function F from Y to
S, and a function M from S into R. If M is non-negative, then M · F is
non-negative.

(48) Let us consider a set X, a semi-diff-closed, ∩-closed family S of subsets
of X with the empty element, and a pre-measure P of S. Then there exists
a non-negative, additive, zeroed function M from the ring generated by
S into R such that for every set A such that A ∈ the ring generated by
S for every disjoint valued finite sequence F of elements of S such that
A =

⋃
F holds M(A) =

∑
(P · F ).

Proof: Define P[object, object] ≡ for every disjoint valued finite sequence
F of elements of S such that $1 =

⋃
F holds $2 =

∑
(P · F ). For every

object A such that A ∈ the ring generated by S there exists an object
p such that p ∈ R and P[A, p] by [23, (18)], (44). Consider M being
a function from the ring generated by S into R such that for every object
A such that A ∈ the ring generated by S holds P[A,M(A)] from [14,
Sch. 1]. For every element A of the ring generated by S, 0 ¬M(A) by [23,
(18)], [3, (11)], [33, (25)], [13, (12)]. For every elements A, B of the ring
generated by S such that A misses B and A∪B ∈ the ring generated by
S holds M(A∪B) = M(A)+M(B) by [23, (18)], (45), [5, (31)], [16, (78)].
�

(49) Let us consider setsX, Y, and functions F ,G from N into 2X . Suppose for
every natural number i, G(i) = F (i) ∩ Y and

⋃
F = Y. Then

⋃
G =

⋃
F .

(50) Let us consider a set X, a semi-diff-closed, ∩-closed family S of subsets
of X with the empty element, and a pre-measure P of S. Then there exists
a function M from the ring generated by S into R such that

(i) M(∅) = 0, and

(ii) for every disjoint valued finite sequence K of elements of S such that⋃
K ∈ the ring generated by S holds M(

⋃
K) =

∑
(P ·K).

The theorem is a consequence of (48).
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(51) Let us consider sets X, Z, a semi-diff-closed, ∩-closed family P of subsets
of X with the empty element, and a disjoint valued function K from N
into the ring generated by P . Suppose Z = {〈〈n, F 〉〉, where n is a natural
number, F is a disjoint valued finite sequence of elements of P :

⋃
F =

K(n) and if K(n) = ∅, then F = 〈∅〉}. Then

(i) π2(Z) is a set of finite sequences of P , and

(ii) for every object x, x ∈ rngK iff there exists a finite sequence F of
elements of P such that F ∈ π2(Z) and

⋃
F = x, and

(iii) π2(Z) has non empty elements.

(52) Let us consider a set X, a semi-diff-closed, ∩-closed family P of subsets
of X with the empty element, and a disjoint valued function K from N
into the ring generated by P . Suppose rngK has a non-empty element.
Then there exists a non empty set Y of finite sequences of P such that

(i) Y = {F , where F is a disjoint valued finite sequence of elements of
P :
⋃
F ∈ rngK and F 6= ∅}, and

(ii) Y has non empty elements.

4. Pre-Measure on Semialgebra and Construction of Measure

Now we state the propositions:

(53) Let us consider sets X, Z, a semialgebra P of sets of X, and a disjoint
valued function K from N into the field generated by P . Suppose Z = {〈〈n,
F 〉〉, where n is a natural number, F is a disjoint valued finite sequence of
elements of P :

⋃
F = K(n) and if K(n) = ∅, then F = 〈∅〉}. Then

(i) π2(Z) is a set of finite sequences of P , and

(ii) for every object x, x ∈ rngK iff there exists a finite sequence F of
elements of P such that F ∈ π2(Z) and

⋃
F = x, and

(iii) π2(Z) has non empty elements.

(54) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P
of S, a set A, and disjoint valued finite sequences F1, F2 of elements of S.
If A =

⋃
F1 and A =

⋃
F2, then

∑
(P · F1) =

∑
(P · F2). The theorem is

a consequence of (42), (43), and (30).

(55) Let us consider a set X, a semialgebra S of sets of X, and a pre-measure
P of S. Then there exists a measure M on the field generated by S such
that for every set A such that A ∈ the field generated by S for every
disjoint valued finite sequence F of elements of S such that A =

⋃
F

holds M(A) =
∑

(P · F ).
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Proof: Define P[object, object] ≡ for every disjoint valued finite sequence
F of elements of S such that $1 =

⋃
F holds $2 =

∑
(P · F ). For every

object A such that A ∈ the field generated by S there exists an object
p such that p ∈ R and P[A, p] by [23, (22)], (54). Consider M being
a function from the field generated by S into R such that for every object
A such that A ∈ the field generated by S holds P[A,M(A)] from [14,
Sch. 1]. For every element A of the field generated by S, 0 ¬M(A) by [23,
(22)], [3, (11)], [33, (25)], [13, (12)]. For every elements A, B of the field
generated by S such that A misses B holds M(A ∪ B) = M(A) + M(B)
by [23, (22)], (45), [5, (31)], [16, (78)]. �

(56) Let us consider a sequence F of extended reals, a natural number n, and
an extended real number a. Suppose for every natural number k, F (k) = a.
Then (

∑κ
α=0 F (α))κ∈N(n) = a · (n+ 1).

Proof: Define P[natural number] ≡ (
∑κ
α=0 F (α))κ∈N($1) = a · ($1 + 1).

For every natural number i such that P[i] holds P[i+1]. For every natural
number i, P[i] from [3, Sch. 2]. �

(57) Let us consider a non empty set X, a sequence F of X, and a natural
number n. Then rng(F �Zn+1) = rng(F �Zn) ∪ {F (n)}.

(58) Let us consider a set X, a field S of subsets of X, a measure M on S,
a sequence F of separated subsets of S, and a natural number n. Then

(i)
⋃

rng(F �Zn+1) ∈ S, and

(ii) (
∑κ
α=0(M · F )(α))κ∈N(n) = M(

⋃
rng(F �Zn+1)).

Proof: rng(F �Z0+1) = rng(F �Z0)∪{F (0)}. Define R[natural number] ≡⋃
rng(F �Z$1+1) ∈ S. For every natural number k such that R[k] holds
R[k+1] by (57), [16, (78), (25)], [27, (3)]. For every natural number k,R[k]
from [3, Sch. 2]. Define P[natural number] ≡ (

∑κ
α=0(M ·F )(α))κ∈N($1) =

M(
⋃

rng(F �Z$1+1)). For every natural number n such that P[n] holds
P[n + 1] by [14, (15)], [35, (57)], [3, (44)], [13, (47)]. For every natural
number n, P[n] from [3, Sch. 2]. �

(59) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P
of S, and a measure M on the field generated by S. Suppose for every set
A such that A ∈ the field generated by S for every disjoint valued finite
sequence F of elements of S such that A =

⋃
F holds M(A) =

∑
(P · F ).

Then M is completely-additive. The theorem is a consequence of (53),
(15), (13), (58), and (1).

Let X be a set, S be a semialgebra of sets of X, and P be a pre-measure of S.
An induced measure of S and P is a measure on the field generated by S

and is defined by
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(Def. 8) for every set A such that A ∈ the field generated by S for every disjoint
valued finite sequence F of elements of S such that A =

⋃
F holds it(A) =∑

(P · F ).

Now we state the propositions:

(60) Let us consider a set X, a semialgebra S of sets of X, and a pre-measure
P of S. Then every induced measure of S and P is completely-additive.
The theorem is a consequence of (59).

(61) Let us consider a non empty set X, a semialgebra S of sets of X,
a pre-measure P of S, and an induced measure M of S and P . Then
σ-Meas(the Caratheodory measure determined byM)�σ(the field generated
by S) is a σ-measure on σ(the field generated by S). The theorem is a con-
sequence of (60).

Let X be a non empty set, S be a semialgebra of sets of X, P be a pre-
measure of S, and M be an induced measure of S and P .

An induced σ-measure of S and M is a σ-measure on σ(the field generated
by S) and is defined by

(Def. 9) it = σ-Meas(the Caratheodory measure determined by M)�σ(the field
generated by S).

Now we state the proposition:

(62) Let us consider a non empty set X, a semialgebra S of sets of X, a pre-
measure P of S, and an induced measure m of S and P . Then every
induced σ-measure of S and m is an extension of m. The theorem is
a consequence of (60).
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