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Summary. In this article, we formalize in Mizar [7] the definition of “tor-
sion part” of Z-module and its properties. We show Z-module generated by the
field of rational numbers as an example of torsion-free non free Z-modules. We
also formalize the rank-nullity theorem over finite-rank free Z-modules (previo-
usly formalized in [1]). Z-module is necessary for lattice problems, LLL (Lenstra,
Lenstra and Lovász) base reduction algorithm [23] and cryptographic systems
with lattices [24].
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The notation and terminology used in this paper have been introduced in the
following articles: [27], [8], [2], [29], [6], [13], [9], [10], [17], [30], [22], [28], [25],
[4], [5], [11], [20], [38], [39], [32], [37], [21], [33], [34], [35], [36], [12], [14], [15],
[16], [26], and [19].

1. Torsion Part of Z-module

From now on x, y, y1, y2 denote objects, V denotes a Z-module, W , W1, W2
denote submodules of V , u, v denote vectors of V , and i, j, k, n denote elements
of N.

Now we state the proposition:
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(1) Let us consider an integer n. Suppose n 6= 0 and n 6= −1 and n 6= −2.
Then n

n+1 /∈ Z.

One can check that there exists an element of ZR which is prime and non
zero and every element of ZR which is prime is also non zero.

Now we state the propositions:

(2) Let us consider a Z-module V , and a subset A of V . Suppose A is linearly
independent. Then there exists a subset B of V such that

(i) A ⊆ B, and

(ii) B is linearly independent, and

(iii) for every vector v of V , there exists an element a of ZR such that
a 6= 0 and a · v ∈ Lin(B).

Proof: Define P[set] ≡ there exists a subset B of V such that B = $1
and A ⊆ B and B is linearly independent. Consider Q being a set such
that For every set Z, Z ∈ Q iff Z ∈ 2α and P[Z], where α is the carrier
of V . Consider X being a set such that X ∈ Q and for every set Z such
that Z ∈ Q and Z 6= X holds X 6⊆ Z. Consider B being a subset of V
such that B = X and A ⊆ B and B is linearly independent. Consider v
being a vector of V such that for every element a of ZR such that a 6= 0
holds a · v /∈ Lin(B). B∪{v} is linearly independent by [10, (8)], [15, (39),
(55)], [31, (61)]. �

(3) Let us consider a Z-module V , a finite subset I of V , and a submodule
W of V . Suppose for every vector v of V such that v ∈ I there exists
an element a of ZR such that a 6= 0ZR and a · v ∈ W . Then there exists
an element a of ZR such that

(i) a 6= 0ZR , and

(ii) for every vector v of V such that v ∈ I holds a · v ∈W .

Proof: Define P[natural number] ≡ for every finite subset I of V such
that I = $1 and for every vector v of V such that v ∈ I there exists
an element a of ZR such that a 6= 0ZR and a·v ∈W there exists an element
a of ZR such that a 6= 0ZR and for every vector v of V such that v ∈ I holds
a · v ∈W . P[0]. For every natural number n such that P[n] holds P[n+ 1]
by [37, (41)], [3, (44)], [2, (30)], [14, (37)]. For every natural number n,
P[n] from [4, Sch. 2]. �

(4) Let us consider a finite rank, free Z-module V . Then every linearly in-
dependent subset of V is finite.

Let V be a finite rank, free Z-module. Let us observe that every subset of V
which is linearly independent is also finite.
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Let us consider a finite rank, free Z-module V and a linearly independent
subset A of V . Now we state the propositions:

(5) There exists a finite, linearly independent subset I of V and there exists
an element a of ZR such that a 6= 0ZR and A ⊆ I and a◦V is a submodule
of Lin(I).

(6) There exists a finite, linearly independent subset I of V such that

(i) A ⊆ I, and

(ii) rankV = I .

The theorem is a consequence of (5).

Now we state the proposition:

(7) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a basis I1 of W1. Then there exists a finite, linearly
independent subset I of V such that

(i) I is a subset of W1 +W2, and

(ii) I1 ⊆ I, and

(iii) rank(W1 +W2) = rank Lin(I).

The theorem is a consequence of (6).

Let us consider a torsion-free Z-module V and finite rank, free submodules
W1, W2 of V . Now we state the propositions:

(8) Suppose W2 is a submodule of W1. Then there exists a finite rank, free
submodule W3 of V such that

(i) rankW1 = rankW2 + rankW3, and

(ii) W2 ∩W3 = 0V , and

(iii) W3 is a submodule of W1.

Proof: Set I2 = the basis of W2. Reconsider J2 = I2 as a subset of W1.
Consider J1 being a finite, linearly independent subset of W1 such that
J2 ⊆ J1 and rankW1 = J1 . Set J3 = J1 \ J2. Reconsider I3 = J3 as
a subset of V . W2 ∩ Lin(I3) = 0V by [16, (20)], [14, (42)], [18, (23)], [19,
(4)]. �

(9) There exists a finite rank, free submodule W3 of V such that

(i) rank(W1 +W2) = rankW1 + rankW3, and

(ii) W1 ∩W3 = 0V , and

(iii) W3 is a submodule of W1 +W2.
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Proof: Set I1 = the basis of W1. Consider I being a finite, linearly in-
dependent subset of V such that I is a subset of W1 + W2 and I1 ⊆ I

and rank(W1 +W2) = rank Lin(I). Set I2 = I \ I1. Reconsider J2 = I2 as
a finite, linearly independent subset of V . W1∩Lin(J2) = 0V by [16, (20)],
[14, (42)], [18, (23)], [19, (4)]. �

Now we state the proposition:

(10) Let us consider a finite rank, free Z-module V , and submodules W1, W2
of V . Then rank(W1 ∩W2) ­ rankW1 + rankW2 − rankV .

Let V be a Z-module. The functor torsion-part(V ) yielding a strict submo-
dule of V is defined by

(Def. 1) the carrier of it = {v, where v is a vector of V : v is torsion}.
Now we state the propositions:

(11) Let us consider a Z-module V , and a vector v of V . Then v is torsion if
and only if v ∈ torsion-part(V ).

(12) Let us consider a Z-module V . Then V is torsion-free if and only if
torsion-part(V ) = 0V . The theorem is a consequence of (11).

Let V be a Z-module. Observe that Z-ModuleQuot(V, torsion-part(V )) is
torsion-free.

Let W be a submodule of V . The functor Z-QMorph(V,W ) yielding a linear
transformation from V to Z-ModuleQuot(V,W ) is defined by

(Def. 2) for every element v of V , it(v) = v +W .

One can check that Z-QMorph(V,W ) is onto.
Now we state the proposition:

(13) Let us consider Z-modules V , W , a linear transformation T from V to W ,
a finite sequence s of elements of V , and a finite sequence t of elements of
W . Suppose len s = len t and for every element i of N such that i ∈ dom s

there exists a vector s1 of V such that s1 = s(i) and t(i) = T (s1). Then∑
t = T (

∑
s).

Proof: Define P[natural number] ≡ for every finite sequence s of elements
of V for every finite sequence t of elements of W such that len s = $1 and
len s = len t and for every element i of N such that i ∈ dom s there exists
a vector s1 of V such that s1 = s(i) and t(i) = T (s1) holds

∑
t = T (

∑
s).

P[0] by [32, (43)], [26, (19)]. For every natural number k such that P[k]
holds P[k + 1] by [6, (59)], [4, (11)], [6, (4)], [9, (3)]. For every natural
number k, P[k] from [4, Sch. 2]. �

Let V be a finitely generated Z-module and W be a submodule of V . Observe
that Z-ModuleQuot(V,W ) is finitely generated and

Z-ModuleQuot(V, torsion-part(V )) is free.



Torsion Part of Z-module 301

2. Z-module Generated by the Field of Rational Numbers

The functor Z-moduleQ yielding a vector space structure over ZR is defined
by the term

(Def. 3) 〈the carrier of FQ, the addition of FQ, the zero of FQ, the left integer
multiplication of FQ〉.

One can verify that Z-moduleQ is non empty and Z-moduleQ is Abelian,
add-associative, right zeroed, right complementable, scalar distributive, vector
distributive, scalar associative, and scalar unital.

Now we state the propositions:

(14) Let us consider an element v of FQ, and a rational number v1. Suppose
v = v1. Let us consider a natural number n. Then (Nat-mult-left FQ)(n, v) =
n · v1.
Proof: Define P[natural number] ≡ (Nat-mult-left FQ)($1, v) = $1 · v1.
For every natural number n such that P[n] holds P[n + 1]. For every
natural number n, P[n] from [4, Sch. 2]. �

(15) Let us consider an integer x, an element v of FQ, and a rational number
v1. Suppose v = v1. Then (the left integer multiplication of FQ)(x, v) =
x · v1. The theorem is a consequence of (14).

Let us observe that Z-moduleQ is torsion-free and Z-moduleQ is non trivial.
Now we state the propositions:

(16) Let us consider an element s of Z-moduleQ. Then Lin({s}) 6= Z-moduleQ.
The theorem is a consequence of (15) and (1).

(17) Let us consider elements s, t of Z-moduleQ. If s 6= t, then {s, t} is not
linearly independent. The theorem is a consequence of (15).

Let us observe that Z-moduleQ is non free.
Now we state the proposition:

(18) Let us consider a finite subset A of Z-moduleQ. Then there exists an in-
teger n such that

(i) n 6= 0, and

(ii) for every element s of Z-moduleQ such that s ∈ Lin(A) there exists
an integer m such that s = m

n .

Proof: Set S = Z-moduleQ. Define P[natural number] ≡ for every finite
subset A of S such that A = $1 there exists an integer n such that n 6= 0
and for every element s of S such that s ∈ Lin(A) there exists an integer
m such that s = m

n . P[0] by [15, (67)]. For every natural number k such
that P[k] holds P[k+1] by [37, (41)], [3, (44)], [2, (30)], [20, (1)]. For every
natural number k, P[k] from [4, Sch. 2]. �
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One can verify that Z-moduleQ is non finitely generated.
Now we state the proposition:

(19) Let us consider a finite subset A of Z-moduleQ. Then rank Lin(A) ¬ 1.
Proof: Set S = Z-moduleQ. Define P[natural number] ≡ for every finite
subset A of S such that A = $1 holds rank Lin(A) ¬ 1. P[0] by [15,
(67)], [14, (51)], [26, (1)]. For every natural number n such that P[n]
holds P[n+1] by [12, (31)], [3, (44)], [2, (30)], [15, (72)]. For every natural
number n, P[n] from [4, Sch. 2]. �

3. The Rank-Nullity Theorem

In the sequel V , W denote finite rank, free Z-modules and T denotes a linear
transformation from V to W .

Let W be a finite rank, free Z-module, V be a Z-module, and T be a linear
transformation from V to W . Observe that imT is finite rank and free.

The functor rankT yielding a natural number is defined by the term

(Def. 4) rank imT .

Let V be a finite rank, free Z-module and W be a Z-module. The functor
nullity T yielding a natural number is defined by the term

(Def. 5) rank kerT .

Now we state the propositions:

(20) Let us consider a finite rank, free Z-module V , a subset A of V , a linearly
independent subset B of V , and a linear transformation T from V to W .
Suppose rankV = B and A is a basis of kerT and A ⊆ B. Then T �(B\A)
is one-to-one.

(21) Let us consider a finite rank, free Z-module V , a subset A of V , a linearly
independent subset B of V , a linear transformation T from V to W , and
a linear combination l of B \ A. Suppose rankV = B and A is a basis of
kerT andA ⊆ B. Then T (

∑
l) =
∑

(T @∗ l). The theorem is a consequence
of (20).

(22) Let us consider Z-modules V , W , a linear transformation T from V

to W , and a subset A of V . Suppose A ⊆ the carrier of kerT . Then
Lin(T ◦A) = 0W .

(23) Let us consider Z-modules V , W , a linear transformation T from V to
W , and subsets A, B, X of V . Suppose A ⊆ the carrier of kerT and
X = B ∪ A. Then Lin(T ◦X) = Lin(T ◦B). The theorem is a consequence
of (22).
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Let us consider finite rank, free Z-modules V , W and a linear transformation
T from V to W . Now we state the propositions:

(24) rankV = rankT + nullity T .
Proof: Set A = the finite basis of kerT . Reconsider A′ = A as a subset
of V . Consider B′ being a finite, linearly independent subset of V , a being
an element of ZR such that a 6= 0ZR and A′ ⊆ B′ and a◦V is a submodule
of Lin(B′). Reconsider X = B′ \ A′ as a finite subset of B′. Reconsider
C = T ◦X as a finite subset of W . T �X is one-to-one. C is linearly inde-
pendent by [26, (60)], (21), [26, (20)], [16, (20)]. Reconsider a1 = a ◦ imT

as a submodule of W . Lin(T ◦B′) = Lin(T ◦X). For every vector v of W
such that v ∈ a1 holds v ∈ Lin(C) by [14, (25)], [26, (23)], [14, (29), (24)].
�

(25) If T is one-to-one, then rankV = rankT . The theorem is a consequence
of (24).

Let V , W be Z-modules and T be a linear transformation from V to W . The
functor Z-decom(T ) yielding a linear transformation from Z-ModuleQuot(V, ker

T ) to imT is defined by

(Def. 6) it is bijective and for every element v of V , it((Z-QMorph(V, kerT ))(v)) =
T (v).

Now we state the propositions:

(26) Let us consider Z-modules V , W , and a linear transformation T from V

to W . Then T = Z-decom(T ) · Z-QMorph(V, kerT ).
Proof: Set g = Z-decom(T ) ·Z-QMorph(V, kerT ). For every element z of
V , T (z) = g(z) by [10, (15)]. �

(27) Let us consider Z-modules V , U , W , a linear transformation f from V

to U , and a linear transformation g from U to W . Then g · f is a linear
transformation from V to W .
Proof: Set f = g · f . For every elements x, y of V , f(x+ y) = f(x) + f(y)
by [10, (15)]. For every element a of ZR and for every element x of V ,
f(a · x) = a · f(x) by [10, (15)]. �

Let V , U , W be Z-modules, f be a linear transformation from V to U , and
g be a linear transformation from U to W . One can check that the functor g · f
yields a linear transformation from V to W . Now we state the propositions:

(28) Let us consider Z-modules V , W , and a linear transformation f from V

to W . Then the carrier of ker f = f−1({0W }).
Proof: For every object x, x ∈ the carrier of ker f iff x ∈ f−1({0W }) by
[10, (38)]. �

(29) Let us consider Z-modules V , U , W , a linear transformation f from V

to U , and a linear transformation g from U to W . Then the carrier of
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ker g ·f = f−1(the carrier of ker g). The theorem is a consequence of (28).

(30) Let us consider Z-modules V , W , and a linear transformation f from V

to W . If f is onto, then im f = ΩW .

(31) Let us consider a Z-module V , and a submodule W of V .
Then ker Z-QMorph(V,W ) = ΩW .
Proof: Set f = Z-QMorph(V,W ). Reconsider W1 = ΩW as a strict
submodule of V . For every object x, x ∈ f−1({0Z-ModuleQuot(V,W )}) iff
x ∈ the carrier of W by [10, (38)], [14, (63)]. ker f = W1. �

(32) Let us consider a Z-module V , a submodule W of V , a strict submodule
W1 of V , and a vector v of V . If W1 = ΩW , then v +W = v +W1.
Proof: For every object x, x ∈ v +W iff x ∈ v +W1 by [14, (72)]. �

(33) Let us consider a Z-module V , a submodule W of V , a strict submodule
W1 of V , and an object A. If W1 = ΩW , then A is a coset of W iff A is
a coset of W1. The theorem is a consequence of (32).

Let us consider a Z-module V , a submodule W of V , and a strict submodule
W1 of V .

Let us assume that W1 = ΩW . Now we state the propositions:

(34) CosetSet(V,W ) = CosetSet(V,W1). The theorem is a consequence of
(33).

(35) addCoset(V,W ) = addCoset(V,W1). The theorem is a consequence of
(34) and (32).

(36) lmultCoset(V,W ) = lmultCoset(V,W1). The theorem is a consequence
of (34) and (32).

(37) Z-ModuleQuot(V,W ) = Z-ModuleQuot(V,W1). The theorem is a con-
sequence of (34), (35), and (36).

Now we state the propositions:

(38) Let us consider Z-modules V , U , a submodule V1 of V , a submodule
U1 of U , and a linear transformation f from V to U . Suppose f is onto
and the carrier of V1 = f−1(the carrier of U1). Then there exists a line-
ar transformation F from Z-ModuleQuot(V, V1) to Z-ModuleQuot(U,U1)
such that F is bijective. The theorem is a consequence of (37), (29), (31),
and (30).

(39) Let us consider a Z-module V , submodules W1, W2 of V , a submodule
U1 of W1 + W2, and a strict submodule U2 of W1. Suppose U1 = W2
and U2 = W1 ∩ W2. Then there exists a linear transformation F from
Z-ModuleQuot(W1 + W2, U1) to Z-ModuleQuot(W1, U2) such that F is
bijective.
Proof: Set Z1 = Z-ModuleQuot(W1 +W2, U1). Set Z2 = Z-ModuleQuot
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(W1, U2). Define P[object, object] ≡ there exists an element v of W1+W2
such that $1 = v and $2 = v+U1. For every element z of W1, there exists
an element y of Z1 such that P[z, y] by [14, (25), (93)]. Consider f being
a function from the carrier of W1 into the carrier of Z1 such that for every
element z of W1, P[z, f(z)] from [10, Sch. 3]. f is a linear transformation
from W1 to Z1 by [14, (25), (28), (29)]. ker f = U2 by [26, (20)], [14,
(63), (94), (46)]. im f = Z-ModuleQuot(W1 + W2, U1) by [14, (92), (93),
(28)]. Reconsider F = Z-decom(f) as a linear transformation from Z2 to
Z1. Consider F1 being a linear transformation from Z1 to Z2 such that
F1 = F−1 and F1 is bijective. �

(40) Let us consider a Z-module V , a submodule W1 of V , a submodule W2 of
W1, a submodule U1 of V , and a submodule U2 of Z-ModuleQuot(V,U1).
Suppose U1 = W2 and U2 = Z-ModuleQuot(W1,W2). Then there exists
a linear transformation F from Z-ModuleQuot(Z-ModuleQuot(V,U1), U2)
to Z-ModuleQuot(V,W1) such that F is bijective.
Proof: Define P[object, object] ≡ there exists an element v of V such that
$1 = v+U1 and $2 = v+W1. For every element z of Z-ModuleQuot(V,U1),
there exists an element y of Z-ModuleQuot(V,W1) such that P[z, y] by
[10, (113)]. Consider f being a function from Z-ModuleQuot(V,U1) into
Z-ModuleQuot(V,W1) such that for every element z of Z-ModuleQuot(V,
U1), P[z, f(z)] from [10, Sch. 3]. f is a linear transformation from
Z-ModuleQuot(V,U1) to Z-ModuleQuot(V,W1) by [14, (58), (24), (68)].
ker f = U2 by [26, (20)], [14, (63), (24), (28)]. im f = Z-ModuleQuot(V,W1)
by [14, (58), (24), (68)], [10, (38), (41)]. �

Let V be a Z-module and a be a non zero element of ZR. Let us observe
that Z-ModuleQuot(V, a ◦ V ) is torsion.

Now we state the propositions:

(41) Let us consider a trivial Z-module V . Then ΩV = 0V .

(42) Let us consider a Z-module V , and a vector v of V . If v 6= 0V , then
Lin({v}) is not trivial. The theorem is a consequence of (41).

(43) There exists a Z-module V and there exists an element p of ZR such that
p 6= 0ZR and Z-ModuleQuot(V, p ◦ V ) is not trivial.
Proof: Reconsider V = 〈the carrier of ZR, the addition of ZR, the zero
of ZR, the left integer multiplication of (ZR)〉 as a Z-module. Reconsider
p = 2 as an element of ZR. Z-ModuleQuot(V, p ◦ V ) is not trivial by [14,
(63)], [19, (14)]. �

Note that there exists a torsion Z-module which is non trivial and there
exists a Z-module which is non torsion-free.

Let V be a non torsion-free Z-module. Let us note that there exists a vector
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of V which is non zero and torsion and there exists a finitely generated Z-module
which is non trivial.

Now we state the proposition:

(44) Let us consider a Z-module V . Then V is torsion-free if and only if ΩV

is torsion-free.

Observe that every non torsion-free Z-module is non trivial and there exists
a finitely generated, torsion-free Z-module which is non trivial.

Let V be a non trivial, finitely generated, torsion-free Z-module and p be
a prime element of ZR. Let us note that Z-ModuleQuot(V, p ◦ V ) is non trivial
and there exists a torsion Z-module which is finitely generated and there exists
a finitely generated, torsion Z-module which is non trivial.

Let V be a non trivial, finitely generated, torsion-free Z-module and p be
a prime element of ZR. Note that Z-ModuleQuot(V, p ◦ V ) is finitely generated
and torsion.

Let V be a non torsion Z-module.

One can verify that Z-ModuleQuot(V, torsion-part(V )) is non trivial.
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