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Summary. In this article we introduce the convergence of extended real-
valued double sequences [16], [17]. It is similar to our previous articles [15], [10].
In addition, we also prove Fatou’s lemma and the monotone convergence theorem
for double sequences.
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1. Preliminaries

Let X be a non empty set. One can verify that there exists a function from X

into R which is non-negative and non-positive and there exists a function from
X into R which is without −∞, without +∞, non-negative, and non-positive
and every function from X into R which is non-negative is also without −∞
and every function from X into R which is non-positive is also without +∞ and
there exists a without +∞ function from X into R which is without −∞.

Let f be a function from X into R. Let us observe that the functor −f yields
a function from X into R. Let f be a without −∞ function from X into R. Note
that −f is without +∞.
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Let f be a without +∞ function from X into R. Let us observe that −f is
without −∞.

Let f be a non-negative function from X into R. Note that −f is non-
positive.

Let f be a non-positive function from X into R. Let us observe that −f is
non-negative.

Let A, B be non empty sets and f be a without −∞ function from A × B
into R. Let us observe that fT is without −∞.

Let f be a without +∞ function from A×B into R. One can verify that fT

is without +∞.
Let f be a non-negative function from A×B into R. One can check that fT

is non-negative.
Let f be a non-positive function from A × B into R. Note that fT is non-

positive.
Now we state the propositions:

(1) Let us consider a sequence s of extended reals. Then (
∑κ
α=0(−s)(α))κ∈N =

−(
∑κ
α=0 s(α))κ∈N.

Proof: Define Q[natural number] ≡
(−(
∑κ
α=0 s(α))κ∈N)($1) = −(

∑κ
α=0 s(α))κ∈N($1). For every natural num-

ber n,Q[n] from [1, Sch. 2]. Define P[natural number] ≡ (
∑κ
α=0(−s)(α))κ∈N

($1) = (−(
∑κ
α=0 s(α))κ∈N)($1). For every natural number n such that P[n]

holds P[n+ 1]. For every natural number n, P[n] from [1, Sch. 2]. �

(2) Let us consider a non empty set X, and a partial function f from X to
R. Then −−f = f .

(3) Let us consider non empty sets X, Y, and a function f from X × Y into
R. Then (−f)T = −fT.

Let s be a non-negative sequence of extended reals. One can verify that
(
∑κ
α=0 s(α))κ∈N is non-negative.
Let s be a non-positive sequence of extended reals. Let us observe that

(
∑κ
α=0 s(α))κ∈N is non-positive.
Now we state the propositions:

(4) Let us consider a non-negative sequence s of extended reals, and a natural
number m. Then s(m) ¬ (

∑κ
α=0 s(α))κ∈N(m).

Proof: Define P[natural number] ≡ s($1) ¬ (
∑κ
α=0 s(α))κ∈N($1). For

every natural number k such that P[k] holds P[k + 1] by [4, (51)]. For
every natural number k, P[k] from [1, Sch. 2]. �

(5) Let us consider a non-positive sequence s of extended reals, and a natural
number m. Then s(m) ­ (

∑κ
α=0 s(α))κ∈N(m). The theorem is a consequ-

ence of (4), (1), and (2).
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(6) Let us consider a non empty set X. Then every without −∞, without
+∞ function from X into R is a function from X into R.

Let X be a non empty set and f1, f2 be without −∞ functions from X into
R. One can verify that the functor f1 + f2 yields a without −∞ function from
X into R. Let f1, f2 be without +∞ functions from X into R. One can verify
that the functor f1 + f2 yields a without +∞ function from X into R. Let f1
be a without −∞ function from X into R and f2 be a without +∞ function
from X into R. Let us observe that the functor f1 − f2 yields a without −∞
function from X into R. Let f1 be a without +∞ function from X into R and
f2 be a without −∞ function from X into R. Observe that the functor f1 − f2
yields a without +∞ function from X into R. Now we state the propositions:

(7) Let us consider a non empty set X, an element x of X, and functions
f1, f2 from X into R. Then

(i) if f1 is without −∞ and f2 is without −∞, then (f1 + f2)(x) =
f1(x) + f2(x), and

(ii) if f1 is without +∞ and f2 is without +∞, then (f1 + f2)(x) =
f1(x) + f2(x), and

(iii) if f1 is without −∞ and f2 is without +∞, then (f1 − f2)(x) =
f1(x)− f2(x), and

(iv) if f1 is without +∞ and f2 is without −∞, then (f1 − f2)(x) =
f1(x)− f2(x).

(8) Let us consider a non empty set X, and without −∞ functions f1, f2
from X into R. Then

(i) f1 + f2 = f1 −−f2, and

(ii) −(f1 + f2) = −f1 − f2.
The theorem is a consequence of (7).

(9) Let us consider a non empty set X, and without +∞ functions f1, f2
from X into R. Then

(i) f1 + f2 = f1 −−f2, and

(ii) −(f1 + f2) = −f1 − f2.
The theorem is a consequence of (7).

(10) Let us consider a non empty set X, a without −∞ function f1 from X

into R, and a without +∞ function f2 from X into R. Then

(i) f1 − f2 = f1 +−f2, and

(ii) f2 − f1 = f2 +−f1, and

(iii) −(f1 − f2) = −f1 + f2, and
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(iv) −(f2 − f1) = −f2 + f1.

The theorem is a consequence of (8), (2), and (9).

Let f be a function from N × N into R and n, m be natural numbers. One
can check that the functor f(n,m) yields an element of R. Now we state the
propositions:

(11) Let us consider without −∞ functions f1, f2 from N × N into R, and
natural numbers n, m. Then (f1 + f2)(n,m) = f1(n,m) + f2(n,m). The
theorem is a consequence of (7).

(12) Let us consider without +∞ functions f1, f2 from N × N into R, and
natural numbers n, m. Then (f1 + f2)(n,m) = f1(n,m) + f2(n,m). The
theorem is a consequence of (7).

(13) Let us consider a without −∞ function f1 from N×N into R, a without
+∞ function f2 from N× N into R, and natural numbers n, m. Then

(i) (f1 − f2)(n,m) = f1(n,m)− f2(n,m), and

(ii) (f2 − f1)(n,m) = f2(n,m)− f1(n,m).

The theorem is a consequence of (7).

(14) Let us consider non empty sets X, Y, and without −∞ functions f1,
f2 from X × Y into R. Then (f1 + f2)T = f1

T + f2
T. The theorem is a

consequence of (7).

(15) Let us consider non empty sets X, Y, and without +∞ functions f1,
f2 from X × Y into R. Then (f1 + f2)T = f1

T + f2
T. The theorem is a

consequence of (7).

(16) Let us consider non empty sets X, Y, a without −∞ function f1 from
X × Y into R, and a without +∞ function f2 from X × Y into R. Then

(i) (f1 − f2)T = f1
T − f2T, and

(ii) (f2 − f1)T = f2
T − f1T.

The theorem is a consequence of (7).

One can verify that every sequence of extended reals which is convergent to
+∞ is also convergent and every sequence of extended reals which is convergent
to −∞ is also convergent and every sequence of extended reals which is conver-
gent to a finite limit is also convergent and there exists a sequence of extended
reals which is convergent and there exists a without −∞ sequence of extended
reals which is convergent and there exists a without +∞ sequence of extended
reals which is convergent.

Now we state the proposition:

(17) Let us consider a convergent sequence s of extended reals. Then
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(i) s is convergent to a finite limit iff −s is convergent to a finite limit,
and

(ii) s is convergent to +∞ iff −s is convergent to −∞, and

(iii) s is convergent to −∞ iff −s is convergent to +∞, and

(iv) −s is convergent, and

(v) lim(−s) = −lim s.

The theorem is a consequence of (2).

Let us consider without −∞ sequences s1, s2 of extended reals. Now we state
the propositions:

(18) Suppose s1 is convergent to +∞ and s2 is convergent to +∞. Then

(i) s1 + s2 is convergent to +∞ and convergent, and

(ii) lim(s1 + s2) = +∞.

The theorem is a consequence of (7).

(19) Suppose s1 is convergent to +∞ and s2 is convergent to a finite limit.
Then

(i) s1 + s2 is convergent to +∞ and convergent, and

(ii) lim(s1 + s2) = +∞.

The theorem is a consequence of (7).

Now we state the proposition:

(20) Let us consider without +∞ sequences s1, s2 of extended reals. Suppose
s1 is convergent to +∞ and s2 is convergent to a finite limit. Then

(i) s1 + s2 is convergent to +∞ and convergent, and

(ii) lim(s1 + s2) = +∞.

The theorem is a consequence of (7).

Let us consider without −∞ sequences s1, s2 of extended reals. Now we state
the propositions:

(21) Suppose s1 is convergent to −∞ and s2 is convergent to −∞. Then

(i) s1 + s2 is convergent to −∞ and convergent, and

(ii) lim(s1 + s2) = −∞.

The theorem is a consequence of (7).

(22) Suppose s1 is convergent to −∞ and s2 is convergent to a finite limit.
Then

(i) s1 + s2 is convergent to −∞ and convergent, and

(ii) lim(s1 + s2) = −∞.
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The theorem is a consequence of (7).

(23) Suppose s1 is convergent to a finite limit and s2 is convergent to a finite
limit. Then

(i) s1 + s2 is convergent to a finite limit and convergent, and

(ii) lim(s1 + s2) = lim s1 + lim s2.

The theorem is a consequence of (7).

Now we state the propositions:

(24) Let us consider without +∞ sequences s1, s2 of extended reals. Then

(i) if s1 is convergent to +∞ and s2 is convergent to +∞, then s1 + s2
is convergent to +∞ and convergent and lim(s1 + s2) = +∞, and

(ii) if s1 is convergent to +∞ and s2 is convergent to a finite limit, then
s1+ s2 is convergent to +∞ and convergent and lim(s1+ s2) = +∞,
and

(iii) if s1 is convergent to −∞ and s2 is convergent to −∞, then s1 + s2
is convergent to −∞ and convergent and lim(s1 + s2) = −∞, and

(iv) if s1 is convergent to −∞ and s2 is convergent to a finite limit, then
s1+ s2 is convergent to −∞ and convergent and lim(s1+ s2) = −∞,
and

(v) if s1 is convergent to a finite limit and s2 is convergent to a finite
limit, then s1 + s2 is convergent to a finite limit and convergent and
lim(s1 + s2) = lim s1 + lim s2.

The theorem is a consequence of (17), (21), (10), (9), (2), (22), (18), (19),
and (23).

(25) Let us consider a without −∞ sequence s1 of extended reals, and a wi-
thout +∞ sequence s2 of extended reals. Then

(i) if s1 is convergent to +∞ and s2 is convergent to −∞, then s1−s2 is
convergent to +∞ and convergent and s2 − s1 is convergent to −∞
and convergent and lim(s1 − s2) = +∞ and lim(s2 − s1) = −∞, and

(ii) if s1 is convergent to +∞ and s2 is convergent to a finite limit, then
s1−s2 is convergent to +∞ and convergent and s2−s1 is convergent
to−∞ and convergent and lim(s1−s2) = +∞ and lim(s2−s1) = −∞,
and

(iii) if s1 is convergent to −∞ and s2 is convergent to a finite limit, then
s1−s2 is convergent to −∞ and convergent and s2−s1 is convergent
to +∞ and convergent and lim(s1−s2) = −∞ and lim(s2−s1) = +∞,
and
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(iv) if s1 is convergent to a finite limit and s2 is convergent to a finite
limit, then s1 − s2 is convergent to a finite limit and convergent and
s2−s1 is convergent to a finite limit and convergent and lim(s1−s2) =
lim s1 − lim s2 and lim(s2 − s1) = lim s2 − lim s1.

The theorem is a consequence of (17), (24), (18), (10), (19), (22), (23),
and (2).

2. Subsequences of Convergent Extended Real-Valued Sequences

Let us consider sequences s1, s2 of extended reals. Now we state the propo-
sitions:

(26) Suppose s2 is a subsequence of s1 and s1 is convergent to a finite limit.
Then

(i) s2 is convergent to a finite limit, and

(ii) lim s1 = lim s2.

Proof: Consider g being a real number such that lim s1 = g and for every
real number p such that 0 < p there exists a natural number n such that
for every natural number m such that n ¬ m holds |s1(m) − lim s1| < p

and s1 is convergent to a finite limit. Reconsider L = lim s1 as an extended
real number. There exists a real number g such that for every real number
p such that 0 < p there exists a natural number n such that for every
natural number m such that n ¬ m holds |(s2(m) − g qua extended
real)| < p by [19, (14)], [7, (15)]. For every real number p such that 0 < p

there exists a natural number n such that for every natural number m
such that n ¬ m holds |s2(m)− L| < p by [19, (14)], [7, (15)]. �

(27) Suppose s2 is a subsequence of s1 and s1 is convergent to +∞. Then

(i) s2 is convergent to +∞, and

(ii) lim s2 = +∞.

(28) Suppose s2 is a subsequence of s1 and s1 is convergent to −∞. Then

(i) s2 is convergent to −∞, and

(ii) lim s2 = −∞.
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3. Convergency for Extended Real-Valued Double Sequences

Let us consider a function R from N× N into R. Now we state the proposi-
tions:

(29) Suppose the lim in the first coordinate of R is convergent. Then the first
coordinate major iterated lim of R = lim(the lim in the first coordinate
of R).

(30) Suppose the lim in the second coordinate of R is convergent. Then
the second coordinate major iterated lim of R = lim(the lim in the second
coordinate of R).

Let E be a function from N×N into R. We say that E is P-convergent to a
finite limit if and only if

(Def. 1) there exists a real number p such that for every real number e such that
0 < e there exists a natural number N such that for every natural numbers
n, m such that n ­ N and m ­ N holds |E(n,m) − (p qua extended
real)| < e.

We say that E is P-convergent to +∞ if and only if

(Def. 2) for every real number g such that 0 < g there exists a natural number
N such that for every natural numbers n, m such that n ­ N and m ­ N
holds g ¬ E(n,m).

We say that E is P-convergent to −∞ if and only if

(Def. 3) for every real number g such that g < 0 there exists a natural number
N such that for every natural numbers n, m such that n ­ N and m ­ N
holds E(n,m) ¬ g.

Let f be a function from N × N into R. We say that f is convergent in the
first coordinate to +∞ if and only if

(Def. 4) for every element m of N, curry′(f,m) is convergent to +∞.

We say that f is convergent in the first coordinate to −∞ if and only if

(Def. 5) for every element m of N, curry′(f,m) is convergent to −∞.

We say that f is convergent in the first coordinate to a finite limit if and only if

(Def. 6) for every element m of N, curry′(f,m) is convergent to a finite limit.

We say that f is convergent in the first coordinate if and only if

(Def. 7) for every element m of N, curry′(f,m) is convergent.

We say that f is convergent in the second coordinate to +∞ if and only if

(Def. 8) for every element m of N, curry(f,m) is convergent to +∞.

We say that f is convergent in the second coordinate to −∞ if and only if

(Def. 9) for every element m of N, curry(f,m) is convergent to −∞.
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We say that f is convergent in the second coordinate to a finite limit if and only
if

(Def. 10) for every element m of N, curry(f,m) is convergent to a finite limit.

We say that f is convergent in the second coordinate if and only if

(Def. 11) for every element m of N, curry(f,m) is convergent.

Now we state the propositions:

(31) Let us consider a function f from N× N into R. Then

(i) if f is convergent in the first coordinate to +∞ or convergent in the
first coordinate to −∞ or convergent in the first coordinate to a finite
limit, then f is convergent in the first coordinate, and

(ii) if f is convergent in the second coordinate to +∞ or convergent in
the second coordinate to −∞ or convergent in the second coordinate
to a finite limit, then f is convergent in the second coordinate.

(32) Let us consider non empty sets X, Y, Z, a function F from X × Y into
Z, and an element x of X. Then curry(F, x) = curry′(FT, x).

(33) Let us consider non empty sets X, Y, Z, a function F from X × Y into
Z, and an element y of Y. Then curry′(F, y) = curry(FT, y).

(34) Let us consider non empty sets X, Y, a function F from X × Y into R,
and an element x of X. Then curry(−F , x) = −curry(F, x).

(35) Let us consider non empty sets X, Y, a function F from X × Y into R,
and an element y of Y. Then curry′(−F , y) = −curry′(F, y).

Let us consider a function f from N×N into R. Now we state the propositions:

(36) (i) f is convergent in the first coordinate to +∞ iff fT is convergent
in the second coordinate to +∞, and

(ii) f is convergent in the second coordinate to +∞ iff fT is convergent
in the first coordinate to +∞, and

(iii) f is convergent in the first coordinate to −∞ iff fT is convergent in
the second coordinate to −∞, and

(iv) f is convergent in the second coordinate to −∞ iff fT is convergent
in the first coordinate to −∞, and

(v) f is convergent in the first coordinate to a finite limit iff fT is co-
nvergent in the second coordinate to a finite limit, and

(vi) f is convergent in the second coordinate to a finite limit iff fT is
convergent in the first coordinate to a finite limit.

The theorem is a consequence of (33) and (32).

(37) (i) f is convergent in the first coordinate to +∞ iff −f is convergent
in the first coordinate to −∞, and
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(ii) f is convergent in the first coordinate to −∞ iff −f is convergent in
the first coordinate to +∞, and

(iii) f is convergent in the first coordinate to a finite limit iff −f is co-
nvergent in the first coordinate to a finite limit, and

(iv) f is convergent in the second coordinate to +∞ iff −f is convergent
in the second coordinate to −∞, and

(v) f is convergent in the second coordinate to −∞ iff −f is convergent
in the second coordinate to +∞, and

(vi) f is convergent in the second coordinate to a finite limit iff −f is
convergent in the second coordinate to a finite limit.

The theorem is a consequence of (35), (17), (2), and (34).

Let f be a function from N × N into R. The functors: the lim in the first
coordinate of f and the lim in the second coordinate of f yielding sequences of
extended reals are defined by conditions

(Def. 12) for every element m of N, the lim in the first coordinate of f(m) =
lim curry′(f,m),

(Def. 13) for every element n of N, the lim in the second coordinate of f(n) =
lim curry(f, n),

respectively. Now we state the proposition:

(38) Let us consider a function f from N× N into R. Then

(i) the lim in the first coordinate of f = the lim in the second coordinate
of fT, and

(ii) the lim in the second coordinate of f = the lim in the first coordinate
of fT.

The theorem is a consequence of (33) and (32).

Let X, Y be non empty sets, F be a without +∞ function from X × Y into
R, and x be an element of X. Let us observe that curry(F, x) is without +∞.

Let y be an element of Y. One can verify that curry′(F, y) is without +∞.
Let F be a without −∞ function from X × Y into R and x be an element

of X. Let us note that curry(F, x) is without −∞.
Let y be an element of Y. Observe that curry′(F, y) is without −∞.
Let f be a function from N × N into R. The partial sums in the second

coordinate of f yielding a function from N× N into R is defined by

(Def. 14) for every natural numbers n, m, it(n, 0) = f(n, 0) and it(n,m + 1) =
it(n,m) + f(n,m+ 1).

The partial sums in the first coordinate of f yielding a function from N×N
into R is defined by
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(Def. 15) for every natural numbers n, m, it(0,m) = f(0,m) and it(n + 1,m) =
it(n,m) + f(n+ 1,m).

Let f be a without −∞ function from N × N into R. Let us note that
the partial sums in the second coordinate of f is without −∞.

Let f be a without +∞ function from N×N into R. Observe that the partial
sums in the second coordinate of f is without +∞.

Let f be a non-negative function from N × N into R. Let us observe that
the partial sums in the second coordinate of f is non-negative as a function from
N× N into R.

Let f be a non-positive function from N × N into R. One can check that
the partial sums in the second coordinate of f is non-positive as a function from
N× N into R.

Let f be a without −∞ function from N × N into R. Let us note that
the partial sums in the first coordinate of f is without −∞.

Let f be a without +∞ function from N×N into R. Observe that the partial
sums in the first coordinate of f is without +∞.

Let f be a non-negative function from N × N into R. Let us observe that
the partial sums in the first coordinate of f is non-negative as a function from
N× N into R.

Let f be a non-positive function from N × N into R. One can check that
the partial sums in the first coordinate of f is non-positive as a function from
N× N into R.

Let f be a function from N×N into R. The functor (
∑κ
α=0 f(α))κ∈N yielding

a function from N× N into R is defined by the term

(Def. 16) the partial sums in the second coordinate of the partial sums in the first
coordinate of f .

Now we state the propositions:

(39) Let us consider a function f from N×N into R, and natural numbers n,
m. Then

(i) (the partial sums in the first coordinate of f)(n,m) = (the partial
sums in the second coordinate of fT)(m,n), and

(ii) (the partial sums in the second coordinate of f)(n,m) = (the partial
sums in the first coordinate of fT)(m,n).

Proof: Define P[natural number] ≡ (the partial sums in the first coordina-
te of f)($1,m) = (the partial sums in the second coordinate of fT)(m, $1).
For every natural number k such that P[k] holds P[k+1]. For every natural
number k, P[k] from [1, Sch. 2]. Define Q[natural number] ≡ (the partial
sums in the second coordinate of f)(n, $1) = (the partial sums in the first
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coordinate of fT)($1, n). For every natural number k such that Q[k] holds
Q[k + 1]. For every natural number k, Q[k] from [1, Sch. 2]. �

(40) Let us consider a function f from N× N into R. Then

(i) (the partial sums in the first coordinate of f)T = the partial sums
in the second coordinate of fT, and

(ii) (the partial sums in the second coordinate of f)T = the partial sums
in the first coordinate of fT.

The theorem is a consequence of (39).

(41) Let us consider a function f from N×N into R, an extended real-valued
function g, and a natural number n. Suppose for every natural number k,
(the partial sums in the first coordinate of f)(n, k) = g(k). Then

(i) for every natural number k, (
∑κ
α=0 f(α))κ∈N(n, k) =

(
∑κ
α=0 g(α))κ∈N(k), and

(ii) (the lim in the second coordinate of (
∑κ
α=0 f(α))κ∈N)(n) =

∑
g.

(42) Let us consider a function f from N× N into R. Then

(i) the partial sums in the second coordinate of −f =

−(the partial sums in the second coordinate of f), and

(ii) the partial sums in the first coordinate of −f =

−(the partial sums in the first coordinate of f).

Proof: For every element z of N×
N, (−(the partial sums in the second coordinate of f))(z) = (the partial
sums in the second coordinate of −f)(z) by [9, (87)]. For every element z
of N× N,
(−(the partial sums in the first coordinate of f))(z) = (the partial sums
in the first coordinate of −f)(z) by [9, (87)]. �

(43) Let us consider a function f from N × N into R, and elements m, n of
N. Then

(i) (the partial sums in the first coordinate of f)(m,n) =

(
∑κ
α=0(curry′(f, n))(α))κ∈N(m), and

(ii) (the partial sums in the second coordinate of f)(m,n) =

(
∑κ
α=0(curry(f,m))(α))κ∈N(n).

Proof: Define P[natural number] ≡ (the partial sums in the first co-
ordinate of f)($1, n) = (

∑κ
α=0(curry′(f, n))(α))κ∈N($1). For every natural

number k such that P[k] holds P[k + 1]. For every natural number k,
P[k] from [1, Sch. 2]. Define Q[natural number] ≡ (the partial sums in
the second coordinate of f)(m, $1) = (

∑κ
α=0(curry(f,m))(α))κ∈N($1). For
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every natural number k such that Q[k] holds Q[k + 1]. For every natural
number k, Q[k] from [1, Sch. 2]. �

(44) Let us consider without −∞ functions f1, f2 from N× N into R. Then

(i) the partial sums in the second coordinate of f1 + f2 = (the partial
sums in the second coordinate of f1)+(the partial sums in the second
coordinate of f2), and

(ii) the partial sums in the first coordinate of f1 + f2 = (the partial
sums in the first coordinate of f1) + (the partial sums in the first
coordinate of f2).

The theorem is a consequence of (11).

(45) Let us consider without +∞ functions f1, f2 from N× N into R. Then

(i) the partial sums in the second coordinate of f1 + f2 = (the partial
sums in the second coordinate of f1)+(the partial sums in the second
coordinate of f2), and

(ii) the partial sums in the first coordinate of f1 + f2 = (the partial
sums in the first coordinate of f1) + (the partial sums in the first
coordinate of f2).

The theorem is a consequence of (10), (9), (2), (42), (44), and (8).

(46) Let us consider a without −∞ function f1 from N × N into R, and
a without +∞ function f2 from N× N into R. Then

(i) the partial sums in the second coordinate of f1 − f2 = (the partial
sums in the second coordinate of f1)−(the partial sums in the second
coordinate of f2), and

(ii) the partial sums in the first coordinate of f1 − f2 = (the partial
sums in the first coordinate of f1) − (the partial sums in the first
coordinate of f2), and

(iii) the partial sums in the second coordinate of f2 − f1 = (the partial
sums in the second coordinate of f2)−(the partial sums in the second
coordinate of f1), and

(iv) the partial sums in the first coordinate of f2 − f1 = (the partial
sums in the first coordinate of f2) − (the partial sums in the first
coordinate of f1).

The theorem is a consequence of (10), (44), (42), and (45).

(47) Let us consider a without −∞ function f from N×N into R, and natural
numbers n, m. Then

(i) (
∑κ
α=0 f(α))κ∈N(n+1,m) = (the partial sums in the second coordinate

of f)(n+ 1,m) + (
∑κ
α=0 f(α))κ∈N(n,m), and
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(ii) (the partial sums in the first coordinate of the partial sums in the
second coordinate of f)(n,m + 1) = (the partial sums in the first
coordinate of f)(n,m+ 1) + (the partial sums in the first coordinate
of the partial sums in the second coordinate of f)(n,m).

Proof: Set R1 = (
∑κ
α=0 f(α))κ∈N. Set C1 = the partial sums in the

first coordinate of the partial sums in the second coordinate of f . Set
R2 = the partial sums in the first coordinate of f . Set C2 = the partial
sums in the second coordinate of f . Define P[natural number] ≡ R1(n +
1, $1) = C2(n + 1, $1) + R1(n, $1). For every natural number k such that
P[k] holds P[k + 1]. For every natural number k, P[k] from [1, Sch. 2].
Define Q[natural number] ≡ C1($1,m+1) = R2($1,m+1)+C1($1,m). For
every natural number k such that Q[k] holds Q[k + 1]. For every natural
number k, Q[k] from [1, Sch. 2]. �

(48) Let us consider a without +∞ function f from N×N into R, and natural
numbers n, m. Then

(i) (
∑κ
α=0 f(α))κ∈N(n+1,m) = (the partial sums in the second coordinate

of f)(n+ 1,m) + (
∑κ
α=0 f(α))κ∈N(n,m), and

(ii) (the partial sums in the first coordinate of the partial sums in the
second coordinate of f)(n,m + 1) = (the partial sums in the first
coordinate of f)(n,m+ 1) + (the partial sums in the first coordinate
of the partial sums in the second coordinate of f)(n,m).

The theorem is a consequence of (2), (42), and (47).

(49) Let us consider a function f from N × N into R. Suppose f is without
−∞ or without +∞. Then (

∑κ
α=0 f(α))κ∈N = the partial sums in the

first coordinate of the partial sums in the second coordinate of f .

(50) Let us consider without −∞ functions f1, f2 from N × N into R. Then
(
∑κ
α=0(f1 + f2)(α))κ∈N = (

∑κ
α=0 f1(α))κ∈N + (

∑κ
α=0 f2(α))κ∈N. The the-

orem is a consequence of (44).

(51) Let us consider without +∞ functions f1, f2 from N × N into R. Then
(
∑κ
α=0(f1 + f2)(α))κ∈N = (

∑κ
α=0 f1(α))κ∈N + (

∑κ
α=0 f2(α))κ∈N. The the-

orem is a consequence of (45).

(52) Let us consider a without −∞ function f1 from N × N into R, and
a without +∞ function f2 from N× N into R. Then

(i) (
∑κ
α=0(f1 − f2)(α))κ∈N = (

∑κ
α=0 f1(α))κ∈N − (

∑κ
α=0 f2(α))κ∈N, and

(ii) (
∑κ
α=0(f2 − f1)(α))κ∈N = (

∑κ
α=0 f2(α))κ∈N − (

∑κ
α=0 f1(α))κ∈N.

The theorem is a consequence of (46).

(53) Let us consider a function f from N×N into R, and an element k of N.
Then
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(i) curry′(the partial sums in the first coordinate of f, k) =

(
∑κ
α=0(curry′(f, k))(α))κ∈N, and

(ii) curry(the partial sums in the second coordinate of f, k) =

(
∑κ
α=0(curry(f, k))(α))κ∈N.

The theorem is a consequence of (43).

(54) Let us consider a function f from N × N into R. Suppose f is without
−∞ or without +∞. Then

(i) curry((
∑κ
α=0 f(α))κ∈N, 0) = curry(the partial sums in the second

coordinate of f, 0), and

(ii) curry′((
∑κ
α=0 f(α))κ∈N, 0) = curry′(the partial sums in the first coor-

dinate of f, 0).

(55) Let us consider non empty sets C, D, without −∞ functions F1, F2
from C × D into R, and an element c of C. Then curry(F1 + F2, c) =
curry(F1, c) + curry(F2, c). The theorem is a consequence of (7).

(56) Let us consider non empty sets C, D, without −∞ functions F1, F2
from C × D into R, and an element d of D. Then curry′(F1 + F2, d) =
curry′(F1, d) + curry′(F2, d). The theorem is a consequence of (7).

(57) Let us consider non empty sets C, D, without +∞ functions F1, F2
from C × D into R, and an element c of C. Then curry(F1 + F2, c) =
curry(F1, c) + curry(F2, c). The theorem is a consequence of (7).

(58) Let us consider non empty sets C, D, without +∞ functions F1, F2
from C × D into R, and an element d of D. Then curry′(F1 + F2, d) =
curry′(F1, d) + curry′(F2, d). The theorem is a consequence of (7).

(59) Let us consider non empty sets C, D, a without −∞ function F1 from
C×D into R, a without +∞ function F2 from C×D into R, and an element
c of C. Then

(i) curry(F1 − F2, c) = curry(F1, c)− curry(F2, c), and

(ii) curry(F2 − F1, c) = curry(F2, c)− curry(F1, c).

The theorem is a consequence of (7).

(60) Let us consider non empty sets C, D, a without −∞ function F1 from
C×D into R, a without +∞ function F2 from C×D into R, and an element
d of D. Then

(i) curry′(F1 − F2, d) = curry′(F1, d)− curry′(F2, d), and

(ii) curry′(F2 − F1, d) = curry′(F2, d)− curry′(F1, d).

The theorem is a consequence of (7).
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4. Non-Negative Extended Real-Valued Double Sequences

Now we state the propositions:

(61) Let us consider a non-negative sequence s of extended reals. Suppose
(
∑κ
α=0 s(α))κ∈N is not convergent to +∞. Let us consider a natural number

n. Then s(n) is a real number.

(62) Let us consider a non-negative sequence s of extended reals. Suppose s
is non-decreasing. Then s is convergent to +∞ or convergent to a finite
limit.

Let f be a non-negative function from N×N into R and n be an element of N.
Let us observe that curry(f, n) is non-negative and curry′(f, n) is non-negative.

Now we state the propositions:

(63) Let us consider a non-negative function f from N×N into R, and an ele-
ment m of N. Then curry(the partial sums in the second coordinate of
f,m) is non-decreasing.
Proof: Set P = curry(the partial sums in the second coordinate of f,m).
For every natural numbers n, j such that j ¬ n holds P (j) ¬ P (n) by [4,
(51)], [1, (13), (20)]. �

(64) Let us consider a non-negative function f from N×N into R, and an ele-
ment n of N. Then curry′(the partial sums in the first coordinate of f, n)
is non-decreasing. The theorem is a consequence of (63), (40), and (33).

Let f be a non-negative function from N×N into R and m be an element of
N. One can check that curry(the partial sums in the second coordinate of f,m)
is non-decreasing and curry′(the partial sums in the first coordinate of f,m) is
non-decreasing.

Let us consider a non-negative function f from N×N into R. Now we state
the propositions:

(65) (i) if f is convergent in the first coordinate, then the lim in the first
coordinate of f is non-negative, and

(ii) if f is convergent in the second coordinate, then the lim in the second
coordinate of f is non-negative.

(66) (i) the partial sums in the first coordinate of f is convergent in the
first coordinate, and

(ii) the partial sums in the second coordinate of f is convergent in the
second coordinate.

Let us consider a non-negative function f from N×N into R, an element m
of N, and a natural number n.

Let us assume that curry′(the partial sums in the first coordinate of f,m) is
not convergent to +∞. Now we state the propositions:
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(67) f(n,m) is a real number.

(68) f(m,n) is a real number.

Let us consider a non-negative function f from N × N into R and natural
numbers n, m. Now we state the propositions:

(69) Suppose for every natural number i such that i ¬ n holds f(i,m) is a real
number. Then (the partial sums in the first coordinate of f)(n,m) < +∞.
Proof: Define P[natural number] ≡ if $1 ¬ n, then (the partial sums in
the first coordinate of f)($1,m) < +∞. For every natural number k such
that P[k] holds P[k + 1] by [4, (51)], [1, (13)]. For every natural number
k, P[k] from [1, Sch. 2]. �

(70) Suppose for every natural number i such that i ¬ m holds f(n, i) is a real
number. Then (the partial sums in the second coordinate of f)(n,m) <
+∞.
Proof: Define P[natural number] ≡ if $1 ¬ m, then (the partial sums
in the second coordinate of f)(n, $1) < +∞. For every natural number
k such that P[k] holds P[k + 1] by [4, (51)], [1, (13)]. For every natural
number k, P[k] from [1, Sch. 2]. �

Now we state the proposition:

(71) Let us consider a without −∞ function f from N × N into R. Suppose
(
∑κ
α=0 f(α))κ∈N is convergent in the first coordinate to −∞. Then there

exists an element m of N such that curry′(the partial sums in the first
coordinate of f,m) is convergent to −∞. The theorem is a consequence of
(54).

Let us consider a non-negative function f from N× N into R and a natural
number m. Now we state the propositions:

(72) for every element k of N such that k ¬ m holds curry(the partial sums
in the second coordinate of f, k) is not convergent to +∞ if and only if for
every element k of N such that k ¬ m holds lim curry(the partial sums
in the second coordinate of f, k) < +∞. The theorem is a consequence of
(62).

(73) for every element k of N such that k ¬ m holds curry′(the partial sums
in the first coordinate of f, k) is not convergent to +∞ if and only if for
every element k of N such that k ¬ m holds lim curry′(the partial sums
in the first coordinate of f, k) < +∞. The theorem is a consequence of
(62).

(74) (
∑κ
α=0(the lim in the second coordinate of the partial sums in the second

coordinate of f)(α))κ∈N(m) = +∞ if and only if there exists an element k
of N such that k ¬ m and curry(the partial sums in the second coordinate
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of f, k) is convergent to +∞. The theorem is a consequence of (72), (65),
and (4).

(75) (
∑κ
α=0(the lim in the first coordinate of the partial sums in the first

coordinate of f)(α))κ∈N(m) = +∞ if and only if there exists an element k
of N such that k ¬ m and curry′(the partial sums in the first coordinate
of f, k) is convergent to +∞. The theorem is a consequence of (38), (40),
(74), and (32).

Now we state the proposition:

(76) Let us consider a non-negative function f from N×N into R, and natural
numbers n, m. Then

(i) (the partial sums in the first coordinate of f)(n,m) ­ f(n,m), and

(ii) (the partial sums in the second coordinate of f)(n,m) ­ f(n,m).

Proof: Define P[natural number] ≡ if $1 ¬ n, then (the partial sums in
the first coordinate of f)($1,m) ­ f($1,m). For every natural number k
such that P[k] holds P[k+1] by [4, (51)]. For every natural number k, P[k]
from [1, Sch. 2]. Define Q[natural number] ≡ if $1 ¬ m, then (the partial
sums in the second coordinate of f)(n, $1) ­ f(n, $1). For every natural
number k such that Q[k] holds Q[k + 1] by [4, (51)]. For every natural
number k, Q[k] from [1, Sch. 2]. �

Let us consider a non-negative function f from N×N into R and an element
m of N. Now we state the propositions:

(77) Suppose there exists an element k of N such that k ¬ m and curry(the par-
tial sums in the second coordinate of f, k) is convergent to +∞. Then

(i) curry(the partial sums in the second coordinate of the partial sums
in the first coordinate of f,m) is convergent to +∞, and

(ii) lim curry(the partial sums in the second coordinate of the partial
sums in the first coordinate of f,m) = +∞.

Proof: For every real number g such that 0 < g there exists a natural
number N such that for every natural number n such that N ¬ n holds
g ¬ (curry(the par- tial sums in the second coordinate of the partial sums
in the first coordinate of f,m))(n) by [26, (7)], (76). �

(78) Suppose there exists an element k of N such that k ¬ m and curry′(the par-
tial sums in the first coordinate of f, k) is convergent to +∞. Then

(i) curry′(the partial sums in the first coordinate of the partial sums in
the second coordinate of f,m) is convergent to +∞, and

(ii) lim curry′(the partial sums in the first coordinate of the partial sums
in the second coordinate of f,m) = +∞.
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The theorem is a consequence of (40), (32), and (77).

Now we state the propositions:

(79) Let us consider a without −∞ function f from N × N into R. Then
(
∑κ
α=0 f(α))κ∈N is convergent in the first coordinate to a finite limit if

and only if the partial sums in the first coordinate of f is convergent in
the first coordinate to a finite limit. The theorem is a consequence of (54),
(47), (7), and (23).

(80) Let us consider a non-negative function f from N × N into R. Suppo-
se (
∑κ
α=0 f(α))κ∈N is convergent in the first coordinate to a finite limit.

Let us consider an element m of N. Then (
∑κ
α=0(the lim in the first

coordinate of the partial sums in the first coordinate of f)(α))κ∈N(m) =
lim curry′(the partial sums in the first coordinate of the partial sums in
the second coordinate of f,m).
Proof: The partial sums in the first coordinate of f is convergent in
the first coordinate to a finite limit. Define P[natural number] ≡ for eve-
ry element k of N such that k ¬ $1 holds (

∑κ
α=0(the lim in the first

coordinate of the partial sums in the first coordinate of f)(α))κ∈N(k) =
lim curry′(the partial sums in the first coordinate of the partial sums in
the second coordinate of f, k). For every natural number n such that P[n]
holds P[n + 1] by [1, (13)], [14, (7)], (47), [4, (51)]. For every natural
number n, P[n] from [1, Sch. 2]. �

(81) Let us consider a without −∞ function f from N × N into R. Then
(
∑κ
α=0 f(α))κ∈N is convergent in the second coordinate to a finite limit if

and only if the partial sums in the second coordinate of f is convergent in
the second coordinate to a finite limit. The theorem is a consequence of
(36), (40), and (79).

(82) Let us consider a non-negative function f from N × N into R. Suppose
(
∑κ
α=0 f(α))κ∈N is convergent in the second coordinate to a finite limit.

Let us consider an element m of N. Then (
∑κ
α=0(the lim in the second

coordinate of the partial sums in the second coordinate of f)(α))κ∈N(m) =
lim curry(the partial sums in the second coordinate of the partial sums in
the first coordinate of f,m). The theorem is a consequence of (36), (40),
(38), (80), and (32).

Let us consider a non-negative function f from N×N into R and a sequence
s of extended reals. Now we state the propositions:

(83) Suppose for every element m of N, s(m) = lim inf curry′(f,m). Then∑
s ¬ lim inf(the lim in the second coordinate of the partial sums in the

second coordinate of f).
Proof: For every element m of N and for every elements N , n of N
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such that n ­ N holds (the inferior realsequence curry′(f,m))(N) ¬
f(n,m) by [26, (7), (8)]. Define F(element of N) = the inferior realse-
quence curry′(f, $1). Define G(element of N, element of N) = (the inferior
realsequence curry′(f, $2))($1). Consider g being a function from N × N
into R such that for every element n of N and for every element m of N,
g(n,m) = G(n,m) from [5, Sch. 4]. For every element m of N and for every
elements N , n of N such that n ­ N holds (the partial sums in the second
coordinate of g)(N,m) ¬ (the partial sums in the second coordinate of
f)(n,m). For every element m of N and for every elements N , n of N
such that n ­ N holds (the partial sums in the second coordinate of
g)(N,m) ¬ (the inferior realsequence the lim in the second coordinate
of the partial sums in the second coordinate of f)(n) by [26, (37), (23)].
Define Q[natural number] ≡ for every element m of N such that m = $1
holds (

∑κ
α=0 s(α))κ∈N(m) = lim curry′(the partial sums in the second

coordinate of g,m). For every element m of N, curry′(the partial sums in
the second coordinate of g,m) is convergent by [26, (7), (37)]. For every
natural number k such that Q[k] holds Q[k+1] by [26, (37)], [4, (51), (52)],
[14, (11)]. For every natural number k, Q[k] from [1, Sch. 2]. For every
natural number m, (

∑κ
α=0 s(α))κ∈N(m) ¬ lim inf(the lim in the second

coordinate of the partial sums in the second coordinate of f) by [26, (37),
(38)]. For every object m such that m ∈ dom s holds 0 ¬ s(m) by [4, (51),
(52)], [26, (23)]. �

(84) Suppose for every element m of N, s(m) = lim inf curry(f,m). Then∑
s ¬ lim inf(the lim in the first coordinate of the partial sums in the

first coordinate of f). The theorem is a consequence of (32), (83), (38),
and (40).

Now we state the proposition:

(85) Let us consider a function f from N×N into R, a sequence s of extended
reals, and natural numbers n, m. Then

(i) if for every natural numbers i, j, f(i, j) ¬ s(i), then (the partial
sums in the first coordinate of f)(n,m) ¬ (

∑κ
α=0 s(α))κ∈N(n), and

(ii) if for every natural numbers i, j, f(i, j) ¬ s(j), then (the partial
sums in the second coordinate of f)(n,m) ¬ (

∑κ
α=0 s(α))κ∈N(m).

Proof: Define P[natural number] ≡ (the partial sums in the second
coordinate of f)(n, $1) ¬ (

∑κ
α=0 s(α))κ∈N($1). For every natural number

k such that P[k] holds P[k + 1]. For every natural number k, P[k] from
[1, Sch. 2]. �

Let us consider a sequence s of extended reals and an extended real number
r. Now we state the propositions:
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(86) If for every natural number n, s(n) ¬ r, then lim sup s ¬ r.
Proof: Define F(element of N) = r. Consider f being a function from N
into R such that for every element n of N, f(n) = F(n) from [7, Sch. 4].
For every natural number n, f(n) = r. For every natural number n, s(n) ¬
f(n). �

(87) If for every natural number n, r ¬ s(n), then r ¬ lim inf s.
Proof: Define F(element of N) = r. Consider f being a function from N
into R such that for every element n of N, f(n) = F(n) from [7, Sch. 4]. For
every natural number n, f(n) = r. For every natural number n, f(n) ¬
s(n). �

Now we state the proposition:

(88) Let us consider a non-negative function f from N× N into R. Then

(i) for every natural numbers i1, i2, j such that i1 ¬ i2 holds (the partial
sums in the first coordinate of f)(i1, j) ¬ (the partial sums in the
first coordinate of f)(i2, j), and

(ii) for every natural numbers i, j1, j2 such that j1 ¬ j2 holds (the partial
sums in the second coordinate of f)(i, j1) ¬ (the partial sums in the
second coordinate of f)(i, j2).

Let us consider a function f from N×N into R and natural numbers i, j, k.
Now we state the propositions:

(89) Suppose for every element m of N, curry′(f,m) is non-decreasing and
i ¬ j. Then (the partial sums in the second coordinate of f)(i, k) ¬
(the partial sums in the second coordinate of f)(j, k).
Proof: Define P[natural number] ≡ (the partial sums in the second
coordinate of f)(i, $1) ¬ (the partial sums in the second coordinate of
f)(j, $1). For every natural number n such that P[n] holds P[n + 1] by
[26, (7)]. For every natural number n, P[n] from [1, Sch. 2]. �

(90) Suppose for every element n of N, curry(f, n) is non-decreasing and i ¬ j.
Then (the partial sums in the first coordinate of f)(k, i) ¬ (the partial
sums in the first coordinate of f)(k, j). The theorem is a consequence of
(32), (89), and (39).

Let us consider a non-negative function f from N×N into R and a sequence
s of extended reals. Now we state the propositions:

(91) Suppose for every element m of N, curry′(f,m) is non-decreasing and
s(m) = lim curry′(f,m). Then

(i) the lim in the second coordinate of the partial sums in the second
coordinate of f is non-decreasing, and
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(ii)
∑
s = lim(the lim in the second coordinate of the partial sums in

the second coordinate of f).

Proof:
∑
s ¬ lim inf(the lim in the second coordinate of the partial sums

in the second coordinate of f). For every natural numbers n, m, f(n,m) ¬
s(m) by [26, (37)], [6, (3)]. For every natural numbers n, m such that m ¬
n holds (the lim in the second coordinate of the partial sums in the second
coordinate of f)(m) ¬ (the lim in the second coordinate of the partial
sums in the second coordinate of f)(n) by [26, (37)], (89), [26, (38)]. For
every natural number n, (the lim in the second coordinate of the partial
sums in the second coordinate of f)(n) ¬

∑
s by [26, (37)], [4, (39)], (87),

[26, (41)]. lim sup(the lim in the second coordinate of the partial sums in
the second coordinate of f) ¬

∑
s. �

(92) Suppose for every element m of N, curry(f,m) is non-decreasing and
s(m) = lim curry(f,m). Then

(i) the lim in the first coordinate of the partial sums in the first coordi-
nate of f is non-decreasing, and

(ii)
∑
s = lim(the lim in the first coordinate of the partial sums in the

first coordinate of f).

The theorem is a consequence of (32), (91), (33), and (40).

5. Pringsheim Sense Convergence for Extended Real-Valued
Double Sequences

Let us consider a function f from N×N into R. Now we state the propositions:

(93) If f is P-convergent to +∞, then f is not P-convergent to −∞ and f is
not P-convergent to a finite limit.

(94) If f is P-convergent to −∞, then f is not P-convergent to +∞ and f is
not P-convergent to a finite limit.

Let f be a function from N×N into R. We say that f is P-convergent if and
only if

(Def. 17) f is P-convergent to a finite limit or P-convergent to +∞ or P-convergent
to −∞.

Assume f is P-convergent. The functor P-lim f yielding an extended real is
defined by

(Def. 18) there exists a real number p such that it = p and for every real number
e such that 0 < e there exists a natural number N such that for every
natural numbers n, m such that n ­ N and m ­ N holds |f(n,m)−it | < e
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and f is P-convergent to a finite limit or it = +∞ and f is P-convergent
to +∞ or it = −∞ and f is P-convergent to −∞.

Now we state the propositions:

(95) Let us consider a function f from N × N into R, and a real number r.
Suppose for every natural numbers n, m, f(n,m) = r. Then

(i) f is P-convergent to a finite limit, and

(ii) P-lim f = r.

(96) Let us consider a function f from N × N into R. Suppose for every
natural numbers n1, m1, n2, m2 such that n1 ¬ n2 and m1 ¬ m2 holds
f(n1,m1) ¬ f(n2,m2). Then

(i) f is P-convergent, and

(ii) P-lim f = sup rng f .

(97) Let us consider functions f1, f2 from N × N into R. Suppose for every
natural numbers n, m, f1(n,m) ¬ f2(n,m). Then sup rng f1 ¬ sup rng f2.

(98) Let us consider a function f from N×N into R, and natural numbers n,
m. Then f(n,m) ¬ sup rng f .

Let us consider a function f from N×N into R and an extended real number
K. Now we state the propositions:

(99) If for every natural numbers n, m, f(n,m) ¬ K, then sup rng f ¬ K.

(100) If K 6= +∞ and for every natural numbers n, m, f(n,m) ¬ K, then
sup rng f < +∞.

Now we state the propositions:

(101) Let us consider a without −∞ function f from N × N into R. Then
sup rng f 6= +∞ if and only if there exists a real number K such that
0 < K and for every natural numbers n, m, f(n,m) ¬ K.

(102) Let us consider a function f from N×N into R, and an extended real c.
Suppose for every natural numbers n, m, f(n,m) = c. Then

(i) f is P-convergent, and

(ii) P-lim f = c, and

(iii) P-lim f = sup rng f .

(103) Let us consider a function f from N×N into R, and without−∞ functions
f1, f2 from N × N into R. Suppose for every natural numbers n1, m1,
n2, m2 such that n1 ¬ n2 and m1 ¬ m2 holds f1(n1,m1) ¬ f1(n2,m2)
and for every natural numbers n1, m1, n2, m2 such that n1 ¬ n2 and
m1 ¬ m2 holds f2(n1,m1) ¬ f2(n2,m2) and for every natural numbers n,
m, f1(n,m) + f2(n,m) = f(n,m). Then
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(i) f is P-convergent, and

(ii) P-lim f = sup rng f , and

(iii) P-lim f = P-lim f1 + P-lim f2, and

(iv) sup rng f = sup rng f1 + sup rng f2.

The theorem is a consequence of (96) and (101).

Let us consider a without −∞ function f1 from N×N into R, a function f2
from N× N into R, and a real number c. Now we state the propositions:

(104) Suppose 0 ¬ c and for every natural numbers n, m, f2(n,m) = c ·
f1(n,m). Then

(i) sup rng f2 = c · sup rng f1, and

(ii) f2 is without −∞.

The theorem is a consequence of (102) and (101).

(105) Suppose 0 ¬ c and for every natural numbers n1, m1, n2, m2 such that
n1 ¬ n2 and m1 ¬ m2 holds f1(n1,m1) ¬ f1(n2,m2) and for every natural
numbers n, m, f2(n,m) = c · f1(n,m). Then

(i) for every natural numbers n1, m1, n2, m2 such that n1 ¬ n2 and
m1 ¬ m2 holds f2(n1,m1) ¬ f2(n2,m2), and

(ii) f2 is without −∞ and P-convergent, and

(iii) P-lim f2 = sup rng f2, and

(iv) P-lim f2 = c · P-lim f1.

The theorem is a consequence of (96) and (104).
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