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Summary. In this article we introduce the convergence of extended real-
valued double sequences [16], [I7]. It is similar to our previous articles [15], [10].
In addition, we also prove Fatou’s lemma and the monotone convergence theorem
for double sequences.
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1. PRELIMINARIES

Let X be a non empty set. One can verify that there exists a function from X
into R which is non-negative and non-positive and there exists a function from
X into R which is without —oo, without 400, non-negative, and non-positive
and every function from X into R which is non-negative is also without —oo
and every function from X into R which is non-positive is also without +oo and
there exists a without +oo function from X into R which is without —oo.

Let f be a function from X into R. Let us observe that the functor — f yields
a function from X into R. Let f be a without —oco function from X into R. Note
that — f is without +o0.
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Let f be a without +oo function from X into R. Let us observe that —f is
without —oo.
Let f be a non-negative function from X into R. Note that —f is non-
positive.
Let f be a non-positive function from X into R. Let us observe that —f is
non-negative.
Let A, B be non empty sets and f be a without —oo function from A x B
into R. Let us observe that fT is without —oo.
Let f be a without 4+o00 function from A x B into R. One can verify that fT
is without +o0.
Let f be a non-negative function from A x B into R. One can check that fT
is non-negative.
Let f be a non-positive function from A x B into R. Note that fT is non-
positive.
Now we state the propositions:
(1) Let us consider a sequence s of extended reals. Then (3_5_((—s)(@))seny =
— (X 5(0)uen-
PROOF: Define Q[natural number| =
(—(% g 8(a))were) ($1) = —(35_p 5())wen($1). For every natural num-
ber n, Q[n] from [I}, Sch. 2]. Define P[natural number] = (3 "5 _(—s)(a))ken
(31) = (= (X5 _p s(@))ken)(81). For every natural number n such that P[n|
holds P[n + 1]. For every natural number n, P[n]| from [I, Sch. 2]. O
(2) Let us consider a non empty set X, and a partial function f from X to
R. Then ——f = f.
(3) Let us consider non empty sets X, Y, and a function f from X x Y into
R. Then (—f)T = —fT.
Let s be a non-negative sequence of extended reals. One can verify that
(36— s(@))ken is non-negative.
Let s be a non-positive sequence of extended reals. Let us observe that
(>2F _y s(a))ken is non-positive.
Now we state the propositions:
(4) Let us consider a non-negative sequence s of extended reals, and a natural
number m. Then s(m) < (3 h_g s(a))ken(m).
PROOF: Define Pnatural number] = s($1) < (X h_( s(a))wen($1). For
every natural number k£ such that P[k| holds P[k + 1] by [4, (51)]. For
every natural number k, P[k] from [I, Sch. 2]. O

(5) Let us consider a non-positive sequence s of extended reals, and a natural

number m. Then s(m) > (3 &_, s(a))ken(m). The theorem is a consequ-
ence of (4), (1), and (2).
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(6) Let us consider a non empty set X. Then every without —oo, without
+o0o function from X into R is a function from X into R.

Let X be a non empty set and fi1, fo be without —oo functions from X into
R. One can verify that the functor f; + f2 yields a without —oo function from
X into R. Let f1, fo be without 400 functions from X into R. One can verify
that the functor f; + fo yields a without 400 function from X into R. Let f;
be a without —oo function from X into R and f; be a without +oc function
from X into R. Let us observe that the functor f; — fo yields a without —oo
function from X into R. Let f; be a without +o0o function from X into R and
f2 be a without —oo function from X into R. Observe that the functor f; — fo
yields a without +oo function from X into R. Now we state the propositions:

(7) Let us consider a non empty set X, an element x of X, and functions
f1, fo from X into R. Then
(i) if f1 is without —oo and fo is without —oo, then (f1 + f2)(x) =
fi(x) + fa(x), and
(ii) if fi is without +oo and fo is without +oo, then (f; + fo)(z) =
fi(z) + fa(x), and
(iii) if fi is without —oo and fo is without 400, then (f; — fo)(z) =
fi(x) = fa(x), and
(iv) if f1 is without +oo and fo is without —oo, then (f1 — fo)(z) =
Ni(z) = fo(x).
(8) Let us consider a non empty set X, and without —oo functions fi, fo
from X into R. Then
(i) fi+fo=fi——f2, and
(i) =(fi+f2) =—fi— fo
The theorem is a consequence of (7).

(9) Let us consider a non empty set X, and without +oo functions fi, fo
from X into R. Then

(i) fi+fa=/fi——f2 and
(i) =(A+f)=—fi— fo
The theorem is a consequence of (7).

(10) Let us consider a non empty set X, a without —oo function f; from X
into R, and a without +oo function fo from X into R. Then

(i) fi = fo=fi + —fo, and
(ii) fo— fi=fo+—fi, and
(iii) —(fi — f2) = —f1 + f2, and
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(iv) =(f2=f1)=—fo+ f1.
The theorem is a consequence of (8), (2), and (9).

Let f be a function from N x N into R and n, m be natural numbers. One
can check that the functor f(n,m) yields an element of R. Now we state the
propositions:

(11) Let us consider without —oo functions f;, f> from N x N into R, and
natural numbers n, m. Then (f1 + f2)(n,m) = fi(n,m) + fa(n,m). The
theorem is a consequence of (7).

(12) Let us consider without +oco functions fi, f> from N x N into R, and
natural numbers n, m. Then (fi1 + f2)(n,m) = fi(n,m) + fa(n,m). The
theorem is a consequence of (7).

(13) Let us consider a without —oo function f; from N x N into R, a without
+o00 function f; from N x N into R, and natural numbers n, m. Then

(i) (fl - f2)(n7m) = fl(nam) - fQ(nvm)a and
(il) (f2 = fi)(n,m) = fa(n,m) — fi(n,m).
The theorem is a consequence of (7).

(14) Let us consider non empty sets X, Y, and without —oo functions fi,
fo from X x Y into R. Then (f1 + f2)T = fi* + f2*. The theorem is a
consequence of (7).

(15) Let us consider non empty sets X, Y, and without +oo functions fi,
fo from X x Y into R. Then (f; + fo)¥ = fi¥ + f2*. The theorem is a
consequence of (7).

(16) Let us consider non empty sets X, Y, a without —oo function f; from
X XY into R, and a without +oco function fo from X x Y into R. Then

() (i—f)T=H"-f", and
(i) (fo—f0)"=f" = AT
The theorem is a consequence of (7).

One can verify that every sequence of extended reals which is convergent to
+oo is also convergent and every sequence of extended reals which is convergent
to —oo is also convergent and every sequence of extended reals which is conver-
gent to a finite limit is also convergent and there exists a sequence of extended
reals which is convergent and there exists a without —oo sequence of extended
reals which is convergent and there exists a without +o0o sequence of extended
reals which is convergent.

Now we state the proposition:

(17) Let us consider a convergent sequence s of extended reals. Then
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(i) s is convergent to a finite limit iff —s is convergent to a finite limit,
and

(ii) s is convergent to +oo iff —s is convergent to —oo, and
(iii) s is convergent to —oo iff —s is convergent to 400, and
(iv) —s is convergent, and

(v) lim(—s) = —lims.
The theorem is a consequence of (2).

Let us consider without —oo sequences s1, so of extended reals. Now we state
the propositions:

(18) Suppose s; is convergent to +00 and sg is convergent to +o0o. Then
(i) s1 + s2 is convergent to +o0o and convergent, and
(ii) lim(s; + s2) = +o0.
The theorem is a consequence of (7).

(19) Suppose s; is convergent to +0o and sg is convergent to a finite limit.
Then

(i) s1 + s2 is convergent to +oo and convergent, and
(i) lim(sy + s2) = +o0.
The theorem is a consequence of (7).
Now we state the proposition:

(20) Let us consider without +oco sequences s1, so of extended reals. Suppose
s1 is convergent to +o0o and sg is convergent to a finite limit. Then

(i) s1 + s2 is convergent to +oo and convergent, and
(i) lim(sy + s2) = +00.
The theorem is a consequence of (7).

Let us consider without —oo sequences s1, so of extended reals. Now we state
the propositions:

(21) Suppose s; is convergent to —oo and sg is convergent to —oo. Then
(i) s1 + s2 is convergent to —oo and convergent, and
(ii) lim(s; + s2) = —o0.
The theorem is a consequence of (7).

(22) Suppose s; is convergent to —oo and sg is convergent to a finite limit.
Then

(i) s1 + s2 is convergent to —oo and convergent, and

(i) lim(sy + s2) = —o0.
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The theorem is a consequence of (7).

(23) Suppose s is convergent to a finite limit and s9 is convergent to a finite
limit. Then

(i) s1 + s2 is convergent to a finite limit and convergent, and
(ii) lim(sy + s2) = lim s; + lim ss.
The theorem is a consequence of (7).
Now we state the propositions:

(24) Let us consider without +o00 sequences si, sa of extended reals. Then

(i) if s1 is convergent to +oo and sg is convergent to +oo, then s; + s9
is convergent to +o0o and convergent and lim(s; + s2) = +o00, and

(ii) if sy is convergent to 400 and s is convergent to a finite limit, then
s1 + sg is convergent to +o0o and convergent and lim(s; + s2) = 400,
and

(iii) if s is convergent to —oo and so is convergent to —oo, then s1 + so
is convergent to —oo and convergent and lim(s; + s2) = —o0, and

(iv) if s; is convergent to —oo and sg is convergent to a finite limit, then
81+ s9 is convergent to —oo and convergent and lim(s1 + s2) = —o0,
and

(v) if s1 is convergent to a finite limit and s is convergent to a finite
limit, then s; + so is convergent to a finite limit and convergent and
lim(sy + s2) = lim s1 + lim so.

The theorem is a consequence of (17), (21), (10), (9), (2), (22), (18), (19),
and (23).

(25) Let us consider a without —oo sequence s; of extended reals, and a wi-
thout 400 sequence s, of extended reals. Then

(i) if s; is convergent to +oo and sg is convergent to —oo, then s; — 53 is
convergent to +0o and convergent and sp — s1 is convergent to —oo
and convergent and lim(s; — sg) = 400 and lim(sy — s1) = —o0, and

(ii) if 1 is convergent to +o0o and sg is convergent to a finite limit, then
$1 — S is convergent to 400 and convergent and se — s7 is convergent
to —oo and convergent and lim(s;—s2) = +00 and lim(sy—s1) = —o0,
and

(iii) if s1 is convergent to —oo and sg is convergent to a finite limit, then
$1 — S9 is convergent to —oo and convergent and so — s1 is convergent
to +oo and convergent and lim(s; —s2) = —oo and lim(sy—s1) = 400,
and
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(iv) if s; is convergent to a finite limit and s2 is convergent to a finite
limit, then s; — so is convergent to a finite limit and convergent and
S9—$1 is convergent to a finite limit and convergent and lim(s; —s2) =
lims; — lim s9 and lim(s2 — s1) = lim s — lim s;.

The theorem is a consequence of (17), (24), (18), (10), (19), (22), (23),
and (2).

2. SUBSEQUENCES OF CONVERGENT EXTENDED REAL-VALUED SEQUENCES

Let us consider sequences s1, s of extended reals. Now we state the propo-
sitions:

(26) Suppose s9 is a subsequence of s; and s; is convergent to a finite limit.
Then
(i) s2 is convergent to a finite limit, and
(i) lims; = lim so.

PRrROOF: Consider g being a real number such that lim s; = ¢ and for every
real number p such that 0 < p there exists a natural number n such that
for every natural number m such that n < m holds |s;(m) — lims;| < p
and s; is convergent to a finite limit. Reconsider L = lim s; as an extended
real number. There exists a real number g such that for every real number
p such that 0 < p there exists a natural number n such that for every
natural number m such that n < m holds |(s2(m) — g qua extended
real)| < p by [19} (14)], [7, (15)]. For every real number p such that 0 < p
there exists a natural number n such that for every natural number m
such that n < m holds |sa(m) — L| < p by [19, (14)], [, (15)]. O

(27) Suppose sq is a subsequence of s1 and s is convergent to +00. Then
(i) so is convergent to +oo, and
(ii) lim sy = +o00.

(28) Suppose sg is a subsequence of s; and s is convergent to —oo. Then
(i) sg is convergent to —oo, and

(i) lim sy = —o0.
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3. CONVERGENCY FOR EXTENDED REAL-VALUED DOUBLE SEQUENCES

Let us consider a function R from N x N into R. Now we state the proposi-
tions:

(29) Suppose the lim in the first coordinate of R is convergent. Then the first

coordinate major iterated lim of R = lim(the lim in the first coordinate
of R).

(30) Suppose the lim in the second coordinate of R is convergent. Then
the second coordinate major iterated lim of R = lim(the lim in the second
coordinate of R).

Let E be a function from N x N into R. We say that E is P-convergent to a
finite limit if and only if

(Def. 1) there exists a real number p such that for every real number e such that
0 < e there exists a natural number N such that for every natural numbers
n, m such that n > N and m > N holds |E(n,m) — (p qua extended
real)| < e.

We say that E is P-convergent to +oo if and only if

(Def. 2) for every real number g such that 0 < g there exists a natural number
N such that for every natural numbers n, m such that n > N and m > N
holds g < E(n,m).
We say that E is P-convergent to —oo if and only if
(Def. 3) for every real number g such that g < 0 there exists a natural number
N such that for every natural numbers n, m such that n > N and m > N
holds E(n,m) < g.
Let f be a function from N x N into R. We say that f is convergent in the
first coordinate to 4+oc if and only if
(Def. 4) for every element m of N, curry’(f,m) is convergent to +oc.
We say that f is convergent in the first coordinate to —oo if and only if
(Def. 5) for every element m of N, curry’(f,m) is convergent to —oc.
We say that f is convergent in the first coordinate to a finite limit if and only if
(Def. 6) for every element m of N, curry’(f, m) is convergent to a finite limit.
We say that f is convergent in the first coordinate if and only if
(Def. 7)  for every element m of N, curry’(f, m) is convergent.
We say that f is convergent in the second coordinate to 400 if and only if
(Def. 8) for every element m of N, curry(f, m) is convergent to +oc.
We say that f is convergent in the second coordinate to —oo if and only if

(Def. 9) for every element m of N, curry(f, m) is convergent to —oc.
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We say that f is convergent in the second coordinate to a finite limit if and only
if
(Def. 10) for every element m of N, curry(f, m) is convergent to a finite limit.
We say that f is convergent in the second coordinate if and only if
(Def. 11) for every element m of N, curry(f, m) is convergent.
Now we state the propositions:
(31) Let us consider a function f from N x N into R. Then

(i) if f is convergent in the first coordinate to +o0o or convergent in the
first coordinate to —oo or convergent in the first coordinate to a finite
limit, then f is convergent in the first coordinate, and

(ii) if f is convergent in the second coordinate to 400 or convergent in
the second coordinate to —oo or convergent in the second coordinate
to a finite limit, then f is convergent in the second coordinate.

(32) Let us consider non empty sets X, Y, Z, a function F' from X x Y into
Z, and an element = of X. Then curry(F,z) = curry’(F'T, z).

(33) Let us consider non empty sets X, Y, Z, a function F' from X x Y into
Z, and an element y of Y. Then curry’(F,y) = curry(F T, y).

(34) Let us consider non empty sets X, Y, a function F from X x Y into R,
and an element x of X. Then curry(—F,z) = —curry(F, z).

(35) Let us consider non empty sets X, Y, a function F from X x Y into R,
and an element y of Y. Then curry’(—F,y) = —curry’(F, y).
Let us consider a function f from NxN into R. Now we state the propositions:
(36) (i) f is convergent in the first coordinate to +oo iff fT is convergent
in the second coordinate to +o00, and
(ii) f is convergent in the second coordinate to +oc iff fT is convergent
in the first coordinate to 400, and
(iii) f is convergent in the first coordinate to —oo iff f* is convergent in
the second coordinate to —oo, and
(iv) f is convergent in the second coordinate to —oo iff f1 is convergent
in the first coordinate to —oo, and
(v) f is convergent in the first coordinate to a finite limit iff f* is co-
nvergent in the second coordinate to a finite limit, and
(vi) f is convergent in the second coordinate to a finite limit iff fT is
convergent in the first coordinate to a finite limit.
The theorem is a consequence of (33) and (32).
(37) (i) f is convergent in the first coordinate to +oo iff —f is convergent
in the first coordinate to —oo, and
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(ii) f is convergent in the first coordinate to —oo iff —f is convergent in
the first coordinate to 400, and

(iii) f is convergent in the first coordinate to a finite limit iff —f is co-
nvergent in the first coordinate to a finite limit, and

(iv) f is convergent in the second coordinate to +oo iff —f is convergent
in the second coordinate to —oo, and

(v) f is convergent in the second coordinate to —oo iff —f is convergent
in the second coordinate to +o00, and

(vi) f is convergent in the second coordinate to a finite limit iff —f is
convergent in the second coordinate to a finite limit.
The theorem is a consequence of (35), (17), (2), and (34).

Let f be a function from N x N into R. The functors: the lim in the first
coordinate of f and the lim in the second coordinate of f yielding sequences of
extended reals are defined by conditions

(Def. 12) for every element m of N, the lim in the first coordinate of f(m) =
lim curry’(f, m),
(Def. 13) for every element n of N, the lim in the second coordinate of f(n) =
lim curry(f,n),
respectively. Now we state the proposition:
(38) Let us consider a function f from N x N into R. Then

(i) the lim in the first coordinate of f = the lim in the second coordinate
of fT, and

(ii) the lim in the second coordinate of f = the lim in the first coordinate
of fT.
The theorem is a consequence of (33) and (32).

Let X, Y be non empty sets, F' be a without +o0o function from X x Y into
R, and = be an element of X. Let us observe that curry(F, z) is without -+oc.

Let y be an element of Y. One can verify that curry’(F,y) is without +oco.

Let F be a without —oo function from X x Y into R and x be an element
of X. Let us note that curry(F, z) is without —oo.

Let y be an element of Y. Observe that curry’(F,y) is without —oo.

Let f be a function from N x N into R. The partial sums in the second
coordinate of f yielding a function from N x N into R is defined by

(Def. 14) for every natural numbers n, m, it(n,0) = f(n,0) and it(n,m + 1) =
it(n,m) + f(n,m+1).
The partial sums in the first coordinate of f yielding a function from N x N

into R is defined by
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(Def. 15) for every natural numbers n, m, it(0,m) = f(0,m) and it(n + 1,m) =
it(n,m) + f(n+1,m).

Let f be a without —oco function from N x N into R. Let us note that
the partial sums in the second coordinate of f is without —oo.

Let f be a without +oco function from N x N into R. Observe that the partial
sums in the second coordinate of f is without +o0.

Let f be a non-negative function from N x N into R. Let us observe that
the partial sums in the second coordinate of f is non-negative as a function from
N x N into R.

Let f be a non-positive function from N x N into R. One can check that
the partial sums in the second coordinate of f is non-positive as a function from
N x N into R.

Let f be a without —oo function from N x N into R. Let us note that
the partial sums in the first coordinate of f is without —oo.

Let f be a without +oco function from N x N into R. Observe that the partial
sums in the first coordinate of f is without +oo.

Let f be a non-negative function from N x N into R. Let us observe that
the partial sums in the first coordinate of f is non-negative as a function from
N x N into R.

Let f be a non-positive function from N x N into R. One can check that
the partial sums in the first coordinate of f is non-positive as a function from
N x N into R.

Let f be a function from N x N into R. The functor (35 _, f())xen yielding
a function from N x N into R is defined by the term

(Def. 16) the partial sums in the second coordinate of the partial sums in the first
coordinate of f.

Now we state the propositions:

(39) Let us consider a function f from N x N into R, and natural numbers n,
m. Then

(i) (the partial sums in the first coordinate of f)(n,m) = (the partial
sums in the second coordinate of fT)(m,n), and

(ii) (the partial sums in the second coordinate of f)(n,m) = (the partial
sums in the first coordinate of f1)(m,n).

PROOF: Define P[natural number] = (the partial sums in the first coordina-
te of £)($1,m) = (the partial sums in the second coordinate of f1)(m, $;).
For every natural number & such that P[k] holds P[k+1]. For every natural
number k, P[k] from [Il, Sch. 2]. Define Q[natural number| = (the partial
sums in the second coordinate of f)(n,$;) = (the partial sums in the first
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coordinate of f1)($1,n). For every natural number k such that Q[k] holds
Q[k + 1]. For every natural number k, Q[k] from [I Sch. 2]. O
(40) Let us consider a function f from N x N into R. Then
(i) (the partial sums in the first coordinate of f)T = the partial sums
in the second coordinate of fT, and
)T

(ii) (the partial sums in the second coordinate of f)* = the partial sums

in the first coordinate of fT.
The theorem is a consequence of (39).

(41) Let us consider a function f from N x N into R, an extended real-valued
function g, and a natural number n. Suppose for every natural number k,
(the partial sums in the first coordinate of f)(n, k) = g(k). Then

(i) for every natural number k, (3>-50_ f(a))ken(n, k) =

(Xa=09(a))ren(k), and
(ii) (the lim in the second coordinate of (3.5 _, f(@))ken)(n) = g.
(42) Let us consider a function f from N x N into R. Then

(i) the partial sums in the second coordinate of —f =

—(the partial sums in the second coordinate of f), and

(ii) the partial sums in the first coordinate of —f =

—(the partial sums in the first coordinate of f).

PROOF: For every element z of Nx
N, (—(the partial sums in the second coordinate of f))(z) = (the partial
sums in the second coordinate of —f)(z) by [9} (87)]. For every element z
of N x N,
(—(the partial sums in the first coordinate of f))(z) = (the partial sums
in the first coordinate of —f)(z) by [9} (87)]. O

(43) Let us consider a function f from N x N into R, and elements m, n of
N. Then

(i) (the partial sums in the first coordinate of f)(m,n) =

(Xa=o(curry’(f, n))(a))ren(m), and
(ii) (the partial sums in the second coordinate of f)(m,n) =

(Xa=o(curry(f, m))(a))ren(n).

PROOF: Define P[natural number] = (the partial sums in the first co-
ordinate of f)($1,n) = (> h_o(curry’(f,n))(a))ken($1). For every natural
number k such that P[k] holds P[k + 1]. For every natural number £k,
P[k] from [I, Sch. 2]. Define Q[natural number| = (the partial sums in
the second coordinate of f)(m,$1) = (3 a_¢(curry(f, m))(«))xen(81). For
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every natural number k such that Q[k] holds Q[k + 1]. For every natural
number k, Q[k] from [1, Sch. 2]. O

(44) Let us consider without —oco functions fi, fo from N x N into R. Then

(i) the partial sums in the second coordinate of f; + fo = (the partial
sums in the second coordinate of fi)+(the partial sums in the second
coordinate of f3), and

(ii) the partial sums in the first coordinate of fi; + fo = (the partial
sums in the first coordinate of fi) + (the partial sums in the first
coordinate of fs).

The theorem is a consequence of (11).
(45) Let us consider without +oo functions fi, fo from N x N into R. Then

(i) the partial sums in the second coordinate of f; + fo = (the partial
sums in the second coordinate of f1)+ (the partial sums in the second
coordinate of fs), and

(ii) the partial sums in the first coordinate of f; + fo = (the partial
sums in the first coordinate of fi) + (the partial sums in the first
coordinate of f3).

The theorem is a consequence of (10), (9), (2), (42), (44), and (8).

(46) Let us consider a without —oo function f; from N x N into R, and
a without 400 function f» from N x N into R. Then

(i) the partial sums in the second coordinate of f; — fo = (the partial
sums in the second coordinate of f;)— (the partial sums in the second
coordinate of fs), and

(ii) the partial sums in the first coordinate of f; — fo = (the partial
sums in the first coordinate of fi) — (the partial sums in the first
coordinate of fs), and

(iii) the partial sums in the second coordinate of fo — fi = (the partial
sums in the second coordinate of f2)— (the partial sums in the second
coordinate of f1), and

(iv) the partial sums in the first coordinate of fo — fi = (the partial
sums in the first coordinate of fo) — (the partial sums in the first
coordinate of f1).

The theorem is a consequence of (10), (44), (42), and (45).

(47) Let us consider a without —oo function f from N x N into R, and natural
numbers n, m. Then

(1) (Xh—o f(a))ken(n+1,m) = (the partial sums in the second coordinate
of f)(n+1,m)+ (3 a=0 f(a))ren(n,m), and
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(ii) (the partial sums in the first coordinate of the partial sums in the
second coordinate of f)(n,m + 1) = (the partial sums in the first
coordinate of f)(n,m+ 1)+ (the partial sums in the first coordinate
of the partial sums in the second coordinate of f)(n,m).

PROOF: Set R = (3 6_g f())ken. Set C1 = the partial sums in the

first coordinate of the partial sums in the second coordinate of f. Set
Ry = the partial sums in the first coordinate of f. Set Co = the partial

sums in the second coordinate of f. Define P[natural number|] = Ry (n +
1,%1) = Ca(n 4+ 1,%1) + Ri(n, $1). For every natural number k such that
Plk] holds P[k + 1]. For every natural number k, P[k] from [I, Sch. 2].
Define Q[natural number| = C1($1, m+1) = Ra($1, m+1)+C1($1, m). For
every natural number k such that Q[k] holds Q[k + 1]. For every natural
number k, Q[k] from [1, Sch. 2]. O

(48) Let us consider a without +oo function f from N x N into R, and natural

numbers n, m. Then
(i) (Oh_o f(a))ken(n+1,m) = (the partial sums in the second coordinate
of f)(n + 17m) + ( g:O f(a))HEN(nv m)? and
(ii) (the partial sums in the first coordinate of the partial sums in the
second coordinate of f)(n,m + 1) = (the partial sums in the first
coordinate of f)(n,m+ 1)+ (the partial sums in the first coordinate
of the partial sums in the second coordinate of f)(n,m).
The theorem is a consequence of (2), (42), and (47).

(49) Let us consider a function f from N x N into R. Suppose f is without
—oo or without +oo. Then (3-5_ f(@))keny = the partial sums in the
first coordinate of the partial sums in the second coordinate of f.

(50) Let us consider without —oco functions fi, fo from N x N into R. Then

(XCa=o(f1 + f2)(@))wen = (Zazo f1(a))ren + (oo f2(a))ren. The the-
orem is a consequence of (44).

(51) Let us consider without +oco functions fi, fo from N x N into R. Then

(Ca=o(f1 + fo)(@))wen = (Za=o f1(a))ren + (Za=o f2(@))ren. The the-
orem is a consequence of (45).

(52) Let us consider a without —oo function f; from N x N into R, and
a without +oo function f5 from N x N into R. Then

(i) (Cazo(fi = f2)(@))ren = (Xa=o [1(@))ren — (Xa=o f2(@))ren, and
(i) (XCa=0(f2 = f)(@))ren = (Xa=0 f2(@))ren — (Xa=0 f1(@))ren-
The theorem is a consequence of (46).

(53) Let us consider a function f from N x N into R, and an element k of N.
Then
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(i) curry’(the partial sums in the first coordinate of f, k) =
(Xa=o(curry’(f, k))(e))ren, and
(ii) curry(the partial sums in the second coordinate of f, k) =
(XCa=o(curry(f, k))(e))sen-
The theorem is a consequence of (43).
(54) Let us consider a function f from N x N into R. Suppose f is without

—o00 or without +o00. Then

(i) curry((Xh—g f(a))ken,0) = curry(the partial sums in the second
coordinate of f,0), and

(ii) curry’ (X5 _o f(@))ken, 0) = curry’(the partial sums in the first coor-
dinate of f,0).

(55) Let us consider non empty sets C, D, without —oo functions Fy, F»
from C x D into R, and an element ¢ of C. Then curry(Fy + Fy,c¢) =
curry(Fi, ¢) + curry(Fs, ¢). The theorem is a consequence of (7).

(56) Let us consider non empty sets C', D, without —oo functions Fj, Fj
from C x D into R, and an element d of D. Then curry’(Fy + F»,d) =
curry’(Fy, d) + curry’(Fy, d). The theorem is a consequence of (7).

(57) Let us consider non empty sets C, D, without +oo functions Fy, Fj
from C' x D into R, and an element ¢ of C. Then curry(F; + Fy,c) =
curry(F1, ¢) 4+ curry(Fs, ¢). The theorem is a consequence of (7).

(58) Let us consider non empty sets C', D, without +oo functions Fj, Fj
from C x D into R, and an element d of D. Then curry’(Fy + F»,d) =
curry’(Fy, d) + curry’(Fy, d). The theorem is a consequence of (7).

(59) Let us consider non empty sets C, D, a without —oo function F; from
Cx D into R, a without 400 function I from C'x D into R, and an element
c of C'. Then

(i) curry(F) — Fy,c) = curry(F1, c) — curry(Fy, ¢), and
(ii) curry(Fy — F1,c¢) = curry(Fy, ¢) — curry(Fy, ¢).
The theorem is a consequence of (7).

(60) Let us consider non empty sets C, D, a without —oo function F; from
Cx D into R, a without 400 function I from C'x D into R, and an element
d of D. Then

(i) curry’(Fy — Fy,d) = curry’(Fy,d) — curry’(F», d), and
(i) curry’(Fy — F1,d) = curry’(Fy, d) — curry’(F, d).

The theorem is a consequence of (7).

267
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4. NON-NEGATIVE EXTENDED REAL-VALUED DOUBLE SEQUENCES

Now we state the propositions:

(61) Let us consider a non-negative sequence s of extended reals. Suppose
(>oF _ s(a))ken is not convergent to +oo. Let us consider a natural number
n. Then s(n) is a real number.

(62) Let us consider a non-negative sequence s of extended reals. Suppose s
is non-decreasing. Then s is convergent to +oo or convergent to a finite
limit.

Let f be a non-negative function from N x N into R and n be an element of N.
Let us observe that curry(f,n) is non-negative and curry’(f, n) is non-negative.
Now we state the propositions:

(63) Let us consider a non-negative function f from N x N into R, and an ele-
ment m of N. Then curry(the partial sums in the second coordinate of
f,m) is non-decreasing.

PROOF: Set P = curry(the partial sums in the second coordinate of f,m).
For every natural numbers n, j such that j < n holds P(j) < P(n) by [4,
(51)], [1L (13), (20)]. O

(64) Let us consider a non-negative function f from N x N into R, and an ele-
ment n of N. Then curry’(the partial sums in the first coordinate of f,n)
is non-decreasing. The theorem is a consequence of (63), (40), and (33).

Let f be a non-negative function from N x N into R and m be an element of
N. One can check that curry(the partial sums in the second coordinate of f,m)
is non-decreasing and curry’(the partial sums in the first coordinate of f,m) is
non-decreasing.
Let us consider a non-negative function f from N x N into R. Now we state
the propositions:
(65) (i) if f is convergent in the first coordinate, then the lim in the first
coordinate of f is non-negative, and

(ii) if f is convergent in the second coordinate, then the lim in the second
coordinate of f is non-negative.
(66) (i) the partial sums in the first coordinate of f is convergent in the
first coordinate, and
(ii) the partial sums in the second coordinate of f is convergent in the
second coordinate.
Let us consider a non-negative function f from N x N into R, an element m
of N, and a natural number n.
Let us assume that curry’(the partial sums in the first coordinate of f,m) is
not convergent to +o0o0. Now we state the propositions:
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(67) f(n,m) is a real number.
(68) f(m,n) is a real number.

Let us consider a non-negative function f from N x N into R and natural
numbers n, m. Now we state the propositions:

(69) Suppose for every natural number ¢ such that ¢ < n holds f(i,m) is a real
number. Then (the partial sums in the first coordinate of f)(n,m) < +oo.
PROOF: Define P[natural number| = if $; < n, then (the partial sums in
the first coordinate of f)($1,m) < +o00. For every natural number k such
that P[k] holds P[k + 1] by [4, (51)], [I, (13)]. For every natural number
k, Plk] from [I, Sch. 2]. O

(70) Suppose for every natural number ¢ such that ¢ < m holds f(n, ) is a real

number. Then (the partial sums in the second coordinate of f)(n,m) <
+00.
PROOF: Define P[natural number] = if $; < m, then (the partial sums
in the second coordinate of f)(n,$1) < +o0o. For every natural number
k such that P[k| holds P[k + 1] by [4, (51)], [I, (13)]. For every natural
number k, P[k] from [II, Sch. 2]. O

Now we state the proposition:

(71) Let us consider a without —oo function f from N x N into R. Suppose
(>ob_o f(@))ken is convergent in the first coordinate to —oo. Then there
exists an element m of N such that curry’(the partial sums in the first
coordinate of f,m) is convergent to —oo. The theorem is a consequence of
(54).

Let us consider a non-negative function f from N x N into R and a natural
number m. Now we state the propositions:

(72) for every element k of N such that k& < m holds curry(the partial sums
in the second coordinate of f, k) is not convergent to +oo if and only if for
every element k£ of N such that & < m holds lim curry(the partial sums
in the second coordinate of f, k) < +oo. The theorem is a consequence of
(62).

(73) for every element k of N such that k < m holds curry’(the partial sums
in the first coordinate of f,k) is not convergent to +oo if and only if for
every element k of N such that k& < m holds lim curry’(the partial sums
in the first coordinate of f,k) < +o00. The theorem is a consequence of
(62).

(74)  (3°&_(the lim in the second coordinate of the partial sums in the second
coordinate of f)(a))xen(m) = 400 if and only if there exists an element k
of N such that £ < m and curry(the partial sums in the second coordinate
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of f,k) is convergent to +o00. The theorem is a consequence of (72), (65),
and (4).

(75)  (>&_o(the lim in the first coordinate of the partial sums in the first
coordinate of f)(«))xen(m) = 400 if and only if there exists an element k
of N such that k < m and curry’(the partial sums in the first coordinate
of f,k) is convergent to +o0o0. The theorem is a consequence of (38), (40),
(74), and (32).

Now we state the proposition:

(76) Let us consider a non-negative function f from Nx N into R, and natural
numbers n, m. Then

(i) (the partial sums in the first coordinate of f)(n,m) > f(n,m), and
(ii) (the partial sums in the second coordinate of f)(n,m) > f(n,m).

PROOF: Define P[natural number| = if $; < n, then (the partial sums in
the first coordinate of f)($1,m) > f($1,m). For every natural number k
such that P[k] holds P[k+1] by [4, (51)]. For every natural number k, P[k]
from [I, Sch. 2]. Define Q[natural number| = if $; < m, then (the partial
sums in the second coordinate of f)(n,$1) > f(n,$1). For every natural
number k such that Q[k] holds Q[k + 1] by [, (51)]. For every natural
number k, Q[k| from [1l Sch. 2]. O

Let us consider a non-negative function f from N x N into R and an element

m of N. Now we state the propositions:
(77) Suppose there exists an element k of N such that & < m and curry(the par-

tial sums in the second coordinate of f, k) is convergent to +o0o. Then

(i) curry(the partial sums in the second coordinate of the partial sums
in the first coordinate of f,m) is convergent to 400, and

(ii) lim curry(the partial sums in the second coordinate of the partial
sums in the first coordinate of f,m) = +oo.

PRroOF: For every real number g such that 0 < g there exists a natural
number N such that for every natural number n such that N < n holds
g < (curry(the par- tial sums in the second coordinate of the partial sums
in the first coordinate of f,m))(n) by [26, (7)], (76). O

(78) Suppose there exists an element k of N such that & < m and curry’(the par-
tial sums in the first coordinate of f, k) is convergent to +o0o. Then

(i) curry’(the partial sums in the first coordinate of the partial sums in
the second coordinate of f,m) is convergent to +oo, and

(ii) limcurry’(the partial sums in the first coordinate of the partial sums
in the second coordinate of f,m) = +occ.
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The theorem is a consequence of (40), (32), and (77).

Now we state the propositions:

(79) Let us consider a without —oo function f from N x N into R. Then
(>of_o f(@))ren is convergent in the first coordinate to a finite limit if
and only if the partial sums in the first coordinate of f is convergent in
the first coordinate to a finite limit. The theorem is a consequence of (54),
(47), (7), and (23).

(80) Let us consider a non-negative function f from N x N into R. Suppo-
se (Do f(®))ken is convergent in the first coordinate to a finite limit.
Let us consider an element m of N. Then (3°;_,(the lim in the first
coordinate of the partial sums in the first coordinate of f)(«))xen(m) =
lim curry’(the partial sums in the first coordinate of the partial sums in
the second coordinate of f,m).

Proor: The partial sums in the first coordinate of f is convergent in
the first coordinate to a finite limit. Define P[natural number| = for eve-
ry element £ of N such that k£ < $; holds (3 5_q(the lim in the first

coordinate of the partial sums in the first coordinate of f)(«))xen(k) =
lim curry’(the partial sums in the first coordinate of the partial sums in

the second coordinate of f, k). For every natural number n such that P[n]
holds P[n + 1] by [I, (13)], [I4, (7)], (47), [4, (51)]. For every natural
number n, P[n] from [I, Sch. 2]. O

(81) Let us consider a without —oo function f from N x N into R. Then
(38 _o f())ren is convergent in the second coordinate to a finite limit if
and only if the partial sums in the second coordinate of f is convergent in
the second coordinate to a finite limit. The theorem is a consequence of
(36), (40), and (79).

(82) Let us consider a non-negative function f from N x N into R. Suppose
(>a—o f())ken is convergent in the second coordinate to a finite limit.
Let us consider an element m of N. Then (35 _,(the lim in the second
coordinate of the partial sums in the second coordinate of f)(«))xen(m) =
lim curry(the partial sums in the second coordinate of the partial sums in
the first coordinate of f,m). The theorem is a consequence of (36), (40),
(38), (80), and (32).

Let us consider a non-negative function f from N x N into R and a sequence
s of extended reals. Now we state the propositions:

(83) Suppose for every element m of N, s(m) = liminf curry’(f,m). Then
> s < liminf(the lim in the second coordinate of the partial sums in the
second coordinate of f).

PROOF: For every element m of N and for every elements N, n of N
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such that n > N holds (the inferior realsequence curry’(f,m))(N) <
f(n,m) by [26, (7), (8)]. Define F(element of N) = the inferior realse-
quence curry’(f, $1). Define G(element of N, element of N) = (the inferior
realsequence curry’(f, $2))($1). Consider g being a function from N x N
into R such that for every element n of N and for every element m of N,
g(n,m) = G(n,m) from [5, Sch. 4]. For every element m of N and for every
elements IV, n of N such that n > N holds (the partial sums in the second
coordinate of g)(N,m) < (the partial sums in the second coordinate of
f)(n,m). For every element m of N and for every elements N, n of N
such that n > N holds (the partial sums in the second coordinate of
9)(N,m) < (the inferior realsequence the lim in the second coordinate
of the partial sums in the second coordinate of f)(n) by [26] (37), (23)].
Define Q[natural number| = for every element m of N such that m = $;
holds (3°5_ s(@))ken(m) = limcurry’(the partial sums in the second
coordinate of g, m). For every element m of N, curry’(the partial sums in
the second coordinate of g, m) is convergent by [26] (7), (37)]. For every
natural number & such that Q[k] holds Q[k+1] by [26], (37)], [4, (51), (52)],
[14, (11)]. For every natural number k, Q[k]| from [I, Sch. 2]|. For every
natural number m, (3°5_; s(a))ken(m) < liminf(the lim in the second
coordinate of the partial sums in the second coordinate of f) by [26] (37),
(38)]. For every object m such that m € dom s holds 0 < s(m) by [4, (51),
(52)], [26] (23)]. O

(84) Suppose for every element m of N, s(m) = liminf curry(f,m). Then
> s < liminf(the lim in the first coordinate of the partial sums in the
first coordinate of f). The theorem is a consequence of (32), (83), (38),
and (40).

Now we state the proposition:

(85) Let us consider a function f from N x N into R, a sequence s of extended
reals, and natural numbers n, m. Then

(i) if for every natural numbers i, j, f(i,7) < s(i), then (the partial
sums in the first coordinate of f)(n,m) < (3-h_g s(a))ken(n), and

(ii) if for every natural numbers i, j, f(i,7) < s(j), then (the partial
sums in the second coordinate of f)(n,m) < (> &_; s(a))wen(m).

PROOF: Define P[natural number| = (the partial sums in the second
coordinate of f)(n,$1) < (3h_ys(a))ken($1). For every natural number
k such that P[k]| holds P[k + 1]. For every natural number k, P[k] from
[T, Sch. 2]. O

Let us consider a sequence s of extended reals and an extended real number
r. Now we state the propositions:
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(86) If for every natural number n, s(n) < r, then limsup s < 7.
PROOF: Define F(element of N) = r. Consider f being a function from N
into R such that for every element n of N, f(n) = F(n) from [7, Sch. 4].
For every natural number n, f(n) = r. For every natural number n, s(n) <
f(n). O

(87) If for every natural number n, r < s(n), then r < liminf s.
PROOF: Define F(element of N) = r. Consider f being a function from N
into R such that for every element n of N, f(n) = F(n) from [7, Sch. 4]. For
every natural number n, f(n) = r. For every natural number n, f(n) <
s(n). O

Now we state the proposition:

(88) Let us consider a non-negative function f from N x N into R. Then

(i) for every natural numbers iy, i3, 7 such that i; < iy holds (the partial
sums in the first coordinate of f)(i1,j) < (the partial sums in the
first coordinate of f)(i2,J), and

(ii) for every natural numbers 7, jq, jo such that j; < j2 holds (the partial
sums in the second coordinate of f)(,71) < (the partial sums in the
second coordinate of f)(i, j2).

Let us consider a function f from N x N into R and natural numbers 4, j, k.
Now we state the propositions:
(89) Suppose for every element m of N, curry’(f,m) is non-decreasing and
i < j. Then (the partial sums in the second coordinate of f)(i,k) <
(the partial sums in the second coordinate of f)(j, k).
PROOF: Define P[natural number] = (the partial sums in the second
coordinate of f)(i,$;) < (the partial sums in the second coordinate of
f)(J,$1). For every natural number n such that P[n] holds P[n + 1] by
[26, (7)]. For every natural number n, P[n] from [II, Sch. 2]. O
(90) Suppose for every element n of N, curry(f, n) is non-decreasing and i < j.
Then (the partial sums in the first coordinate of f)(k,i) < (the partial
sums in the first coordinate of f)(k,j). The theorem is a consequence of
(32), (89), and (39).
Let us consider a non-negative function f from N x N into R and a sequence
s of extended reals. Now we state the propositions:

(91) Suppose for every element m of N, curry’(f,m) is non-decreasing and

s(m) = lim curry’(f, m). Then

(i) the lim in the second coordinate of the partial sums in the second
coordinate of f is non-decreasing, and
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(ii) >° s = lim(the lim in the second coordinate of the partial sums in
the second coordinate of f).

PROOF: ) s < liminf(the lim in the second coordinate of the partial sums
in the second coordinate of f). For every natural numbers n, m, f(n,m) <
s(m) by [26], (37)], [6 (3)]. For every natural numbers n, m such that m <
n holds (the lim in the second coordinate of the partial sums in the second
coordinate of f)(m) < (the lim in the second coordinate of the partial
sums in the second coordinate of f)(n) by [26, (37)], (89), [26, (38)]. For
every natural number n, (the lim in the second coordinate of the partial
sums in the second coordinate of f)(n) < Y s by [26] (37)], [4, (39)], (87),
[26, (41)]. lim sup(the lim in the second coordinate of the partial sums in
the second coordinate of f) < > s. O

(92) Suppose for every element m of N, curry(f,m) is non-decreasing and

s(m) = lim curry(f, m). Then

(i) the lim in the first coordinate of the partial sums in the first coordi-
nate of f is non-decreasing, and

(ii) > s = lim(the lim in the first coordinate of the partial sums in the
first coordinate of f).

The theorem is a consequence of (32), (91), (33), and (40).

5. PRINGSHEIM SENSE CONVERGENCE FOR EXTENDED REAL-VALUED
DOUBLE SEQUENCES

Let us consider a function f from NxN into R. Now we state the propositions:
(93) If f is P-convergent to 400, then f is not P-convergent to —oo and f is
not P-convergent to a finite limit.
(94) If f is P-convergent to —oo, then f is not P-convergent to +oo and f is
not P-convergent to a finite limit.
Let f be a function from N x N into R. We say that f is P-convergent if and
only if
(Def. 17)  f is P-convergent to a finite limit or P-convergent to +oo or P-convergent
to —oo.
Assume f is P-convergent. The functor P-lim f yielding an extended real is
defined by
(Def. 18) there exists a real number p such that it = p and for every real number
e such that 0 < e there exists a natural number N such that for every
natural numbers n, m such that n > N and m > N holds |f(n,m)—it| < e
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and f is P-convergent to a finite limit or it = +o00 and f is P-convergent
to +o00 or it = —oo and f is P-convergent to —oo.
Now we state the propositions:
(95) Let us consider a function f from N x N into R, and a real number r.
Suppose for every natural numbers n, m, f(n,m) =r. Then
(i) f is P-convergent to a finite limit, and
(ii)) P-lim f =r.

(96) Let us consider a function f from N x N into R. Suppose for every
natural numbers ny, mq, ng, mg such that ny < ne and m; < me holds
f(n1,m1) < f(n2, mo). Then

(i) f is P-convergent, and
(ii) P-lim f = suprng f.

(97) Let us consider functions fi, fo from N x N into R. Suppose for every
natural numbers n, m, fi(n,m) < fa(n,m). Then suprng f; < suprng fs.

(98) Let us consider a function f from N x N into R, and natural numbers n,
m. Then f(n,m) <suprng f.

Let us consider a function f from N x N into R and an extended real number
K. Now we state the propositions:
(99) If for every natural numbers n, m, f(n,m) < K, then suprng f < K.
(100) If K # +oo and for every natural numbers n, m, f(n,m) < K, then
suprng f < 4o00.
Now we state the propositions:
(101) Let us consider a without —oco function f from N x N into R. Then

suprng f # —+oo if and only if there exists a real number K such that
0 < K and for every natural numbers n, m, f(n,m) < K.

(102) Let us consider a function f from N x N into R, and an extended real c.
Suppose for every natural numbers n, m, f(n,m) = c. Then

(i) f is P-convergent, and
(ii) P-lim f = ¢, and
(iii) P-lim f = suprng f.

(103)  Let us consider a function f from NxN into R, and without —oo functions
fi, fo from N x N into R. Suppose for every natural numbers ni, m1,
ng, mg such that n; < ng and m; < mgy holds fi(n1,my) < fi(n2, m2)
and for every natural numbers ny, mi, no, mg such that ny < ng and

m1 < mg holds fa(n1,m1) < fa(ng, me) and for every natural numbers n,
m, fl(na m) + f2(n7m) = f(?’L,??’L) Then
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(i) f is P-convergent, and
(ii) P-lim f = suprng f, and
(iii) P-lim f = P-lim f; + P-lim f5, and

(iv) suprng f = suprng fi + suprng fo.
The theorem is a consequence of (96) and (101).

Let us consider a without —oo function f; from N x N into R, a function fo
from N x N into R, and a real number c. Now we state the propositions:

(104) Suppose 0 < ¢ and for every natural numbers n, m, fo(n,m) = c-
fi(n,m). Then

(i) suprng fo = ¢-suprng fi, and
(ii) fo is without —oo.
The theorem is a consequence of (102) and (101).

(105) Suppose 0 < ¢ and for every natural numbers ni, my, na, mo such that
ni < ng and my < mg holds f1(n1,m1) < fi(n2, ma) and for every natural
numbers n, m, fa(n,m)=c- fi(n,m). Then

(i) for every natural numbers nj, mi, na, mg such that n; < ng and
m1 < mg holds fa(ni,m1) < fa(n2, m2), and

(ii) fo is without —oo and P-convergent, and
(iii) P-lim fo = suprng fo, and

(iv) P-lim f = ¢ P-lim f;.
The theorem is a consequence of (96) and (104).
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