Extended Real-Valued Double Sequence and Its Convergence ${ }^{1}$

Noboru Endou
Gifu National College of Technology
Gifu, Japan

Abstract

Summary. In this article we introduce the convergence of extended realvalued double sequences [16, [17. It is similar to our previous articles [15], [10. In addition, we also prove Fatou's lemma and the monotone convergence theorem for double sequences.

MSC: 40A05 40B05 03B35
Keywords: double sequence; Fatou's lemma for double sequence; monotone convergence theorem for double sequence

MML identifier: DBLSEQ_3, version: 8.1.04 5.32.1246
The notation and terminology used in this paper have been introduced in the following articles: [5], [21, [15], 10], [12], [6], (7], 22], 13], [11, [14], (1), 2], [8], [18], [24], [25], [26], [20], [23], 3], 4], and [9].

1. Preliminaries

Let X be a non empty set. One can verify that there exists a function from X into \mathbb{R} which is non-negative and non-positive and there exists a function from X into $\overline{\mathbb{R}}$ which is without $-\infty$, without $+\infty$, non-negative, and non-positive and every function from X into $\overline{\mathbb{R}}$ which is non-negative is also without $-\infty$ and every function from X into $\overline{\mathbb{R}}$ which is non-positive is also without $+\infty$ and there exists a without $+\infty$ function from X into $\overline{\mathbb{R}}$ which is without $-\infty$.

Let f be a function from X into $\overline{\mathbb{R}}$. Let us observe that the functor $-f$ yields a function from X into $\overline{\mathbb{R}}$. Let f be a without $-\infty$ function from X into $\overline{\mathbb{R}}$. Note that $-f$ is without $+\infty$.

[^0]Let f be a without $+\infty$ function from X into $\overline{\mathbb{R}}$. Let us observe that $-f$ is without $-\infty$.

Let f be a non-negative function from X into $\overline{\mathbb{R}}$. Note that $-f$ is nonpositive.

Let f be a non-positive function from X into $\overline{\mathbb{R}}$. Let us observe that $-f$ is non-negative.

Let A, B be non empty sets and f be a without $-\infty$ function from $A \times B$ into $\overline{\mathbb{R}}$. Let us observe that f^{T} is without $-\infty$.

Let f be a without $+\infty$ function from $A \times B$ into $\overline{\mathbb{R}}$. One can verify that f^{T} is without $+\infty$.

Let f be a non-negative function from $A \times B$ into $\overline{\mathbb{R}}$. One can check that f^{T} is non-negative.

Let f be a non-positive function from $A \times B$ into $\overline{\mathbb{R}}$. Note that f^{T} is nonpositive.

Now we state the propositions:
(1) Let us consider a sequence s of extended reals. Then $\left(\sum_{\alpha=0}^{\kappa}(-s)(\alpha)\right)_{\kappa \in \mathbb{N}}=$ $-\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$.
Proof: Define \mathcal{Q} [natural number] \equiv $\left(-\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}\right)\left(\$_{1}\right)=-\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)$. For every natural number $n, \mathcal{Q}[n]$ from [1, Sch. 2]. Define \mathcal{P} [natural number] $\equiv\left(\sum_{\alpha=0}^{\kappa}(-s)(\alpha)\right)_{\kappa \in \mathbb{N}}$ $\left(\$_{1}\right)=\left(-\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}\right)\left(\$_{1}\right)$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$ from [1, Sch. 2].
(2) Let us consider a non empty set X, and a partial function f from X to $\overline{\mathbb{R}}$. Then $--f=f$.
(3) Let us consider non empty sets X, Y, and a function f from $X \times Y$ into $\overline{\mathbb{R}}$. Then $(-f)^{\mathrm{T}}=-f^{\mathrm{T}}$.
Let s be a non-negative sequence of extended reals. One can verify that $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is non-negative.

Let s be a non-positive sequence of extended reals. Let us observe that $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is non-positive.

Now we state the propositions:
(4) Let us consider a non-negative sequence s of extended reals, and a natural number m. Then $s(m) \leqslant\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
Proof: Define \mathcal{P} [natural number] $\equiv s\left(\$_{1}\right) \leqslant\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [4, (51)]. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 2].
(5) Let us consider a non-positive sequence s of extended reals, and a natural number m. Then $s(m) \geqslant\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$. The theorem is a consequence of (4), (1), and (2).
(6) Let us consider a non empty set X. Then every without $-\infty$, without $+\infty$ function from X into $\overline{\mathbb{R}}$ is a function from X into \mathbb{R}.
Let X be a non empty set and f_{1}, f_{2} be without $-\infty$ functions from X into $\overline{\mathbb{R}}$. One can verify that the functor $f_{1}+f_{2}$ yields a without $-\infty$ function from X into $\overline{\mathbb{R}}$. Let f_{1}, f_{2} be without $+\infty$ functions from X into $\overline{\mathbb{R}}$. One can verify that the functor $f_{1}+f_{2}$ yields a without $+\infty$ function from X into $\overline{\mathbb{R}}$. Let f_{1} be a without $-\infty$ function from X into $\overline{\mathbb{R}}$ and f_{2} be a without $+\infty$ function from X into $\overline{\mathbb{R}}$. Let us observe that the functor $f_{1}-f_{2}$ yields a without $-\infty$ function from X into $\overline{\mathbb{R}}$. Let f_{1} be a without $+\infty$ function from X into $\overline{\mathbb{R}}$ and f_{2} be a without $-\infty$ function from X into $\overline{\mathbb{R}}$. Observe that the functor $f_{1}-f_{2}$ yields a without $+\infty$ function from X into $\overline{\mathbb{R}}$. Now we state the propositions:
(7) Let us consider a non empty set X, an element x of X, and functions f_{1}, f_{2} from X into $\overline{\mathbb{R}}$. Then
(i) if f_{1} is without $-\infty$ and f_{2} is without $-\infty$, then $\left(f_{1}+f_{2}\right)(x)=$ $f_{1}(x)+f_{2}(x)$, and
(ii) if f_{1} is without $+\infty$ and f_{2} is without $+\infty$, then $\left(f_{1}+f_{2}\right)(x)=$ $f_{1}(x)+f_{2}(x)$, and
(iii) if f_{1} is without $-\infty$ and f_{2} is without $+\infty$, then $\left(f_{1}-f_{2}\right)(x)=$ $f_{1}(x)-f_{2}(x)$, and
(iv) if f_{1} is without $+\infty$ and f_{2} is without $-\infty$, then $\left(f_{1}-f_{2}\right)(x)=$ $f_{1}(x)-f_{2}(x)$.
(8) Let us consider a non empty set X, and without $-\infty$ functions f_{1}, f_{2} from X into $\overline{\mathbb{R}}$. Then
(i) $f_{1}+f_{2}=f_{1}--f_{2}$, and
(ii) $-\left(f_{1}+f_{2}\right)=-f_{1}-f_{2}$.

The theorem is a consequence of (7).
(9) Let us consider a non empty set X, and without $+\infty$ functions f_{1}, f_{2} from X into $\overline{\mathbb{R}}$. Then
(i) $f_{1}+f_{2}=f_{1}--f_{2}$, and
(ii) $-\left(f_{1}+f_{2}\right)=-f_{1}-f_{2}$.

The theorem is a consequence of (7).
(10) Let us consider a non empty set X, a without $-\infty$ function f_{1} from X into $\overline{\mathbb{R}}$, and a without $+\infty$ function f_{2} from X into $\overline{\mathbb{R}}$. Then
(i) $f_{1}-f_{2}=f_{1}+-f_{2}$, and
(ii) $f_{2}-f_{1}=f_{2}+-f_{1}$, and
(iii) $-\left(f_{1}-f_{2}\right)=-f_{1}+f_{2}$, and
(iv) $-\left(f_{2}-f_{1}\right)=-f_{2}+f_{1}$.

The theorem is a consequence of (8), (2), and (9).
Let f be a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and n, m be natural numbers. One can check that the functor $f(n, m)$ yields an element of $\overline{\mathbb{R}}$. Now we state the propositions:
(11) Let us consider without $-\infty$ functions f_{1}, f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and natural numbers n, m. Then $\left(f_{1}+f_{2}\right)(n, m)=f_{1}(n, m)+f_{2}(n, m)$. The theorem is a consequence of (7).
(12) Let us consider without $+\infty$ functions f_{1}, f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and natural numbers n, m. Then $\left(f_{1}+f_{2}\right)(n, m)=f_{1}(n, m)+f_{2}(n, m)$. The theorem is a consequence of (7).
(13) Let us consider a without $-\infty$ function f_{1} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, a without $+\infty$ function f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and natural numbers n, m. Then
(i) $\left(f_{1}-f_{2}\right)(n, m)=f_{1}(n, m)-f_{2}(n, m)$, and
(ii) $\left(f_{2}-f_{1}\right)(n, m)=f_{2}(n, m)-f_{1}(n, m)$.

The theorem is a consequence of (7).
(14) Let us consider non empty sets X, Y, and without $-\infty$ functions f_{1}, f_{2} from $X \times Y$ into $\overline{\mathbb{R}}$. Then $\left(f_{1}+f_{2}\right)^{\mathrm{T}}=f_{1}^{\mathrm{T}}+f_{2}{ }^{\mathrm{T}}$. The theorem is a consequence of (7).
(15) Let us consider non empty sets X, Y, and without $+\infty$ functions f_{1}, f_{2} from $X \times Y$ into $\overline{\mathbb{R}}$. Then $\left(f_{1}+f_{2}\right)^{\mathrm{T}}=f_{1}^{\mathrm{T}}+f_{2}{ }^{\mathrm{T}}$. The theorem is a consequence of (7).
(16) Let us consider non empty sets X, Y, a without $-\infty$ function f_{1} from $X \times Y$ into $\overline{\mathbb{R}}$, and a without $+\infty$ function f_{2} from $X \times Y$ into $\overline{\mathbb{R}}$. Then
(i) $\left(f_{1}-f_{2}\right)^{\mathrm{T}}=f_{1}^{\mathrm{T}}-f_{2}^{\mathrm{T}}$, and
(ii) $\left(f_{2}-f_{1}\right)^{\mathrm{T}}=f_{2}^{\mathrm{T}}-f_{1}^{\mathrm{T}}$.

The theorem is a consequence of (7).
One can verify that every sequence of extended reals which is convergent to $+\infty$ is also convergent and every sequence of extended reals which is convergent to $-\infty$ is also convergent and every sequence of extended reals which is convergent to a finite limit is also convergent and there exists a sequence of extended reals which is convergent and there exists a without $-\infty$ sequence of extended reals which is convergent and there exists a without $+\infty$ sequence of extended reals which is convergent.

Now we state the proposition:
(17) Let us consider a convergent sequence s of extended reals. Then
(i) s is convergent to a finite limit iff $-s$ is convergent to a finite limit, and
(ii) s is convergent to $+\infty$ iff $-s$ is convergent to $-\infty$, and
(iii) s is convergent to $-\infty$ iff $-s$ is convergent to $+\infty$, and
(iv) $-s$ is convergent, and
(v) $\lim (-s)=-\lim s$.

The theorem is a consequence of (2).
Let us consider without $-\infty$ sequences s_{1}, s_{2} of extended reals. Now we state the propositions:
(18) Suppose s_{1} is convergent to $+\infty$ and s_{2} is convergent to $+\infty$. Then
(i) $s_{1}+s_{2}$ is convergent to $+\infty$ and convergent, and
(ii) $\lim \left(s_{1}+s_{2}\right)=+\infty$.

The theorem is a consequence of (7).
(19) Suppose s_{1} is convergent to $+\infty$ and s_{2} is convergent to a finite limit. Then
(i) $s_{1}+s_{2}$ is convergent to $+\infty$ and convergent, and
(ii) $\lim \left(s_{1}+s_{2}\right)=+\infty$.

The theorem is a consequence of (7).
Now we state the proposition:
(20) Let us consider without $+\infty$ sequences s_{1}, s_{2} of extended reals. Suppose s_{1} is convergent to $+\infty$ and s_{2} is convergent to a finite limit. Then
(i) $s_{1}+s_{2}$ is convergent to $+\infty$ and convergent, and
(ii) $\lim \left(s_{1}+s_{2}\right)=+\infty$.

The theorem is a consequence of (7).
Let us consider without $-\infty$ sequences s_{1}, s_{2} of extended reals. Now we state the propositions:
(21) Suppose s_{1} is convergent to $-\infty$ and s_{2} is convergent to $-\infty$. Then
(i) $s_{1}+s_{2}$ is convergent to $-\infty$ and convergent, and
(ii) $\lim \left(s_{1}+s_{2}\right)=-\infty$.

The theorem is a consequence of (7).
(22) Suppose s_{1} is convergent to $-\infty$ and s_{2} is convergent to a finite limit. Then
(i) $s_{1}+s_{2}$ is convergent to $-\infty$ and convergent, and
(ii) $\lim \left(s_{1}+s_{2}\right)=-\infty$.

The theorem is a consequence of (7).
(23) Suppose s_{1} is convergent to a finite limit and s_{2} is convergent to a finite limit. Then
(i) $s_{1}+s_{2}$ is convergent to a finite limit and convergent, and
(ii) $\lim \left(s_{1}+s_{2}\right)=\lim s_{1}+\lim s_{2}$.

The theorem is a consequence of (7).
Now we state the propositions:
(24) Let us consider without $+\infty$ sequences s_{1}, s_{2} of extended reals. Then
(i) if s_{1} is convergent to $+\infty$ and s_{2} is convergent to $+\infty$, then $s_{1}+s_{2}$ is convergent to $+\infty$ and convergent and $\lim \left(s_{1}+s_{2}\right)=+\infty$, and
(ii) if s_{1} is convergent to $+\infty$ and s_{2} is convergent to a finite limit, then $s_{1}+s_{2}$ is convergent to $+\infty$ and convergent and $\lim \left(s_{1}+s_{2}\right)=+\infty$, and
(iii) if s_{1} is convergent to $-\infty$ and s_{2} is convergent to $-\infty$, then $s_{1}+s_{2}$ is convergent to $-\infty$ and convergent and $\lim \left(s_{1}+s_{2}\right)=-\infty$, and
(iv) if s_{1} is convergent to $-\infty$ and s_{2} is convergent to a finite limit, then $s_{1}+s_{2}$ is convergent to $-\infty$ and convergent and $\lim \left(s_{1}+s_{2}\right)=-\infty$, and
(v) if s_{1} is convergent to a finite limit and s_{2} is convergent to a finite limit, then $s_{1}+s_{2}$ is convergent to a finite limit and convergent and $\lim \left(s_{1}+s_{2}\right)=\lim s_{1}+\lim s_{2}$.
The theorem is a consequence of (17), (21), (10), (9), (2), (22), (18), (19), and (23).
(25) Let us consider a without $-\infty$ sequence s_{1} of extended reals, and a without $+\infty$ sequence s_{2} of extended reals. Then
(i) if s_{1} is convergent to $+\infty$ and s_{2} is convergent to $-\infty$, then $s_{1}-s_{2}$ is convergent to $+\infty$ and convergent and $s_{2}-s_{1}$ is convergent to $-\infty$ and convergent and $\lim \left(s_{1}-s_{2}\right)=+\infty$ and $\lim \left(s_{2}-s_{1}\right)=-\infty$, and
(ii) if s_{1} is convergent to $+\infty$ and s_{2} is convergent to a finite limit, then $s_{1}-s_{2}$ is convergent to $+\infty$ and convergent and $s_{2}-s_{1}$ is convergent to $-\infty$ and convergent and $\lim \left(s_{1}-s_{2}\right)=+\infty$ and $\lim \left(s_{2}-s_{1}\right)=-\infty$, and
(iii) if s_{1} is convergent to $-\infty$ and s_{2} is convergent to a finite limit, then $s_{1}-s_{2}$ is convergent to $-\infty$ and convergent and $s_{2}-s_{1}$ is convergent to $+\infty$ and convergent and $\lim \left(s_{1}-s_{2}\right)=-\infty$ and $\lim \left(s_{2}-s_{1}\right)=+\infty$, and
(iv) if s_{1} is convergent to a finite limit and s_{2} is convergent to a finite limit, then $s_{1}-s_{2}$ is convergent to a finite limit and convergent and $s_{2}-s_{1}$ is convergent to a finite limit and convergent and $\lim \left(s_{1}-s_{2}\right)=$ $\lim s_{1}-\lim s_{2}$ and $\lim \left(s_{2}-s_{1}\right)=\lim s_{2}-\lim s_{1}$.

The theorem is a consequence of $(17),(24),(18),(10),(19),(22),(23)$, and (2).

2. Subsequences of Convergent Extended Real-Valued Sequences

Let us consider sequences s_{1}, s_{2} of extended reals. Now we state the propositions:
(26) Suppose s_{2} is a subsequence of s_{1} and s_{1} is convergent to a finite limit. Then
(i) s_{2} is convergent to a finite limit, and
(ii) $\lim s_{1}=\lim s_{2}$.

Proof: Consider g being a real number such that $\lim s_{1}=g$ and for every real number p such that $0<p$ there exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $\left|s_{1}(m)-\lim s_{1}\right|<p$ and s_{1} is convergent to a finite limit. Reconsider $L=\lim s_{1}$ as an extended real number. There exists a real number g such that for every real number p such that $0<p$ there exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $\mid\left(s_{2}(m)-g\right.$ qua extended real) $\mid<p$ by [19, (14)], [7, (15)]. For every real number p such that $0<p$ there exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $\left|s_{2}(m)-L\right|<p$ by [19, (14)], [7, (15)].
(27) Suppose s_{2} is a subsequence of s_{1} and s_{1} is convergent to $+\infty$. Then
(i) s_{2} is convergent to $+\infty$, and
(ii) $\lim s_{2}=+\infty$.
(28) Suppose s_{2} is a subsequence of s_{1} and s_{1} is convergent to $-\infty$. Then
(i) s_{2} is convergent to $-\infty$, and
(ii) $\lim s_{2}=-\infty$.

3. Convergency for Extended Real-Valued Double Sequences

Let us consider a function R from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Now we state the propositions:
(29) Suppose the lim in the first coordinate of R is convergent. Then the first coordinate major iterated \lim of $R=\lim$ (the lim in the first coordinate of R).
(30) Suppose the lim in the second coordinate of R is convergent. Then the second coordinate major iterated \lim of $R=\lim$ (the lim in the second coordinate of R).
Let E be a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. We say that E is P-convergent to a finite limit if and only if
(Def. 1) there exists a real number p such that for every real number e such that $0<e$ there exists a natural number N such that for every natural numbers n, m such that $n \geqslant N$ and $m \geqslant N$ holds $\mid E(n, m)-(p$ qua extended real) $\mid<e$.
We say that E is P-convergent to $+\infty$ if and only if
(Def. 2) for every real number g such that $0<g$ there exists a natural number N such that for every natural numbers n, m such that $n \geqslant N$ and $m \geqslant N$ holds $g \leqslant E(n, m)$.
We say that E is P-convergent to $-\infty$ if and only if
(Def. 3) for every real number g such that $g<0$ there exists a natural number N such that for every natural numbers n, m such that $n \geqslant N$ and $m \geqslant N$ holds $E(n, m) \leqslant g$.
Let f be a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. We say that f is convergent in the first coordinate to $+\infty$ if and only if
(Def. 4) for every element m of \mathbb{N}, curry ${ }^{\prime}(f, m)$ is convergent to $+\infty$.
We say that f is convergent in the first coordinate to $-\infty$ if and only if
(Def. 5) for every element m of \mathbb{N}, $\operatorname{curry}^{\prime}(f, m)$ is convergent to $-\infty$.
We say that f is convergent in the first coordinate to a finite limit if and only if (Def. 6) for every element m of \mathbb{N}, curry $^{\prime}(f, m)$ is convergent to a finite limit.

We say that f is convergent in the first coordinate if and only if
(Def. 7) for every element m of \mathbb{N}, curry $^{\prime}(f, m)$ is convergent.
We say that f is convergent in the second coordinate to $+\infty$ if and only if
(Def. 8) for every element m of \mathbb{N}, curry (f, m) is convergent to $+\infty$.
We say that f is convergent in the second coordinate to $-\infty$ if and only if (Def. 9) for every element m of \mathbb{N}, curry (f, m) is convergent to $-\infty$.

We say that f is convergent in the second coordinate to a finite limit if and only if
(Def. 10) for every element m of \mathbb{N}, curry (f, m) is convergent to a finite limit.
We say that f is convergent in the second coordinate if and only if
(Def. 11) for every element m of \mathbb{N}, curry (f, m) is convergent.
Now we state the propositions:
(31) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then
(i) if f is convergent in the first coordinate to $+\infty$ or convergent in the first coordinate to $-\infty$ or convergent in the first coordinate to a finite limit, then f is convergent in the first coordinate, and
(ii) if f is convergent in the second coordinate to $+\infty$ or convergent in the second coordinate to $-\infty$ or convergent in the second coordinate to a finite limit, then f is convergent in the second coordinate.
(32) Let us consider non empty sets X, Y, Z, a function F from $X \times Y$ into Z, and an element x of X. Then $\operatorname{curry}(F, x)=\operatorname{curry}^{\prime}\left(F^{\mathrm{T}}, x\right)$.
(33) Let us consider non empty sets X, Y, Z, a function F from $X \times Y$ into Z, and an element y of Y. Then $\operatorname{curry}^{\prime}(F, y)=\operatorname{curry}\left(F^{\mathrm{T}}, y\right)$.
(34) Let us consider non empty sets X, Y, a function F from $X \times Y$ into $\overline{\mathbb{R}}$, and an element x of X. Then $\operatorname{curry}(-F, x)=-\operatorname{curry}(F, x)$.
(35) Let us consider non empty sets X, Y, a function F from $X \times Y$ into $\overline{\mathbb{R}}$, and an element y of Y. Then $\operatorname{curry}^{\prime}(-F, y)=-\operatorname{curry}^{\prime}(F, y)$.
Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Now we state the propositions:
(36) (i) f is convergent in the first coordinate to $+\infty$ iff f^{T} is convergent in the second coordinate to $+\infty$, and
(ii) f is convergent in the second coordinate to $+\infty$ iff f^{T} is convergent in the first coordinate to $+\infty$, and
(iii) f is convergent in the first coordinate to $-\infty$ iff f^{T} is convergent in the second coordinate to $-\infty$, and
(iv) f is convergent in the second coordinate to $-\infty$ iff f^{T} is convergent in the first coordinate to $-\infty$, and
(v) f is convergent in the first coordinate to a finite limit iff f^{T} is convergent in the second coordinate to a finite limit, and
(vi) f is convergent in the second coordinate to a finite limit iff f^{T} is convergent in the first coordinate to a finite limit.
The theorem is a consequence of (33) and (32).
(i) f is convergent in the first coordinate to $+\infty$ iff $-f$ is convergent in the first coordinate to $-\infty$, and
(ii) f is convergent in the first coordinate to $-\infty$ iff $-f$ is convergent in the first coordinate to $+\infty$, and
(iii) f is convergent in the first coordinate to a finite limit iff $-f$ is convergent in the first coordinate to a finite limit, and
(iv) f is convergent in the second coordinate to $+\infty$ iff $-f$ is convergent in the second coordinate to $-\infty$, and
(v) f is convergent in the second coordinate to $-\infty$ iff $-f$ is convergent in the second coordinate to $+\infty$, and
(vi) f is convergent in the second coordinate to a finite limit iff $-f$ is convergent in the second coordinate to a finite limit.
The theorem is a consequence of (35), (17), (2), and (34).
Let f be a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. The functors: the lim in the first coordinate of f and the lim in the second coordinate of f yielding sequences of extended reals are defined by conditions
(Def. 12) for every element m of \mathbb{N}, the lim in the first coordinate of $f(m)=$ $\lim \operatorname{curry}^{\prime}(f, m)$,
(Def. 13) for every element n of \mathbb{N}, the lim in the second coordinate of $f(n)=$ $\lim \operatorname{curry}(f, n)$, respectively. Now we state the proposition:
(38) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then
(i) the lim in the first coordinate of $f=$ the lim in the second coordinate of f^{T}, and
(ii) the lim in the second coordinate of $f=$ the lim in the first coordinate of f^{T}.
The theorem is a consequence of (33) and (32).
Let X, Y be non empty sets, F be a without $+\infty$ function from $X \times Y$ into $\overline{\mathbb{R}}$, and x be an element of X. Let us observe that curry (F, x) is without $+\infty$.

Let y be an element of Y. One can verify that $\operatorname{curry}^{\prime}(F, y)$ is without $+\infty$.
Let F be a without $-\infty$ function from $X \times Y$ into $\overline{\mathbb{R}}$ and x be an element of X. Let us note that $\operatorname{curry}(F, x)$ is without $-\infty$.

Let y be an element of Y. Observe that curry $^{\prime}(F, y)$ is without $-\infty$.
Let f be a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. The partial sums in the second coordinate of f yielding a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ is defined by
(Def. 14) for every natural numbers $n, m, i t(n, 0)=f(n, 0)$ and $i t(n, m+1)=$ $i t(n, m)+f(n, m+1)$.
The partial sums in the first coordinate of f yielding a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ is defined by
(Def. 15) for every natural numbers $n, m, i t(0, m)=f(0, m)$ and $i t(n+1, m)=$ $i t(n, m)+f(n+1, m)$.
Let f be a without $-\infty$ function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Let us note that the partial sums in the second coordinate of f is without $-\infty$.

Let f be a without $+\infty$ function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Observe that the partial sums in the second coordinate of f is without $+\infty$.

Let f be a non-negative function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Let us observe that the partial sums in the second coordinate of f is non-negative as a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$.

Let f be a non-positive function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. One can check that the partial sums in the second coordinate of f is non-positive as a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$.

Let f be a without $-\infty$ function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Let us note that the partial sums in the first coordinate of f is without $-\infty$.

Let f be a without $+\infty$ function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Observe that the partial sums in the first coordinate of f is without $+\infty$.

Let f be a non-negative function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Let us observe that the partial sums in the first coordinate of f is non-negative as a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$.

Let f be a non-positive function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. One can check that the partial sums in the first coordinate of f is non-positive as a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$.

Let f be a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. The functor $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}$ yielding a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ is defined by the term
(Def. 16) the partial sums in the second coordinate of the partial sums in the first coordinate of f.
Now we state the propositions:
(39) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and natural numbers n, m. Then
(i) (the partial sums in the first coordinate of $f)(n, m)=$ (the partial sums in the second coordinate of $\left.f^{\mathrm{T}}\right)(m, n)$, and
(ii) (the partial sums in the second coordinate of $f)(n, m)=$ (the partial sums in the first coordinate of $\left.f^{\mathrm{T}}\right)(m, n)$.

Proof: Define \mathcal{P} [natural number] \equiv (the partial sums in the first coordinate of $f)\left(\$_{1}, m\right)=\left(\right.$ the partial sums in the second coordinate of $\left.f^{\mathrm{T}}\right)\left(m, \$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 2]. Define $\mathcal{Q}[$ natural number] \equiv (the partial sums in the second coordinate of $f)\left(n, \$_{1}\right)=($ the partial sums in the first
coordinate of $\left.f^{\mathrm{T}}\right)\left(\$_{1}, n\right)$. For every natural number k such that $\mathcal{Q}[k]$ holds $\mathcal{Q}[k+1]$. For every natural number $k, \mathcal{Q}[k]$ from [1, Sch. 2].
(40) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then
(i) (the partial sums in the first coordinate of $f)^{\mathrm{T}}=$ the partial sums in the second coordinate of f^{T}, and
(ii) (the partial sums in the second coordinate of $f)^{\mathrm{T}}=$ the partial sums in the first coordinate of f^{T}.
The theorem is a consequence of (39).
(41) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, an extended real-valued function g, and a natural number n. Suppose for every natural number k, (the partial sums in the first coordinate of $f)(n, k)=g(k)$. Then
(i) for every natural number $k,\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}(n, k)=$ $\left(\sum_{\alpha=0}^{\kappa} g(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$, and
(ii) (the lim in the second coordinate of $\left.\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(n)=\sum g$.
(42) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then
(i) the partial sums in the second coordinate of $-f=$ $-($ the partial sums in the second coordinate of f), and
(ii) the partial sums in the first coordinate of $-f=$ $-($ the partial sums in the first coordinate of f).
Proof: For every element z of $\mathbb{N} \times$
$\mathbb{N},(-($ the partial sums in the second coordinate of $f))(z)=($ the partial sums in the second coordinate of $-f)(z)$ by [9, (87)]. For every element z of $\mathbb{N} \times \mathbb{N}$,
$(-($ the partial sums in the first coordinate of $f))(z)=$ (the partial sums in the first coordinate of $-f)(z)$ by [9, (87)]. \square
(43) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and elements m, n of \mathbb{N}. Then
(i) (the partial sums in the first coordinate of $f)(m, n)=$ $\left(\sum_{\alpha=0}^{\kappa}\left(\operatorname{curry}^{\prime}(f, n)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$, and
(ii) (the partial sums in the second coordinate of $f)(m, n)=$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{curry}(f, m))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
Proof: Define \mathcal{P} [natural number] \equiv (the partial sums in the first coordinate of $f)\left(\$_{1}, n\right)=\left(\sum_{\alpha=0}^{\kappa}\left(\operatorname{curry}^{\prime}(f, n)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number k, $\mathcal{P}[k]$ from [1, Sch. 2]. Define $\mathcal{Q}[$ natural number] \equiv (the partial sums in the second coordinate of $f)\left(m, \$_{1}\right)=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{curry}(f, m))(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)$. For
every natural number k such that $\mathcal{Q}[k]$ holds $\mathcal{Q}[k+1]$. For every natural number $k, \mathcal{Q}[k]$ from [1, Sch. 2].
(44) Let us consider without $-\infty$ functions f_{1}, f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then
(i) the partial sums in the second coordinate of $f_{1}+f_{2}=$ (the partial sums in the second coordinate of $\left.f_{1}\right)+($ the partial sums in the second coordinate of f_{2}), and
(ii) the partial sums in the first coordinate of $f_{1}+f_{2}=$ (the partial sums in the first coordinate of $\left.f_{1}\right)+($ the partial sums in the first coordinate of f_{2}).
The theorem is a consequence of (11).
(45) Let us consider without $+\infty$ functions f_{1}, f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then
(i) the partial sums in the second coordinate of $f_{1}+f_{2}=$ (the partial sums in the second coordinate of f_{1}) + (the partial sums in the second coordinate of f_{2}), and
(ii) the partial sums in the first coordinate of $f_{1}+f_{2}=$ (the partial sums in the first coordinate of $\left.f_{1}\right)+($ the partial sums in the first coordinate of f_{2}).
The theorem is a consequence of (10), (9), (2), (42), (44), and (8).
(46) Let us consider a without $-\infty$ function f_{1} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and a without $+\infty$ function f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then
(i) the partial sums in the second coordinate of $f_{1}-f_{2}=$ (the partial sums in the second coordinate of f_{1}) -(the partial sums in the second coordinate of f_{2}), and
(ii) the partial sums in the first coordinate of $f_{1}-f_{2}=$ (the partial sums in the first coordinate of f_{1}) - (the partial sums in the first coordinate of f_{2}), and
(iii) the partial sums in the second coordinate of $f_{2}-f_{1}=$ (the partial sums in the second coordinate of f_{2}) - (the partial sums in the second coordinate of f_{1}), and
(iv) the partial sums in the first coordinate of $f_{2}-f_{1}=$ (the partial sums in the first coordinate of f_{2}) - (the partial sums in the first coordinate of f_{1}).
The theorem is a consequence of (10), (44), (42), and (45).
(47) Let us consider a without $-\infty$ function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and natural numbers n, m. Then
(i) $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}(n+1, m)=$ (the partial sums in the second coordinate of $f)(n+1, m)+\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}(n, m)$, and
(ii) (the partial sums in the first coordinate of the partial sums in the second coordinate of $f)(n, m+1)=$ (the partial sums in the first coordinate of $f)(n, m+1)+($ the partial sums in the first coordinate of the partial sums in the second coordinate of $f)(n, m)$.
Proof: Set $R_{1}=\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}$. Set $C_{1}=$ the partial sums in the first coordinate of the partial sums in the second coordinate of f. Set $R_{2}=$ the partial sums in the first coordinate of f. Set $C_{2}=$ the partial sums in the second coordinate of f. Define \mathcal{P} [natural number] $\equiv R_{1}(n+$ $\left.1, \$_{1}\right)=C_{2}\left(n+1, \$_{1}\right)+R_{1}\left(n, \$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 2]. Define \mathcal{Q} [natural number] $\equiv C_{1}\left(\$_{1}, m+1\right)=R_{2}\left(\$_{1}, m+1\right)+C_{1}(\$ 1, m)$. For every natural number k such that $\mathcal{Q}[k]$ holds $\mathcal{Q}[k+1]$. For every natural number $k, \mathcal{Q}[k]$ from [1, Sch. 2]. \square
(48) Let us consider a without $+\infty$ function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and natural numbers n, m. Then
(i) $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}(n+1, m)=$ (the partial sums in the second coordinate of $f)(n+1, m)+\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}(n, m)$, and
(ii) (the partial sums in the first coordinate of the partial sums in the second coordinate of $f)(n, m+1)=$ (the partial sums in the first coordinate of $f)(n, m+1)+($ the partial sums in the first coordinate of the partial sums in the second coordinate of $f)(n, m)$.
The theorem is a consequence of (2), (42), and (47).
(49) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ or without $+\infty$. Then $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}=$ the partial sums in the first coordinate of the partial sums in the second coordinate of f.
(50) Let us consider without $-\infty$ functions f_{1}, f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then $\left(\sum_{\alpha=0}^{\kappa}\left(f_{1}+f_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa} f_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}+\left(\sum_{\alpha=0}^{\kappa} f_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}$. The theorem is a consequence of (44).
(51) Let us consider without $+\infty$ functions f_{1}, f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then $\left(\sum_{\alpha=0}^{\kappa}\left(f_{1}+f_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa} f_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}+\left(\sum_{\alpha=0}^{\kappa} f_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}$. The theorem is a consequence of (45).
(52) Let us consider a without $-\infty$ function f_{1} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and a without $+\infty$ function f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then
(i) $\left(\sum_{\alpha=0}^{\kappa}\left(f_{1}-f_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa} f_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}-\left(\sum_{\alpha=0}^{\kappa} f_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}$, and
(ii) $\left(\sum_{\alpha=0}^{\kappa}\left(f_{2}-f_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\left(\sum_{\alpha=0}^{\kappa} f_{2}(\alpha)\right)_{\kappa \in \mathbb{N}}-\left(\sum_{\alpha=0}^{\kappa} f_{1}(\alpha)\right)_{\kappa \in \mathbb{N}}$.

The theorem is a consequence of (46).
(53) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and an element k of \mathbb{N}. Then
(i) curry $^{\prime}$ (the partial sums in the first coordinate of $\left.f, k\right)=$ $\left(\sum_{\alpha=0}^{\kappa}\left(\operatorname{curry}^{\prime}(f, k)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$, and
(ii) curry (the partial sums in the second coordinate of $f, k)=$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{curry}(f, k))(\alpha)\right)_{\kappa \in \mathbb{N}}$.
The theorem is a consequence of (43).
(54) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ or without $+\infty$. Then
(i) $\operatorname{curry}\left(\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}, 0\right)=$ curry (the partial sums in the second coordinate of $f, 0)$, and
(ii) $\operatorname{curry}^{\prime}\left(\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}, 0\right)=$ curry $^{\prime}$ (the partial sums in the first coordinate of $f, 0)$.
(55) Let us consider non empty sets C, D, without $-\infty$ functions F_{1}, F_{2} from $C \times D$ into $\overline{\mathbb{R}}$, and an element c of C. Then $\operatorname{curry}\left(F_{1}+F_{2}, c\right)=$ $\operatorname{curry}\left(F_{1}, c\right)+\operatorname{curry}\left(F_{2}, c\right)$. The theorem is a consequence of (7).
(56) Let us consider non empty sets C, D, without $-\infty$ functions F_{1}, F_{2} from $C \times D$ into $\overline{\mathbb{R}}$, and an element d of D. Then $\operatorname{curry}^{\prime}\left(F_{1}+F_{2}, d\right)=$ $\operatorname{curry}^{\prime}\left(F_{1}, d\right)+\operatorname{curry}^{\prime}\left(F_{2}, d\right)$. The theorem is a consequence of (7).
(57) Let us consider non empty sets C, D, without $+\infty$ functions F_{1}, F_{2} from $C \times D$ into $\overline{\mathbb{R}}$, and an element c of C. Then $\operatorname{curry}\left(F_{1}+F_{2}, c\right)=$ $\operatorname{curry}\left(F_{1}, c\right)+\operatorname{curry}\left(F_{2}, c\right)$. The theorem is a consequence of (7).
(58) Let us consider non empty sets C, D, without $+\infty$ functions F_{1}, F_{2} from $C \times D$ into $\overline{\mathbb{R}}$, and an element d of D. Then $\operatorname{curry}^{\prime}\left(F_{1}+F_{2}, d\right)=$ $\operatorname{curry}^{\prime}\left(F_{1}, d\right)+\operatorname{curry}^{\prime}\left(F_{2}, d\right)$. The theorem is a consequence of (7).
(59) Let us consider non empty sets C, D, a without $-\infty$ function F_{1} from $C \times D$ into $\overline{\mathbb{R}}$, a without $+\infty$ function F_{2} from $C \times D$ into $\overline{\mathbb{R}}$, and an element c of C. Then
(i) $\operatorname{curry}\left(F_{1}-F_{2}, c\right)=\operatorname{curry}\left(F_{1}, c\right)-\operatorname{curry}\left(F_{2}, c\right)$, and
(ii) $\operatorname{curry}\left(F_{2}-F_{1}, c\right)=\operatorname{curry}\left(F_{2}, c\right)-\operatorname{curry}\left(F_{1}, c\right)$.

The theorem is a consequence of (7).
(60) Let us consider non empty sets C, D, a without $-\infty$ function F_{1} from $C \times D$ into $\overline{\mathbb{R}}$, a without $+\infty$ function F_{2} from $C \times D$ into $\overline{\mathbb{R}}$, and an element d of D. Then
(i) $\operatorname{curry}^{\prime}\left(F_{1}-F_{2}, d\right)=\operatorname{curry}^{\prime}\left(F_{1}, d\right)-\operatorname{curry}^{\prime}\left(F_{2}, d\right)$, and
(ii) $\operatorname{curry}^{\prime}\left(F_{2}-F_{1}, d\right)=\operatorname{curry}^{\prime}\left(F_{2}, d\right)-\operatorname{curry}^{\prime}\left(F_{1}, d\right)$.

The theorem is a consequence of (7).

4. Non-Negative Extended Real-Valued Double Sequences

Now we state the propositions:
(61) Let us consider a non-negative sequence s of extended reals. Suppose $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is not convergent to $+\infty$. Let us consider a natural number n. Then $s(n)$ is a real number.
(62) Let us consider a non-negative sequence s of extended reals. Suppose s is non-decreasing. Then s is convergent to $+\infty$ or convergent to a finite limit.
Let f be a non-negative function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and n be an element of \mathbb{N}. Let us observe that curry (f, n) is non-negative and curry (f, n) is non-negative.

Now we state the propositions:
(63) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and an element m of \mathbb{N}. Then curry (the partial sums in the second coordinate of $f, m)$ is non-decreasing.
Proof: Set $P=$ curry (the partial sums in the second coordinate of f, m). For every natural numbers n, j such that $j \leqslant n$ holds $P(j) \leqslant P(n)$ by [4, (51)], [1, (13), (20)].
(64) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and an element n of \mathbb{N}. Then curry' (the partial sums in the first coordinate of f, n) is non-decreasing. The theorem is a consequence of (63), (40), and (33).
Let f be a non-negative function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and m be an element of \mathbb{N}. One can check that curry (the partial sums in the second coordinate of f, m) is non-decreasing and curry ${ }^{\prime}$ (the partial sums in the first coordinate of f, m) is non-decreasing.

Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Now we state the propositions:
(i) if f is convergent in the first coordinate, then the lim in the first coordinate of f is non-negative, and
(ii) if f is convergent in the second coordinate, then the lim in the second coordinate of f is non-negative.
(i) the partial sums in the first coordinate of f is convergent in the first coordinate, and
(ii) the partial sums in the second coordinate of f is convergent in the second coordinate.
Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, an element m of \mathbb{N}, and a natural number n.

Let us assume that curry' (the partial sums in the first coordinate of f, m) is not convergent to $+\infty$. Now we state the propositions:
$f(n, m)$ is a real number.
$f(m, n)$ is a real number.
Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and natural numbers n, m. Now we state the propositions:
(69) Suppose for every natural number i such that $i \leqslant n$ holds $f(i, m)$ is a real number. Then (the partial sums in the first coordinate of $f)(n, m)<+\infty$. Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant n$, then (the partial sums in the first coordinate of $f)\left(\$_{1}, m\right)<+\infty$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [4, (51)], [1, (13)]. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 2].
(70) Suppose for every natural number i such that $i \leqslant m$ holds $f(n, i)$ is a real number. Then (the partial sums in the second coordinate of $f)(n, m)<$ $+\infty$.
Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant m$, then (the partial sums in the second coordinate of $f)\left(n, \$_{1}\right)<+\infty$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1$] by [4, (51)], [1, (13)]. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 2].
Now we state the proposition:
(71) Let us consider a without $-\infty$ function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Suppose $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent in the first coordinate to $-\infty$. Then there exists an element m of \mathbb{N} such that curry' (the partial sums in the first coordinate of $f, m)$ is convergent to $-\infty$. The theorem is a consequence of (54).

Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and a natural number m. Now we state the propositions:
(72) for every element k of \mathbb{N} such that $k \leqslant m$ holds curry (the partial sums in the second coordinate of f, k) is not convergent to $+\infty$ if and only if for every element k of \mathbb{N} such that $k \leqslant m$ holds lim curry (the partial sums in the second coordinate of $f, k)<+\infty$. The theorem is a consequence of (62).
(73) for every element k of \mathbb{N} such that $k \leqslant m$ holds curry' (the partial sums in the first coordinate of f, k) is not convergent to $+\infty$ if and only if for every element k of \mathbb{N} such that $k \leqslant m$ holds lim curry' (the partial sums in the first coordinate of $f, k)<+\infty$. The theorem is a consequence of (62).
(74) $\quad\left(\sum_{\alpha=0}^{\kappa}\right.$ (the lim in the second coordinate of the partial sums in the second coordinate of $f)(\alpha))_{\kappa \in \mathbb{N}}(m)=+\infty$ if and only if there exists an element k of \mathbb{N} such that $k \leqslant m$ and curry (the partial sums in the second coordinate
of $f, k)$ is convergent to $+\infty$. The theorem is a consequence of (72), (65), and (4).
(75) $\quad\left(\sum_{\alpha=0}^{\kappa}(\right.$ the \lim in the first coordinate of the partial sums in the first coordinate of $f(\alpha))_{\kappa \in \mathbb{N}}(m)=+\infty$ if and only if there exists an element k of \mathbb{N} such that $k \leqslant m$ and curry' (the partial sums in the first coordinate of $f, k)$ is convergent to $+\infty$. The theorem is a consequence of (38), (40), (74), and (32).

Now we state the proposition:
(76) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and natural numbers n, m. Then
(i) (the partial sums in the first coordinate of $f)(n, m) \geqslant f(n, m)$, and
(ii) (the partial sums in the second coordinate of $f)(n, m) \geqslant f(n, m)$.

Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant n$, then (the partial sums in the first coordinate of $f)\left(\$_{1}, m\right) \geqslant f\left(\$_{1}, m\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [4, (51)]. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 2]. Define \mathcal{Q} [natural number] \equiv if $\$_{1} \leqslant m$, then (the partial sums in the second coordinate of $f)\left(n, \$_{1}\right) \geqslant f\left(n, \$_{1}\right)$. For every natural number k such that $\mathcal{Q}[k]$ holds $\mathcal{Q}[k+1]$ by [4, (51)]. For every natural number $k, \mathcal{Q}[k]$ from [1, Sch. 2]. \square
Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and an element m of \mathbb{N}. Now we state the propositions:
(77) Suppose there exists an element k of \mathbb{N} such that $k \leqslant m$ and curry (the partial sums in the second coordinate of $f, k)$ is convergent to $+\infty$. Then
(i) curry (the partial sums in the second coordinate of the partial sums in the first coordinate of $f, m)$ is convergent to $+\infty$, and
(ii) lim curry(the partial sums in the second coordinate of the partial sums in the first coordinate of $f, m)=+\infty$.
Proof: For every real number g such that $0<g$ there exists a natural number N such that for every natural number n such that $N \leqslant n$ holds $g \leqslant$ (curry (the par- tial sums in the second coordinate of the partial sums in the first coordinate of $f, m))(n)$ by [26, (7)], (76).
(78) Suppose there exists an element k of \mathbb{N} such that $k \leqslant m$ and curry $^{\prime}$ (the partial sums in the first coordinate of $f, k)$ is convergent to $+\infty$. Then
(i) curry $^{\prime}$ (the partial sums in the first coordinate of the partial sums in the second coordinate of $f, m)$ is convergent to $+\infty$, and
(ii) lim curry' (the partial sums in the first coordinate of the partial sums in the second coordinate of $f, m)=+\infty$.

The theorem is a consequence of (40), (32), and (77).
Now we state the propositions:
(79) Let us consider a without $-\infty$ function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent in the first coordinate to a finite limit if and only if the partial sums in the first coordinate of f is convergent in the first coordinate to a finite limit. The theorem is a consequence of (54), (47), (7), and (23).
(80) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Suppose $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent in the first coordinate to a finite limit. Let us consider an element m of \mathbb{N}. Then $\left(\sum_{\alpha=0}^{\kappa}(\right.$ the \lim in the first coordinate of the partial sums in the first coordinate of $f)(\alpha))_{\kappa \in \mathbb{N}}(m)=$ lim curry' (the partial sums in the first coordinate of the partial sums in the second coordinate of f, m).
Proof: The partial sums in the first coordinate of f is convergent in the first coordinate to a finite limit. Define \mathcal{P} [natural number] \equiv for every element k of \mathbb{N} such that $k \leqslant \$_{1}$ holds ($\sum_{\alpha=0}^{\kappa}$ (the lim in the first coordinate of the partial sums in the first coordinate of $f)(\alpha))_{\kappa \in \mathbb{N}}(k)=$ lim curry' (the partial sums in the first coordinate of the partial sums in the second coordinate of $f, k)$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1$] by [1, (13)], [14, (7)], (47), [4, (51)]. For every natural number $n, \mathcal{P}[n]$ from [1, Sch. 2].
(81) Let us consider a without $-\infty$ function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent in the second coordinate to a finite limit if and only if the partial sums in the second coordinate of f is convergent in the second coordinate to a finite limit. The theorem is a consequence of (36), (40), and (79).
(82) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Suppose $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent in the second coordinate to a finite limit. Let us consider an element m of \mathbb{N}. Then $\left(\sum_{\alpha=0}^{\kappa}\right.$ (the lim in the second coordinate of the partial sums in the second coordinate of $f)(\alpha))_{\kappa \in \mathbb{N}}(m)=$ lim curry (the partial sums in the second coordinate of the partial sums in the first coordinate of $f, m)$. The theorem is a consequence of $(36),(40)$, (38), (80), and (32).

Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and a sequence s of extended reals. Now we state the propositions:
(83) Suppose for every element m of $\mathbb{N}, s(m)=\liminf \operatorname{curry}^{\prime}(f, m)$. Then $\sum s \leqslant \lim \inf ($ the \lim in the second coordinate of the partial sums in the second coordinate of f).
Proof: For every element m of \mathbb{N} and for every elements N, n of \mathbb{N}
such that $n \geqslant N$ holds (the inferior realsequence $\left.\operatorname{curry}^{\prime}(f, m)\right)(N) \leqslant$ $f(n, m)$ by [26, (7), (8)]. Define \mathcal{F} (element of $\mathbb{N})=$ the inferior realsequence curry ${ }^{\prime}\left(f, \$_{1}\right)$. Define $\mathcal{G}($ element of \mathbb{N}, element of $\mathbb{N})=($ the inferior realsequence curry $\left.{ }^{\prime}\left(f, \$_{2}\right)\right)\left(\$_{1}\right)$. Consider g being a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ such that for every element n of \mathbb{N} and for every element m of \mathbb{N}, $g(n, m)=\mathcal{G}(n, m)$ from [5], Sch. 4]. For every element m of \mathbb{N} and for every elements N, n of \mathbb{N} such that $n \geqslant N$ holds (the partial sums in the second coordinate of $g)(N, m) \leqslant$ (the partial sums in the second coordinate of $f)(n, m)$. For every element m of \mathbb{N} and for every elements N, n of \mathbb{N} such that $n \geqslant N$ holds (the partial sums in the second coordinate of $g)(N, m) \leqslant$ (the inferior realsequence the lim in the second coordinate of the partial sums in the second coordinate of $f)(n)$ by [26, (37), (23)]. Define \mathcal{Q} [natural number] \equiv for every element m of \mathbb{N} such that $m=\$_{1}$ holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(m)=$ lim curry ${ }^{\prime}$ (the partial sums in the second coordinate of g, m). For every element m of \mathbb{N}, curry' (the partial sums in the second coordinate of g, m) is convergent by [26, (7), (37)]. For every natural number k such that $\mathcal{Q}[k]$ holds $\mathcal{Q}[k+1]$ by [26, (37)], [4, (51), (52)], [14, (11)]. For every natural number $k, \mathcal{Q}[k]$ from [1, Sch. 2]. For every natural number $m,\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(m) \leqslant \lim \inf ($ the \lim in the second coordinate of the partial sums in the second coordinate of f) by [26, (37), (38)]. For every object m such that $m \in \operatorname{dom} s$ holds $0 \leqslant s(m)$ by [4, (51), (52)], [26, (23)].
(84) Suppose for every element m of $\mathbb{N}, s(m)=\liminf \operatorname{curry}(f, m)$. Then $\sum s \leqslant \liminf ($ the \lim in the first coordinate of the partial sums in the first coordinate of f). The theorem is a consequence of $(32),(83),(38)$, and (40).
Now we state the proposition:
(85) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, a sequence s of extended reals, and natural numbers n, m. Then
(i) if for every natural numbers $i, j, f(i, j) \leqslant s(i)$, then (the partial sums in the first coordinate of $f)(n, m) \leqslant\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$, and
(ii) if for every natural numbers $i, j, f(i, j) \leqslant s(j)$, then (the partial sums in the second coordinate of $f)(n, m) \leqslant\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
Proof: Define \mathcal{P} [natural number] \equiv (the partial sums in the second coordinate of $f)\left(n, \$_{1}\right) \leqslant\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$ from [1, Sch. 2].
Let us consider a sequence s of extended reals and an extended real number r. Now we state the propositions:
(86) If for every natural number $n, s(n) \leqslant r$, then $\limsup s \leqslant r$.

Proof: Define $\mathcal{F}($ element of $\mathbb{N})=r$. Consider f being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that for every element n of $\mathbb{N}, f(n)=\mathcal{F}(n)$ from [7, Sch. 4]. For every natural number $n, f(n)=r$. For every natural number $n, s(n) \leqslant$ $f(n)$.
(87) If for every natural number $n, r \leqslant s(n)$, then $r \leqslant \liminf s$.

Proof: Define $\mathcal{F}($ element of $\mathbb{N})=r$. Consider f being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that for every element n of $\mathbb{N}, f(n)=\mathcal{F}(n)$ from [7, Sch. 4]. For every natural number $n, f(n)=r$. For every natural number $n, f(n) \leqslant$ $s(n)$.
Now we state the proposition:
(88) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then
(i) for every natural numbers i_{1}, i_{2}, j such that $i_{1} \leqslant i_{2}$ holds (the partial sums in the first coordinate of $f)\left(i_{1}, j\right) \leqslant$ (the partial sums in the first coordinate of $f)\left(i_{2}, j\right)$, and
(ii) for every natural numbers i, j_{1}, j_{2} such that $j_{1} \leqslant j_{2}$ holds (the partial sums in the second coordinate of $f)\left(i, j_{1}\right) \leqslant($ the partial sums in the second coordinate of $f)\left(i, j_{2}\right)$.

Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and natural numbers i, j, k. Now we state the propositions:
(89) Suppose for every element m of \mathbb{N}, curry $^{\prime}(f, m)$ is non-decreasing and $i \leqslant j$. Then (the partial sums in the second coordinate of $f)(i, k) \leqslant$ (the partial sums in the second coordinate of $f)(j, k)$.
Proof: Define \mathcal{P} [natural number] \equiv (the partial sums in the second coordinate of $f)\left(i, \$_{1}\right) \leqslant$ (the partial sums in the second coordinate of $f)\left(j, \$_{1}\right)$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [26, (7)]. For every natural number $n, \mathcal{P}[n]$ from [1, Sch. 2].
(90) Suppose for every element n of \mathbb{N}, $\operatorname{curry}(f, n)$ is non-decreasing and $i \leqslant j$. Then (the partial sums in the first coordinate of f) $(k, i) \leqslant$ (the partial sums in the first coordinate of $f)(k, j)$. The theorem is a consequence of (32), (89), and (39).

Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and a sequence s of extended reals. Now we state the propositions:
(91) Suppose for every element m of \mathbb{N}, $\operatorname{curry}^{\prime}(f, m)$ is non-decreasing and $s(m)=\lim \operatorname{curry}^{\prime}(f, m)$. Then
(i) the lim in the second coordinate of the partial sums in the second coordinate of f is non-decreasing, and
(ii) $\sum s=\lim$ (the lim in the second coordinate of the partial sums in the second coordinate of f).

Proof: $\sum s \leqslant \lim \inf ($ the \lim in the second coordinate of the partial sums in the second coordinate of f). For every natural numbers $n, m, f(n, m) \leqslant$ $s(m)$ by [26, (37)], [6, (3)]. For every natural numbers n, m such that $m \leqslant$ n holds (the lim in the second coordinate of the partial sums in the second coordinate of $f)(m) \leqslant$ (the lim in the second coordinate of the partial sums in the second coordinate of $f)(n)$ by [26, (37)], (89), [26, (38)]. For every natural number n, (the lim in the second coordinate of the partial sums in the second coordinate of $f)(n) \leqslant \sum s$ by [26, (37)], [4, (39)], (87), [26, (41)]. limsup(the lim in the second coordinate of the partial sums in the second coordinate of $f) \leqslant \sum s$.
(92) Suppose for every element m of $\mathbb{N}, \operatorname{curry}(f, m)$ is non-decreasing and $s(m)=\lim \operatorname{curry}(f, m)$. Then
(i) the lim in the first coordinate of the partial sums in the first coordinate of f is non-decreasing, and
(ii) $\sum s=\lim$ (the lim in the first coordinate of the partial sums in the first coordinate of f).

The theorem is a consequence of (32), (91), (33), and (40).

5. Pringsheim Sense Convergence for Extended Real-Valued Double Sequences

Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Now we state the propositions:
(93) If f is P -convergent to $+\infty$, then f is not P -convergent to $-\infty$ and f is not P -convergent to a finite limit.
(94) If f is P -convergent to $-\infty$, then f is not P -convergent to $+\infty$ and f is not P-convergent to a finite limit.
Let f be a function from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. We say that f is P-convergent if and only if
(Def. 17) f is P -convergent to a finite limit or P -convergent to $+\infty$ or P -convergent to $-\infty$.
Assume f is P -convergent. The functor $\mathrm{P}-\lim f$ yielding an extended real is defined by
(Def. 18) there exists a real number p such that $i t=p$ and for every real number e such that $0<e$ there exists a natural number N such that for every natural numbers n, m such that $n \geqslant N$ and $m \geqslant N$ holds $|f(n, m)-i t|<e$
and f is P -convergent to a finite limit or $i t=+\infty$ and f is P -convergent to $+\infty$ or $i t=-\infty$ and f is P -convergent to $-\infty$.
Now we state the propositions:
(95) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and a real number r. Suppose for every natural numbers $n, m, f(n, m)=r$. Then
(i) f is P-convergent to a finite limit, and
(ii) $\mathrm{P}-\lim f=r$.
(96) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Suppose for every natural numbers $n_{1}, m_{1}, n_{2}, m_{2}$ such that $n_{1} \leqslant n_{2}$ and $m_{1} \leqslant m_{2}$ holds $f\left(n_{1}, m_{1}\right) \leqslant f\left(n_{2}, m_{2}\right)$. Then
(i) f is P-convergent, and
(ii) $\mathrm{P}-\lim f=\sup \operatorname{rng} f$.
(97) Let us consider functions f_{1}, f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Suppose for every natural numbers $n, m, f_{1}(n, m) \leqslant f_{2}(n, m)$. Then sup rng $f_{1} \leqslant \sup r n g f_{2}$.
(98) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and natural numbers n, m. Then $f(n, m) \leqslant \sup \operatorname{rng} f$.
Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and an extended real number K. Now we state the propositions:
(99) If for every natural numbers $n, m, f(n, m) \leqslant K$, then sup rng $f \leqslant K$.
(100) If $K \neq+\infty$ and for every natural numbers $n, m, f(n, m) \leqslant K$, then sup $r n g f<+\infty$.
Now we state the propositions:
(101) Let us consider a without $-\infty$ function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then sup rng $f \neq+\infty$ if and only if there exists a real number K such that $0<K$ and for every natural numbers $n, m, f(n, m) \leqslant K$.
(102) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and an extended real c. Suppose for every natural numbers $n, m, f(n, m)=c$. Then
(i) f is P -convergent, and
(ii) $\mathrm{P}-\lim f=c$, and
(iii) $\mathrm{P}-\lim f=\sup \operatorname{rng} f$.
(103) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and without $-\infty$ functions f_{1}, f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Suppose for every natural numbers n_{1}, m_{1}, n_{2}, m_{2} such that $n_{1} \leqslant n_{2}$ and $m_{1} \leqslant m_{2}$ holds $f_{1}\left(n_{1}, m_{1}\right) \leqslant f_{1}\left(n_{2}, m_{2}\right)$ and for every natural numbers $n_{1}, m_{1}, n_{2}, m_{2}$ such that $n_{1} \leqslant n_{2}$ and $m_{1} \leqslant m_{2}$ holds $f_{2}\left(n_{1}, m_{1}\right) \leqslant f_{2}\left(n_{2}, m_{2}\right)$ and for every natural numbers n, $m, f_{1}(n, m)+f_{2}(n, m)=f(n, m)$. Then
(i) f is P-convergent, and
(ii) $\mathrm{P}-\lim f=\sup \operatorname{rng} f$, and
(iii) $\mathrm{P}-\lim f=\mathrm{P}-\lim f_{1}+\mathrm{P}-\lim f_{2}$, and
(iv) $\sup \operatorname{rng} f=\sup \operatorname{rng} f_{1}+\sup \operatorname{rng} f_{2}$.

The theorem is a consequence of (96) and (101).
Let us consider a without $-\infty$ function f_{1} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, a function f_{2} from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$, and a real number c. Now we state the propositions:
(104) Suppose $0 \leqslant c$ and for every natural numbers $n, m, f_{2}(n, m)=c$. $f_{1}(n, m)$. Then
(i) sup rng $f_{2}=c \cdot \sup r n g f_{1}$, and
(ii) f_{2} is without $-\infty$.

The theorem is a consequence of (102) and (101).
(105) Suppose $0 \leqslant c$ and for every natural numbers $n_{1}, m_{1}, n_{2}, m_{2}$ such that $n_{1} \leqslant n_{2}$ and $m_{1} \leqslant m_{2}$ holds $f_{1}\left(n_{1}, m_{1}\right) \leqslant f_{1}\left(n_{2}, m_{2}\right)$ and for every natural numbers $n, m, f_{2}(n, m)=c \cdot f_{1}(n, m)$. Then
(i) for every natural numbers $n_{1}, m_{1}, n_{2}, m_{2}$ such that $n_{1} \leqslant n_{2}$ and $m_{1} \leqslant m_{2}$ holds $f_{2}\left(n_{1}, m_{1}\right) \leqslant f_{2}\left(n_{2}, m_{2}\right)$, and
(ii) f_{2} is without $-\infty$ and P -convergent, and
(iii) $\mathrm{P}-\lim f_{2}=\sup \operatorname{rng} f_{2}$, and
(iv) P-lim $f_{2}=c \cdot$ P-lim f_{1}.

The theorem is a consequence of (96) and (104).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers, Formalized Mathematics, 1(1):91-96, 1990.
[3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory Formalized Mathematics, 2(1):163-171, 1991.
[4] Józef Białas. Series of positive real numbers. Measure theory Formalized Mathematics, 2(1):173-183, 1991.
[5] Czesław Byliński. Binary operations, Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions, Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[10] Noboru Endou. Double series and sums. Formalized Mathematics, 22(1):57-68, 2014. doi $10.2478 /$ forma-2014-0006.
[11] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. doi 10.2478/v10037-006-0008-x.
[12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers Formalized Mathematics, 9(3):491-494, 2001.
[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions Formalized Mathematics, 9(3):495-500, 2001.
[14] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi 10.2478/v10037-008-0023-1.
[15] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Double sequences and limits. Formalized Mathematics, 21(3):163-170, 2013. doi 10.2478/forma-2013-0018.
[16] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2 edition, 1999.
[17] D.J.H. Garling. A Course in Mathematical Analysis: Volume 1, Foundations and Elementary Real Analysis, volume 1. Cambridge University Press, 2013.
[18] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.
[19] Jarosław Kotowicz. Monotone real sequences. Subsequences Formalized Mathematics, 1 (3):471-475, 1990.
[20] Jarosław Kotowicz. Convergent sequences and the limit of sequences Formalized Mathematics, 1(2):273-275, 1990.
[21] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences Formalızed Mathematıcs, 6(2):265-268, 1997.
[22] Michał J. Trybulec. Integers Formalized Mathematics, 1(3):501-505, 1990.
[23] Zinaida Trybulec. Properties of subsets Formalized Mathematics, 1(1):67-71, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[26] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. doi 10.2478/v10037-007-0026-3.

Received July 1, 2015

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 23500029.

