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Summary. This article is the second in a series formalizing some results
in my joint work with Prof. Joanna Golińska-Pilarek ([9] and [10]) concerning a
logic proposed by Prof. Andrzej Grzegorczyk ([11]).

This part presents the syntax and axioms of Grzegorczyk’s Logic of De-
scriptions (LD) as originally proposed by him, as well as some theorems not
depending on any semantic constructions. There are both some clear similarities
and fundamental differences between LD and the non-Fregean logics introduced
by Roman Suszko in [15]. In particular, we were inspired by Suszko’s semantics
for his non-Fregean logic SCI, presented in [16].
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1. The Construction of Grzegorczyk’s LD Language

From now on k, m, n denote elements of N, i, j denote natural numbers, a,
b, c denote objects, X, Y, Z denote sets, D, D1, D2 denote non empty sets, and
p, q, r, s denote finite sequences.
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The functor VAR yielding a finite sequence-membered set is defined by the
term

(Def. 1) the set of all 〈0, k〉 where k is an element of N.

Note that VAR is non empty and antichain-like.
A variable is an element of VAR. The functors: ′not′, &, and ′=′ yielding

finite sequences are defined by terms

(Def. 2) 〈1〉,
(Def. 3) 〈2〉,
(Def. 4) 〈3〉,

respectively. The functor GRZ-ops yielding a non empty, finite sequence-membered
set is defined by the term

(Def. 5) {′not′,&, ′=′}.
Let us note that the functor GRZ-ops yields a Polish language. The functor

GRZ-symbols yielding a non empty, finite sequence-membered set is defined by
the term

(Def. 6) VAR∪GRZ-ops.

The functors: ′not′, &, and ′=′ yield elements of GRZ-symbols. Now we state
the proposition:

(1) (i) ′not′ 6= &, and

(ii) ′not′ 6= ′=′, and

(iii) & 6= ′=′.
Observe that GRZ-symbols is non trivial and antichain-like.
The functor GRZ-op-arity yielding a function from GRZ-ops into N is defined

by

(Def. 7) it(′not′) = 1 and it(&) = 2 and it(′=′) = 2.

The functor GRZ-arity yielding a Polish arity-function of GRZ-symbols is
defined by

(Def. 8) for every a such that a ∈ GRZ-symbols holds if a ∈ GRZ-ops, then
it(a) = GRZ-op-arity(a) and if a /∈ GRZ-ops, then it(a) = 0.

Now we state the propositions:

(2) (i) GRZ-arity(′not′) = 1, and

(ii) GRZ-arity(&) = 2, and

(iii) GRZ-arity(′=′) = 2.

(3) The Polish atoms( GRZ-symbols , GRZ-arity ) = VAR. The theorem is
a consequence of (2).
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The functor GRZ-formula-set yielding a Polish language of GRZ-symbols is
defined by the term

(Def. 9) Polish-WFF-set(GRZ-symbols,GRZ-arity).

A GRZ-formula is a Polish WFF of GRZ-symbols and GRZ-arity. One can
verify that there exists a subset of GRZ-formula-set which is non empty.

Let us consider n. The functor xn yielding a GRZ-formula is defined by the
term

(Def. 10) 〈0, n〉.
From now on ϕ, ψ, ϑ, η denote GRZ-formulas.
Let us consider ϕ. The functor ¬ϕ yielding a GRZ-formula is defined by the

term

(Def. 11) (Polish-unOp(GRZ-symbols,GRZ-arity, ′not′))(ϕ).

Let us consider ψ. The functors: ϕ ∧ ψ and ϕ=ψ yielding GRZ-formulas are
defined by terms

(Def. 12) (Polish-binOp(GRZ-symbols,GRZ-arity,&))(ϕ,ψ),

(Def. 13) (Polish-binOp(GRZ-symbols,GRZ-arity, ′=′))(ϕ,ψ),

respectively. The functors: ϕ∨ψ and ϕ⇒ ψ yielding GRZ-formulas are defined
by terms

(Def. 14) ¬(¬ϕ ∧ ¬ψ),

(Def. 15) ϕ=(ϕ ∧ ψ),

respectively. The functor ϕ⇔ ψ yielding a GRZ-formula is defined by the term

(Def. 16) (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).

We say that ϕ is atomic if and only if

(Def. 17) ϕ ∈ the Polish atoms( GRZ-symbols , GRZ-arity ).

We say that ϕ is negative if and only if

(Def. 18) Polish-WFF-headϕ = ′not′.

We say that ϕ is conjunctive if and only if

(Def. 19) Polish-WFF-headϕ = &.

We say that ϕ is an equality if and only if

(Def. 20) Polish-WFF-headϕ = ′=′.

Let us consider ϕ. Now we state the propositions:

(4) ϕ is atomic if and only if ϕ ∈ VAR.

(5) ϕ is negative if and only if there exists ψ such that ϕ = ¬ψ.
Proof: If ϕ is negative, then there exists ψ such that ϕ = ¬ψ by (2), [12,
(80)]. �
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(6) ϕ is conjunctive if and only if there exists ψ and there exists ϑ such that
ϕ = ψ ∧ ϑ.
Proof: If ϕ is conjunctive, then there exists ψ and there exists ϑ such
that ϕ = ψ ∧ ϑ by (2), [12, (82)]. �

(7) ϕ is an equality if and only if there exists ψ and there exists ϑ such that
ϕ = ψ=ϑ.
Proof: If ϕ is an equality, then there exists ψ and there exists ϑ such
that ϕ = ψ=ϑ by (2), [12, (82)]. �

(8) ϕ is atomic or negative or conjunctive or an equality. The theorem is a
consequence of (3).

Let us observe that every GRZ-formula which is atomic is also non negative
and every GRZ-formula which is atomic is also non conjunctive and every GRZ-
formula which is atomic is also non equality and every GRZ-formula which is
negative is also non conjunctive and every GRZ-formula which is negative is also
non equality and every GRZ-formula which is conjunctive is also non equality.

2. Axioms and Rules

The functors: GRZ-axioms and LD-specific axioms yielding non empty sub-
sets of GRZ-formula-set are defined by conditions

(Def. 21) for every a, a ∈ GRZ-axioms iff there exists ϕ and there exists ψ and
there exists ϑ such that a = ¬(ϕ∧¬ϕ) or a = (¬¬ϕ)=ϕ or a = ϕ=(ϕ∧ϕ)
or a = (ϕ∧ψ)=(ψ∧ϕ) or a = (ϕ∧ (ψ∧ϑ))=((ϕ∧ψ)∧ϑ) or a = (ϕ∧ (ψ∨
ϑ))=(ϕ∧ψ ∨ϕ∧ϑ) or a = (¬(ϕ∧ψ))=(¬ϕ∨¬ψ) or a = (ϕ=ψ)=(ψ=ϕ) or
a = (ϕ=ψ)=((¬ϕ)=(¬ψ)),

(Def. 22) for every a, a ∈ LD-specific axioms iff there exists ϕ and there exists ψ
and there exists ϑ such that a = ϕ=ψ ⇒ (ϕ ∧ ϑ)=(ψ ∧ ϑ) or a = ϕ=ψ ⇒
(ϕ ∨ ϑ)=(ψ ∨ ϑ) or a = ϕ=ψ ⇒ (ϕ=ϑ)=(ψ=ϑ),

respectively. The functor LD-axioms yielding a non empty subset
of GRZ-formula-set is defined by the term

(Def. 23) GRZ-axioms∪LD-specific axioms.

A GRZ-rule is a relation between 2GRZ-formula-set and GRZ-formula-set. In
the sequel R, R1, R2 denote GRZ-rules.

Let us consider R1 and R2. Note that the functor R1∪R2 yields a GRZ-rule.
The functors: GRZ-MP, GRZ-ConjIntro, GRZ-ConjElimL, and GRZ-ConjElimR
yielding GRZ-rules are defined by terms

(Def. 24) the set of all 〈〈{ϕ,ϕ=ψ}, ψ〉〉 where ϕ is a GRZ-formula, ψ is a GRZ-
formula,
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(Def. 25) the set of all 〈〈{ϕ,ψ}, ϕ ∧ ψ〉〉 where ϕ is a GRZ-formula, ψ is a GRZ-
formula,

(Def. 26) the set of all 〈〈{ϕ∧ψ}, ϕ〉〉 where ϕ is a GRZ-formula, ψ is a GRZ-formula,

(Def. 27) the set of all 〈〈{ϕ∧ψ}, ψ〉〉 where ϕ is a GRZ-formula, ψ is a GRZ-formula,

respectively. The functor GRZ-rules yielding a GRZ-rule is defined by

(Def. 28) for every a, a ∈ it iff a ∈ GRZ-MP or a ∈ GRZ-ConjIntro or a ∈
GRZ-ConjElimL or a ∈ GRZ-ConjElimR.

A GRZ-formula sequence is a finite sequence of elements of GRZ-formula-set.
A finite GRZ-formula set is a finite subset of GRZ-formula-set. From now

on Γ, Γ1, Γ2 denote non empty subsets of GRZ-formula-set, ∆, ∆1, ∆2 denote
subsets of GRZ-formula-set, P , P1, P2 denote GRZ-formula sequences, and Σ,
Σ1, Σ2 denote finite GRZ-formula sets.

Let us consider Σ1 and Σ2. Observe that the functor Σ1 ∪ Σ2 yields a finite
GRZ-formula set. Let us consider Γ, R, P , and n. We say that (P , n) is a correct
step w.r.t. Γ, R if and only if

(Def. 29) P (n) ∈ Γ or there exists a finite GRZ-formula set Q such that 〈〈Q,
P (n)〉〉 ∈ R and for every q such that q ∈ Q there exists k such that
k ∈ domP and k < n and P (k) = q.

We say that P is (Γ, R)-correct if and only if

(Def. 30) for every k such that k ∈ domP holds (P , k) is a correct step w.r.t. Γ, R.

Let a be an element of Γ. One can verify that the functor 〈a〉 yields a GRZ-
formula sequence. Now we state the proposition:

(9) Let us consider an element a of Γ. Then 〈a〉 is (Γ, R)-correct.

Let us consider Γ and R. Note that there exists a GRZ-formula sequence
which is non empty and (Γ, R)-correct.

Let us consider Σ. We say that Σ is (Γ, R)-correct if and only if

(Def. 31) there exists P such that Σ = rngP and P is (Γ, R)-correct.

Now we state the propositions:

(10) If P is (Γ, R)-correct and P = P1
a P2, then P1 is (Γ, R)-correct.

(11) If P1 is (Γ, R)-correct and P2 is (Γ, R)-correct, then P1
a P2 is (Γ,

R)-correct.

(12) If Σ1 is (Γ, R)-correct and Σ2 is (Γ, R)-correct, then Σ1 ∪ Σ2 is (Γ,
R)-correct. The theorem is a consequence of (11).

(13) If Γ ⊆ Γ1 and R ⊆ R1 and P is (Γ, R)-correct, then P is (Γ1, R1)-correct.

Let us consider Γ, R, and ϕ. We say that Γ, R ` ϕ if and only if

(Def. 32) there exists P such that ϕ ∈ rngP and P is (Γ, R)-correct.

Let us consider ∆. We say that Γ, R `∆ if and only if
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(Def. 33) for every ϕ such that ϕ ∈ ∆ holds Γ, R ` ϕ.

Let us consider Γ, R, and ϕ. Now we state the propositions:

(14) Γ, R ` ϕ if and only if there exists Σ such that ϕ ∈ Σ and Σ is (Γ,
R)-correct.

(15) If ϕ ∈ Γ, then Γ, R ` ϕ. The theorem is a consequence of (9).

Now we state the propositions:

(16) If Γ, R ` Σ, then there exists Σ1 such that Σ ⊆ Σ1 and Σ1 is (Γ, R)-
correct.
Proof: Define X [set] ≡ there exists Σ1 such that $1 ⊆ Σ1 and Σ1 is (Γ,
R)-correct. X [∅]. For every sets x, ∆ such that x ∈ Σ and ∆ ⊆ Σ and
X [∆] holds X [∆ ∪ {x}]. X [Σ] from [8, Sch. 2]. �

(17) If Γ, R`Σ and 〈〈Σ, ϕ〉〉 ∈ R, then Γ, R`ϕ. The theorem is a consequence
of (16).

(18) If Γ, R ` ϕ, then ϕ ∈ Γ or there exists Σ such that 〈〈Σ, ϕ〉〉 ∈ R and
Γ, R ` Σ.

(19) If Γ ⊆ Γ1 and R ⊆ R1 and Γ, R ` ϕ, then Γ1, R1 ` ϕ.

Let us consider Γ, ϕ, and ψ. Now we state the propositions:

(20) Γ,GRZ-rules`ϕ∧ψ if and only if Γ,GRZ-rules`ϕ and Γ,GRZ-rules`ψ.
The theorem is a consequence of (17).

(21) Suppose Γ,GRZ-rules`ϕ and Γ,GRZ-rules`ϕ=ψ. Then Γ,GRZ-rules`ψ.
The theorem is a consequence of (17).

(22) Suppose Γ,GRZ-rules`ϕ and Γ,GRZ-rules`ϕ⇒ ψ.
Then Γ,GRZ-rules`ψ. The theorem is a consequence of (21) and (20).

(23) If Γ,GRZ-rules`ϕ∧ψ, then Γ,GRZ-rules`ψ∧ϕ. The theorem is a con-
sequence of (20).

Let us consider ϕ. We say that ϕ is GRZ-axiomatic if and only if

(Def. 34) ϕ ∈ GRZ-axioms.

We say that ϕ is GRZ-provable if and only if

(Def. 35) GRZ-axioms,GRZ-rules`ϕ.

We say that ϕ is LD-axiomatic if and only if

(Def. 36) ϕ ∈ LD-axioms.

We say that ϕ is LD-provable if and only if

(Def. 37) LD-axioms,GRZ-rules`ϕ.

Observe that ¬(ϕ ∧ ¬ϕ) is GRZ-axiomatic and (¬¬ϕ)=ϕ is GRZ-axiomatic
and ϕ=(ϕ ∧ ϕ) is GRZ-axiomatic.
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Let us consider ψ. Observe that (ϕ ∧ ψ)=(ψ ∧ ϕ) is GRZ-axiomatic and
(¬(ϕ ∧ ψ))=(¬ϕ ∨ ¬ψ) is GRZ-axiomatic and (ϕ=ψ)=(ψ=ϕ) is GRZ-axiomatic
and (ϕ=ψ)=((¬ϕ)=(¬ψ)) is GRZ-axiomatic.

Let us consider ϑ. Observe that (ϕ∧(ψ∧ϑ))=((ϕ∧ψ)∧ϑ) is GRZ-axiomatic
and (ϕ∧ (ψ∨ϑ))=(ϕ∧ψ∨ϕ∧ϑ) is GRZ-axiomatic and ϕ=ψ ⇒ (ϕ∧ϑ)=(ψ∧ϑ)
is LD-axiomatic and ϕ=ψ ⇒ (ϕ ∨ ϑ)=(ψ ∨ ϑ) is LD-axiomatic and ϕ=ψ ⇒
(ϕ=ϑ)=(ψ=ϑ) is LD-axiomatic and every GRZ-formula which is GRZ-axiomatic
is also LD-axiomatic and every GRZ-formula which is GRZ-axiomatic is al-
so GRZ-provable and every GRZ-formula which is LD-axiomatic is also LD-
provable and every GRZ-formula which is GRZ-provable is also LD-provable
and there exists a GRZ-formula which is GRZ-axiomatic, GRZ-provable, LD-
axiomatic, and LD-provable.

Now we state the proposition:

(24) Suppose GRZ-axioms ⊆ Γ and Γ,GRZ-rules`ϕ=ψ.
Then Γ,GRZ-rules`ψ=ϕ. The theorem is a consequence of (15) and (21).

3. Provability

Let us consider ϕ and ψ. Now we state the propositions:

(25) If ϕ=ψ is GRZ-provable, then ψ=ϕ is GRZ-provable.

(26) If ϕ=ψ is LD-provable, then ψ=ϕ is LD-provable.

Now we state the propositions:

(27) If ϕ=ψ is LD-provable and ψ=ϑ is LD-provable, then ϕ=ϑ is LD-provable.
The theorem is a consequence of (24), (22), and (21).

(28) ϕ=ϕ is LD-provable. The theorem is a consequence of (24) and (27).

Let us consider ϕ and ψ. We say that ϕ=LD ψ if and only if

(Def. 38) ϕ=ψ is LD-provable.

One can check that the predicate is reflexive and symmetric.
Now we state the proposition:

(29) If ϕ=LD ψ, then ¬ϕ=LD ¬ψ. The theorem is a consequence of (21).

The scheme BinReplace deals with a non empty set X and a binary functor
F yielding an element of X and a binary predicate R and states that

(Sch. 1) For every elements a, b, c, d of X such that R[a, b] and R[c, d] holds
R[F(a, c),F(b, d)]

provided

• for every elements a, b, c of X such that R[a, b] and R[b, c] holds R[a, c]
and
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• for every elements a, b of X , R[F(a, b),F(b, a)] and

• for every elements a, b, c of X such that R[a, b] holds R[F(a, c),F(b, c)].

Let us consider ϕ, ψ, ϑ, and η.
Let us assume that ϕ=LD ψ and ϑ=LD η. Now we state the propositions:

(30) ϕ ∧ ϑ=LD ψ ∧ η.
Proof: Define F(GRZ-formula,GRZ-formula) = $1∧$2. Define P[GRZ-
formula,GRZ-formula] ≡ $1=$2 is LD-provable. For every ϕ, ψ, and ϑ such
that P[ϕ,ψ] and P[ψ, ϑ] holds P[ϕ, ϑ]. For every ϕ, ψ, ϑ, and η such that
P[ϕ,ψ] and P[ϑ, η] holds P[F(ϕ, ϑ),F(ψ, η)] from BinReplace. �

(31) ϕ=ϑ=LD ψ=η.
Proof: Define F(GRZ-formula,GRZ-formula) = $1=$2. Define P[GRZ-
formula,GRZ-formula] ≡ $1=$2 is LD-provable. For every ϕ, ψ, and ϑ such
that P[ϕ,ψ] and P[ψ, ϑ] holds P[ϕ, ϑ]. For every ϕ, ψ, ϑ, and η such that
P[ϕ,ψ] and P[ϑ, η] holds P[F(ϕ, ϑ),F(ψ, η)] from BinReplace. �

The functor LD-IdR yielding an equivalence relation of GRZ-formula-set is
defined by

(Def. 39) for every ϕ and ψ, 〈〈ϕ, ψ〉〉 ∈ it iff ϕ=LD ψ.

Note that there exists a family of subsets of GRZ-formula-set which is non
empty.

The functor LD-IdClasses yielding a non empty family of subsets
of GRZ-formula-set is defined by the term

(Def. 40) Classes LD-IdR.

An LD-identity class is an element of LD-IdClasses. Let us consider ϕ. The
functor LD-IdClassOf ϕ yielding an LD-identity class is defined by the term

(Def. 41) [ϕ]LD-IdR.

Now we state the proposition:

(32) ϕ=LD ψ if and only if LD-IdClassOf ϕ = LD-IdClassOf ψ.
Proof: If ϕ=LD ψ, then LD-IdClassOf ϕ = LD-IdClassOf ψ by [14, (18),
(23)]. �

The scheme UnOpCongr deals with a non empty set X and a unary functor
F yielding an element of X and an equivalence relation E of X and states that

(Sch. 2) There exists a unary operation f on Classes E such that for every element
x of X , f([x]E) = [F(x)]E

provided

• for every elements x, y of X such that 〈〈x, y〉〉 ∈ E holds 〈〈F(x), F(y)〉〉 ∈ E .

The scheme BinOpCongr deals with a non empty set X and a binary functor
F yielding an element of X and an equivalence relation E of X and states that
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(Sch. 3) There exists a binary operation f on Classes E such that for every ele-
ments x, y of X , f([x]E , [y]E) = [F(x, y)]E

provided

• for every elements x1, x2, y1, y2 of X such that 〈〈x1, x2〉〉, 〈〈y1, y2〉〉 ∈ E holds
〈〈F(x1, y1), F(x2, y2)〉〉 ∈ E .

From now on x, y, z denote LD-identity classes.
Now we state the proposition:

(33) There exists ϕ such that x = LD-IdClassOf ϕ.

Let us consider x. We say that x is LD-provable if and only if

(Def. 42) there exists ϕ such that x = LD-IdClassOf ϕ and ϕ is LD-provable.

The functor ¬x yielding an LD-identity class is defined by

(Def. 43) there exists ϕ such that x = LD-IdClassOf ϕ and it = LD-IdClassOf ¬ϕ.

One can verify that the functor is involutive. Let us consider y. The functor
x ∧ y yielding an LD-identity class is defined by

(Def. 44) there exists ϕ and there exists ψ such that x = LD-IdClassOf ϕ and
y = LD-IdClassOf ψ and it = LD-IdClassOf(ϕ ∧ ψ).

Note that the functor is commutative and idempotent. The functor x=y yielding
an LD-identity class is defined by

(Def. 45) there exists ϕ and there exists ψ such that x = LD-IdClassOf ϕ and
y = LD-IdClassOf ψ and it = LD-IdClassOf ϕ=ψ.

One can check that the functor is commutative.
The functor x ∨ y yielding an LD-identity class is defined by the term

(Def. 46) ¬(¬x ∧ ¬y).

Let us observe that the functor is commutative and idempotent. The functor
x⇒ y yielding an LD-identity class is defined by the term

(Def. 47) x=(x ∧ y).

Let ϕ be an LD-provable GRZ-formula. Let us observe that LD-IdClassOf ϕ
is LD-provable.

Now we state the proposition:

(34) If LD-IdClassOf ϕ is LD-provable, then ϕ is LD-provable. The theorem
is a consequence of (32) and (21).

Let us consider x and y. Now we state the propositions:

(35) x∧y is LD-provable if and only if x is LD-provable and y is LD-provable.
The theorem is a consequence of (34) and (20).

(36) x=y is LD-provable if and only if x = y. The theorem is a consequence
of (34) and (32).
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Now we state the proposition:

(37) LD-IdClassOf ¬ϕ = ¬LD-IdClassOf ϕ.

Let us consider ϕ and ψ. Now we state the propositions:

(38) LD-IdClassOf(ϕ ∧ ψ) = LD-IdClassOf ϕ ∧ LD-IdClassOf ψ.

(39) LD-IdClassOf ϕ=ψ = (LD-IdClassOf ϕ)=(LD-IdClassOf ψ).

(40) LD-IdClassOf(ϕ ∨ ψ) = LD-IdClassOf ϕ ∨ LD-IdClassOf ψ.

(41) LD-IdClassOf(ϕ⇒ ψ) = LD-IdClassOf ϕ⇒ LD-IdClassOf ψ.

Now we state the propositions:

(42) (x∧ y)∧ z = x∧ (y ∧ z). The theorem is a consequence of (33) and (32).

(43) x⇒ y is LD-provable if and only if x = x ∧ y.

(44) If x ⇒ y is LD-provable and y ⇒ z is LD-provable, then x ⇒ z is
LD-provable. The theorem is a consequence of (36) and (42).

(45) If ϕ ⇒ ψ is LD-provable and ψ ⇒ ϑ is LD-provable, then ϕ ⇒ ϑ is
LD-provable. The theorem is a consequence of (41), (34), and (44).

Let us consider x, y, and z. Now we state the propositions:

(46) x ∨ (y ∨ z) = (x ∨ y) ∨ z.
(47) x ∧ (y ∨ z) = x ∧ y ∨ x ∧ z. The theorem is a consequence of (33), (32),

and (40).

(48) x ∨ y ∧ z = (x ∨ y) ∧ (x ∨ z). The theorem is a consequence of (47).

Let us consider x and y. Now we state the propositions:

(49) x ⇒ y is LD-provable and y ⇒ x is LD-provable if and only if x = y.
The theorem is a consequence of (36).

(50) If x is LD-provable, then x ∨ y is LD-provable. The theorem is a conse-
quence of (33), (35), (47), and (48).
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