Flexary Operations ${ }^{11}$

Karol Pąk
Institute of Informatics
University of Białystok
Ciołkowskiego 1M, 15-245 Białystok
Poland

Abstract

Summary. In this article we introduce necessary notation and definitions to prove the Euler's Partition Theorem according to H.S. Wilf's lecture notes [31. Our aim is to create an environment which allows to formalize the theorem in a way that is as similar as possible to the original informal proof.

Euler's Partition Theorem is listed as item \#45 from the "Formalizing 100 Theorems" list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/ 100/30.

MSC: 11B99 03B35

Keywords: summation method; flexary plus; matrix generalization
MML identifier: FLEXARY1, version: 8.1 .04 5.32.1237
The notation and terminology used in this paper have been introduced in the following articles: [1], [2], [6], [8], [15], [27], [13], [14], [23], [9], [10], [7], [25], [24], [3], 4], [19], [5], [22], [32], [33], 11], 21], 28], [18, and [12].

1. Auxiliary Facts about Finite Sequences Concatenation

From now on x, y denote objects, D, D_{1}, D_{2} denote non empty sets, i, j, k, m, n denote natural numbers, f, g denote finite sequences of elements of D^{*}, f_{1} denotes a finite sequence of elements of $D_{1}{ }^{*}$, and f_{2} denotes a finite sequence of elements of $D_{2}{ }^{*}$.

Now we state the propositions:

[^0](1) Let us consider a function yielding function F, and an object a. Then $a \in$ Values F if and only if there exists x and there exists y such that $x \in \operatorname{dom} F$ and $y \in \operatorname{dom}(F(x))$ and $a=F(x)(y)$.
(2) Let us consider a set D, and finite sequences f, g of elements of D^{*}. Then Values $f^{\wedge} g=$ Values $f \cup$ Values g.
Proof: Set $F=f^{\wedge} g$. Values $f \subseteq$ Values F by (1), [6, (26)]. Values $g \subseteq$ Values F by (1), [6, (28)]. Values $F \subseteq$ Values $f \cup$ Values g by (1), [6, (25)].
(3) The concatenation of $D \odot f \frown g=$ (the concatenation of $D \odot f$) (the concatenation of $D \odot g$).
(4) $\quad \operatorname{rng}($ the concatenation of $D \odot f)=$ Values f.

Proof: Set $D_{3}=$ the concatenation of D. Define \mathcal{P} [natural number] \equiv for every finite sequence f of elements of D^{*} such that len $f=\$_{1}$ holds $\operatorname{rng}\left(D_{3} \odot f\right)=$ Values $f . \mathcal{P}[0]$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [8, (19), (16)], (3), [27, (11)]. $\mathcal{P}[i]$ from [4, Sch. 2].
(5) If $f_{1}=f_{2}$, then the concatenation of $D_{1} \odot f_{1}=$ the concatenation of $D_{2} \odot f_{2}$.
Proof: Set $C=$ the concatenation of D_{2}. Set $N=$ the concatenation of D_{1}. Define \mathcal{P} [natural number] \equiv for every finite sequence f_{4} of elements of $D_{1}{ }^{*}$ for every finite sequence f_{3} of elements of $D_{2}{ }^{*}$ such that $\$_{1}=\operatorname{len} f_{4}$ and $f_{4}=f_{3}$ holds $N \odot f_{4}=C \odot f_{3}$. $\mathcal{P}[0]$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [8, (19), (16)], (3), [27, (11)]. $\mathcal{P}[i]$ from [4, Sch. 2].
(6) $\quad i \in \operatorname{dom}($ the concatenation of $D \odot f)$ if and only if there exists n and there exists k such that $n+1 \in \operatorname{dom} f$ and $k \in \operatorname{dom}(f(n+1))$ and $i=k+\operatorname{len}($ the concatenation of $D \odot f\lceil n)$.
Proof: Set $D_{3}=$ the concatenation of D. Define \mathcal{P} [natural number] \equiv for every i for every finite sequence f of elements of D^{*} such that len $f=\$_{1}$ holds $i \in \operatorname{dom}\left(D_{3} \odot f\right)$ iff there exists n and there exists k such that $n+1 \in \operatorname{dom} f$ and $k \in \operatorname{dom}(f(n+1))$ and $i=k+\operatorname{len}\left(D_{3} \odot f\lceil n) . \mathcal{P}[0]\right.$. If $\mathcal{P}[j]$, then $\mathcal{P}[j+1]$ by [8, (19), (16)], (3), [27, (11)]. $\mathcal{P}[j]$ from 44, Sch. 2].
(7) Suppose $i \in \operatorname{dom}($ the concatenation of $D \odot f)$. Then
(i) (the concatenation of $D \odot f)(i)=($ the concatenation of $D \odot f \frown g)(i)$, and
(ii) (the concatenation of $D \odot f)(i)=\left(\right.$ the concatenation of $\left.D \odot g^{\wedge} f\right)(i+$ len $($ the concatenation of $D \odot g)$).
The theorem is a consequence of (3).
(8) Suppose $k \in \operatorname{dom}(f(n+1))$. Then $f(n+1)(k)=$ (the concatenation of
$D \odot f)(k+\operatorname{len}($ the concatenation of $D \odot f\lceil n))$. The theorem is a consequence of (3).

2. Flexary Plus

From now on f denotes a complex-valued function and g, h denote complexvalued finite sequences.

Let us consider k and n. Let f, g be complex-valued functions. The functor $(f, k)+\ldots+(g, n)$ yielding a complex number is defined by
(Def. 1) (i) $h(0+1)=f(0+k)$ and \ldots and $h\left(n-{ }^{\prime} k+1\right)=f\left(n-^{\prime} k+k\right)$, then it $=\sum\left(h \upharpoonright\left(n-{ }^{\prime} k+1\right)\right)$, if $f=g$ and $k \leqslant n$,
(ii) $i t=0$, otherwise.

Now we state the propositions:
(9) Suppose $k \leqslant n$. Then there exists h such that
(i) $(f, k)+\ldots+(f, n)=\sum h$, and
(ii) len $h=n-{ }^{\prime} k+1$, and
(iii) $h(0+1)=f(0+k)$ and \ldots and $h\left(n-^{\prime} k+1\right)=f\left(n-{ }^{\prime} k+k\right)$.

Proof: Define \mathcal{P} (natural number) $=f\left(k+\$_{1}-1\right)$. Set $n_{3}=n-^{\prime} k+1$. Consider p being a finite sequence such that len $p=n_{3}$ and for every i such that $i \in \operatorname{dom} p$ holds $p(i)=\mathcal{P}(i)$ from [6, Sch. 2]. rng $p \subseteq \mathbb{C}$. $p(1+0)=f(k+0)$ and \ldots and $p\left(1+\left(n-{ }^{\prime} k\right)\right)=f\left(k+\left(n-{ }^{\prime} k\right)\right)$ by 4, (11)], [26, (25)].
(10) If $(f, k)+\ldots+(f, n) \neq 0$, then there exists i such that $k \leqslant i \leqslant n$ and $i \in \operatorname{dom} f$.
Proof: Consider h such that $(f, k)+\ldots+(f, n)=\sum h$ and len $h=n-^{\prime}$ $k+1$ and $h(0+1)=f(0+k)$ and \ldots and $h\left(n-^{\prime} k+1\right)=f\left(n-^{\prime} k+k\right)$. $\operatorname{rng} h \subseteq\{0\}$ by [26, (25)], [4, (11)].
(11) $(f, k)+\ldots+(f, k)=f(k)$. The theorem is a consequence of (9).
(12) If $k \leqslant n+1$, then $(f, k)+\ldots+(f,(n+1))=((f, k)+\ldots+(f, n))+f(n+$ $1)$. The theorem is a consequence of (11) and (9).
(13) If $k \leqslant n$, then $(f, k)+\ldots+(f, n)=f(k)+((f,(k+1))+\ldots+(f, n))$. The theorem is a consequence of (11) and (9).
(14) If $k \leqslant m \leqslant n$, then $((f, k)+\ldots+(f, m))+((f,(m+1))+\ldots+(f, n))=$ $(f, k)+\ldots+(f, n)$.
Proof: Define \mathcal{P} [natural number] $\equiv((f, k)+\ldots+(f, m))+((f,(m+$ $\left.1))+\ldots+\left(f,\left(m+\$_{1}\right)\right)\right)=(f, k)+\ldots+\left(f,\left(m+\$_{1}\right)\right) . \mathcal{P}[0]$ by [4, (13)]. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [4, (11)], (12). $\mathcal{P}[i]$ from [4, Sch. 2].
(15) If $k>$ len h, then $(h, k)+\ldots+(h, n)=0$. The theorem is a consequence of (9).
(16) If $n \geqslant \operatorname{len} h$, then $(h, k)+\ldots+(h, n)=(h, k)+\ldots+(h$, len $h)$. The theorem is a consequence of (15) and (12).
(17) $(h, 0)+\ldots+(h, k)=(h, 1)+\ldots+(h, k)$. The theorem is a consequence of (13).
(18) $(h, 1)+\ldots+(h$, len $h)=\sum h$. The theorem is a consequence of (9).
(19) $\quad\left(g^{\wedge} h, k\right)+\ldots+\left(g^{\wedge} h, n\right)=((g, k)+\ldots+(g, n))+\left(\left(h,\left(k-^{\prime} \operatorname{len} g\right)\right)+\ldots+\right.$ $\left.\left(h,\left(n-^{\prime} \operatorname{len} g\right)\right)\right)$. The theorem is a consequence of (11), (15), (16), (17), and (14).
Let us consider n and k. Let f be a real-valued finite sequence. One can check that $(f, k)+\ldots+(f, n)$ is real.

Let f be a natural-valued finite sequence. Note that $(f, k)+\ldots+(f, n)$ is natural.

Let f be a complex-valued function. Assume $\operatorname{dom} f \cap \mathbb{N}$ is finite. The functor $(f, n)+\ldots$ yielding a complex number is defined by
(Def. 2) for every k such that for every i such that $i \in \operatorname{dom} f$ holds $i \leqslant k$ holds $i t=(f, n)+\ldots+(f, k)$.
Let us consider h. One can check that the functor $(h, n)+\ldots$ yields a complex number and is defined by the term
(Def. 3) $\quad(h, n)+\ldots+(h$, len $h)$.
Let n be a natural number and h be a natural-valued finite sequence. Let us note that $(h, n)+\ldots$ is natural.

Now we state the propositions:
(20) Let us consider a finite, complex-valued function f. Then $f(n)+(f,(n+$ $1))+\ldots=(f, n)+\ldots$ The theorem is a consequence of (13).
(21) $\quad \sum h=(h, 1)+\ldots$.
(22) $\quad \sum h=h(1)+(h, 2)+\ldots$. The theorem is a consequence of (18) and (20).

The scheme $T T$ deals with complex-valued finite sequences f, g and natural numbers a, b and non zero natural numbers n, k and states that
(Sch. 1) $(f, a)+\ldots=(g, b)+\ldots$
provided

- for every $j,(f,(a+j \cdot n))+\ldots+\left(f,\left(a+j \cdot n+\left(n-{ }^{\prime} 1\right)\right)\right)=(g,(b+j$. $k))+\ldots+\left(g,\left(b+j \cdot k+\left(k-{ }^{\prime} 1\right)\right)\right)$.

3. Power Function

Let r be a real number and f be a real-valued function. The functor r^{f} yielding a real-valued function is defined by
(Def. 4) $\quad \operatorname{dom} i t=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $i t(x)=r^{f(x)}$.
Let n be a natural number and f be a natural-valued function. One can verify that n^{f} is natural-valued.

Let r be a real number and f be a real-valued finite sequence. One can check that r^{f} is finite sequence-like and r^{f} is (len f)-element.

Let f be a one-to-one, natural-valued function. Observe that $(2+n)^{f}$ is one-to-one.
(23) Let us consider real numbers r, s. Then $r^{\langle s\rangle}=\left\langle r^{s}\right\rangle$.
(24) Let us consider a real number r, and real-valued finite sequences f, g. Then $r^{f \neg g}=r^{f \frown} r^{g}$.
Proof: Set $f_{5}=f \frown g$. Set $r_{2}=r^{f}$. Set $r_{3}=r^{g}$. For every i such that $1 \leqslant i \leqslant \operatorname{len} f_{5}$ holds $r^{f_{5}}(i)=\left(r_{2} r_{3}\right)(i)$ by [26, (25)], [6, (25)].
(25) Let us consider a real-valued function f, and a function g. Then $2^{f} \cdot g=$ $2^{f \cdot g}$. Proof: Set $h=2^{f}$. Set $f_{5}=f \cdot g \cdot \operatorname{dom}(h \cdot g) \subseteq \operatorname{dom} 2^{f_{5}}$ by [9, (11)]. $\operatorname{dom} 2^{f_{5}} \subseteq \operatorname{dom}(h \cdot g)$ by [9, (11)]. For every x such that $x \in \operatorname{dom} 2^{f_{5}}$ holds $(h \cdot g)(x)=2^{f_{5}}(x)$ by [9, (11), (13)].
(26) Let us consider an increasing, natural-valued finite sequence f. If $n>1$, then $n^{f}(1)+\left(n^{f}, 2\right)+\ldots<2 \cdot n^{f(\operatorname{len} f)}$.
Proof: Define \mathcal{P} [natural number] \equiv for every increasing, natural-valued finite sequence f such that $n>1$ and $f(\operatorname{len} f) \leqslant \$_{1}$ and $f \neq \emptyset$ holds $\sum n^{f}<2 \cdot n^{f(\operatorname{len} f)}$. For every natural-valued finite sequence f such that $n>1$ and len $f=1$ holds $\sum n^{f}<2 \cdot n^{f(\operatorname{len} f)}$ by [26, (25)], [19, (83)], [6, (40)], [11, (73)]. $\mathcal{P}[0]$ by [26, (25)], 44, (25)]. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [4, (8), $(25),(13)],[26, ~(25)] . \mathcal{P}[i]$ from [4, Sch. 2]. $\sum n^{f}=n^{f}(1)+\left(n^{f}, 2\right)+\ldots$.
(27) Let us consider increasing, natural-valued finite sequences f_{1}, f_{2}. Suppose $n>1$ and $n^{f_{1}}(1)+\left(n^{f_{1}}, 2\right)+\ldots=n^{f_{2}}(1)+\left(n^{f_{2}}, 2\right)+\ldots$ Then $f_{1}=f_{2}$. Proof: For every natural-valued finite sequence f such that $n>1$ and $\sum n^{f} \leqslant 0$ holds $f=\emptyset$ by [11, (85)], [19, (83)]. Define \mathcal{P} [natural number] \equiv for every increasing, natural-valued finite sequences f_{1}, f_{2} such that $n>1$ and $\sum n^{f_{1}} \leqslant \$_{1}$ and $\sum n^{f_{1}}=\sum n^{f_{2}}$ holds $f_{1}=f_{2}$. $\mathcal{P}[0]$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by (21), (22), [4, (8)], [11, (72)]. $\mathcal{P}[i]$ from [4, Sch. 2]. $n^{f_{1}}(1)+$ $\left(n^{f_{1}}, 2\right)+\ldots=\sum n^{f_{1}} \cdot n^{f_{2}}(1)+\left(n^{f_{2}}, 2\right)+\ldots=\sum n^{f_{2}}$.
(28) Let us consider a natural-valued function f. If $n>1$, then $\operatorname{Coim}\left(n^{f}, n^{k}\right)=$ $\operatorname{Coim}(f, k)$. Proof: $\operatorname{Coim}\left(n^{f}, n^{k}\right) \subseteq \operatorname{Coim}(f, k)$ by [17, (30)].
(29) Let us consider natural-valued functions f_{1}, f_{2}. Suppose $n>1$. Then f_{1} and f_{2} are fiberwise equipotent if and only if $n^{f_{1}}$ and $n^{f_{2}}$ are fiberwise equipotent. Proof: If f_{1} and f_{2} are fiberwise equipotent, then $n^{f_{1}}$ and $n^{f_{2}}$ are fiberwise equipotent by [9, (72)], [17, (30)], (28). For every object $x, \overline{\overline{\operatorname{Coim}\left(f_{1}, x\right)}}=\overline{\overline{\operatorname{Coim}\left(f_{2}, x\right)}}$ by [9, (72)], [17, (30)], (28).
(30) Let us consider one-to-one, natural-valued finite sequences f_{1}, f_{2}. Suppose $n>1$ and $n^{f_{1}}(1)+\left(n^{f_{1}}, 2\right)+\ldots=n^{f_{2}}(1)+\left(n^{f_{2}}, 2\right)+\ldots$ Then $\operatorname{rng} f_{1}=\operatorname{rng} f_{2}$.
Proof: Reconsider $F_{1}=f_{1}, F_{2}=f_{2}$ as a finite sequence of elements of \mathbb{R}. Set $s_{1}=\operatorname{sort}_{\mathrm{a}} F_{1}$. Set $s_{2}=\operatorname{sort}_{\mathrm{a}} F_{2} . n^{F_{1}}$ and $n^{s_{1}}$ are fiberwise equipotent. $n^{F_{2}}$ and $n^{s_{2}}$ are fiberwise equipotent. For every extended reals e_{1}, e_{2} such that $e_{1}, e_{2} \in \operatorname{dom} s_{1}$ and $e_{1}<e_{2}$ holds $s_{1}\left(e_{1}\right)<s_{1}\left(e_{2}\right)$ by [16, (2)], [2, (77)]. For every extended reals e_{1}, e_{2} such that $e_{1}, e_{2} \in \operatorname{dom} s_{2}$ and $e_{1}<e_{2}$ holds $s_{2}\left(e_{1}\right)<s_{2}\left(e_{2}\right)$ by [16, (2)], [2, (77)]. $\sum n^{s_{1}}=n^{s_{1}}(1)+\left(n^{s_{1}}, 2\right)+\ldots$. $\sum n^{f_{1}}=n^{f_{1}}(1)+\left(n^{f_{1}}, 2\right)+\ldots \sum n^{s_{1}}=\sum n^{s_{2}} \cdot n^{s_{1}}(1)+\left(n^{s_{1}}, 2\right)+\ldots=$ $n^{s_{2}}(1)+\left(n^{s_{2}}, 2\right)+\ldots$ and s_{1} is increasing and natural-valued.
(31) There exists an increasing, natural-valued finite sequence f such that $n=2^{f}(1)+\left(2^{f}, 2\right)+\ldots$.
Proof: Set $D=\operatorname{digits}(n, 2)$. Consider d being a finite 0 -sequence of \mathbb{N} such that $\operatorname{dom} d=\operatorname{dom} D$ and for every natural number i such that $i \in$ dom d holds $d(i)=D(i) \cdot 2^{i}$ and value $(D, 2)=\sum d$. Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant$ len d, then there exists an increasing, natural-valued finite sequence f such that (len $f=0$ or $f(\operatorname{len} f)<\$_{1}$) and $\sum 2^{f}=$ $\sum\left(d \upharpoonright \$_{1}\right) . \mathcal{P}[(0$ qua natural number $)]$ by [11, (72)]. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [4, (13)], [29, (86)], [20, (65)], 4, (25), (23)]. $\mathcal{P}[i]$ from [4, Sch. 2]. Consider f being an increasing, natural-valued finite sequence such that len $f=0$ or $f(\operatorname{len} f)<\operatorname{len} d$ and $\sum 2^{f}=\sum(d \upharpoonright \operatorname{len} d) . \sum 2^{f}=2^{f}(1)+\left(2^{f}, 2\right)+\ldots$.

4. Value-based Function (Re)Organization

Let o be a function yielding function and x, y be objects. The functor $o_{x, y}$ yielding a set is defined by the term
(Def. 5) $o(x)(y)$.
Let F be a function yielding function. We say that F is double one-to-one if and only if
(Def. 6) for every objects $x_{1}, x_{2}, y_{1}, y_{2}$ such that $x_{1} \in \operatorname{dom} F$ and $y_{1} \in \operatorname{dom}\left(F\left(x_{1}\right)\right)$ and $x_{2} \in \operatorname{dom} F$ and $y_{2} \in \operatorname{dom}\left(F\left(x_{2}\right)\right)$ and $F_{x_{1}, y_{1}}=F_{x_{2}, y_{2}}$ holds $x_{1}=x_{2}$ and $y_{1}=y_{2}$.

Let D be a set. Observe that every finite sequence of elements of D^{*} which is empty is also double one-to-one and there exists a function yielding function which is double one-to-one and there exists a finite sequence of elements of D^{*} which is double one-to-one.

Let F be a double one-to-one, function yielding function and x be an object. One can check that $F(x)$ is one-to-one.

Let F be a one-to-one function. One can check that $\langle F\rangle$ is double one-to-one. Now we state the propositions:
(32) Let us consider a function yielding function f. Then f is double one-toone if and only if for every $x, f(x)$ is one-to-one and for every x and y such that $x \neq y$ holds $\operatorname{rng}(f(x))$ misses $\operatorname{rng}(f(y))$.
(33) Let us consider a set D, and double one-to-one finite sequences f_{1}, f_{2} of elements of D^{*}. Suppose Values f_{1} misses Values f_{2}. Then $f_{1} \curvearrowleft f_{2}$ is double one-to-one. The theorem is a consequence of (1).
Let D be a finite set.
A double reorganization of D is a double one-to-one finite sequence of elements of D^{*} and is defined by
(Def. 7) Values $i t=D$.
Now we state the propositions:
(34) (i) \emptyset is a double reorganization of \emptyset, and
(ii) $\langle\emptyset\rangle$ is a double reorganization of \emptyset.
(35) Let us consider a finite set D, and a one-to-one, onto finite sequence F of elements of D. Then $\langle F\rangle$ is a double reorganization of D.
(36) Let us consider finite sets D_{1}, D_{2}. Suppose D_{1} misses D_{2}. Let us consider a double reorganization o_{1} of D_{1}, and a double reorganization o_{2} of D_{2}. Then $o_{1} \frown o_{2}$ is a double reorganization of $D_{1} \cup D_{2}$. The theorem is a consequence of (33) and (2).
(37) Let us consider a finite set D, a double reorganization o of D, and a one-to-one finite sequence F. Suppose $i \in \operatorname{dom} o$ and $\operatorname{rng} F \cap D \subseteq \operatorname{rng}(o(i))$. Then $o+\cdot(i, F)$ is a double reorganization of $\operatorname{rng} F \cup(D \backslash \operatorname{rng}(o(i)))$. Proof: Set $r_{1}=\operatorname{rng} F$. Set $o_{3}=o(i)$. Set $r_{4}=\operatorname{rng} o_{3}$. Set $o_{4}=o+\cdot(i, F)$. $\operatorname{rng} o_{4} \subseteq\left(r_{1} \cup\left(D \backslash r_{4}\right)\right)^{*}$ by [7, (31), (32)]. o o ${ }_{4}$ is double one-to-one by [7, (32)], (1). Values $o_{4} \subseteq r_{1} \cup\left(D \backslash r_{4}\right)$ by (1), [7, (31), (32)]. $D \backslash r_{4} \subseteq$ Values o_{4} by (1), [7, (32)]. $r_{1} \subseteq$ Values o_{4}.
Let D be a finite set and n be a non zero natural number. One can check that there exists a double reorganization of D which is n-element.

Let D be a finite, natural-membered set, o be a double reorganization of D, and x be an object. One can verify that $o(x)$ is natural-valued.

Now we state the propositions:
(38) Let us consider a non empty finite sequence F, and a finite function G. Suppose $\mathrm{rng} G \subseteq \operatorname{rng} F$. Then there exists a (len F)-element double reorganization o of dom G such that for every $n, F(n)=G\left(o_{n, 1}\right)$ and \ldots and $F(n)=G\left(o_{n, \operatorname{len}(o(n))}\right)$.
Proof: Set $D=\operatorname{dom} G$. Set $d=$ the one-to-one, onto finite sequence of elements of D. Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant \overline{\bar{G}}$, then there exists a (len F)-element double reorganization o of $d^{\circ}\left(\operatorname{Seg} \$_{1}\right)$ such that for every $k, F(k)=G\left(o_{k, 1}\right)$ and \ldots and $F(k)=G\left(o_{k, \operatorname{len}(o(k))}\right) . \mathcal{P}[0]$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [4, (13)], [26, (29)], [4, (11)], [26, (25)]. $\mathcal{P}[i]$ from [4, Sch. 2]. \square
(39) Let us consider a non empty finite sequence F, and a finite sequence G. Suppose $\operatorname{rng} G \subseteq \operatorname{rng} F$. Then there exists a (len F)-element double reorganization o of dom G such that for every $n, o(n)$ is increasing and $F(n)=G\left(o_{n, 1}\right)$ and \ldots and $F(n)=G\left(o_{n, \operatorname{len}(o(n))}\right)$.
Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant \operatorname{len} G$, then there exists a (len F)-element double reorganization o of $\operatorname{Seg} \$_{1}$ such that for every k, $o(k)$ is increasing and $F(k)=G\left(o_{k, 1}\right)$ and \ldots and $F(k)=G\left(o_{k, \operatorname{len}(o(k))}\right)$. $\mathcal{P}[0]$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [4, (13)], [26, (29)], 4, (11)], [26, (25)]. $\mathcal{P}[i]$ from [4, Sch. 2].
Let f be a finite function, o be a double reorganization of $\operatorname{dom} f$, and x be an object. One can check that $f \cdot o(x)$ is finite sequence-like and there exists a finite sequence which is complex-functions-valued and finite sequence-yielding.

Let f be a function yielding function and g be a function. We introduce $g \odot f$ as a synonym of $[g, f]$.

One can check that $g \odot f$ is function yielding.
Let f be a $\left((\operatorname{dom} g)^{*}\right)$-valued finite sequence. One can check that $g \odot f$ is finite sequence-yielding.

Let x be an object. Let us note that $(g \odot f)(x)$ is (len $(f(x)))$-element.
Let f be a function yielding finite sequence. One can verify that $g \odot f$ is finite sequence-like and $g \odot f$ is (len f)-element.

Let f be a function yielding function and g be a complex-valued function. One can check that $g \odot f$ is complex-functions-valued.

Let g be a natural-valued function. One can check that $g \odot f$ is natural-functions-valued.

Let us consider a function yielding function f and a function g. Now we state the propositions:
(40) Values $g \odot f=g^{\circ}($ Values $f)$.

Proof: Set $g_{3}=g \odot f$. Values $g_{3} \subseteq g^{\circ}($ Values f) by (1), [9, (11), (12)]. Consider b being an object such that $b \in \operatorname{dom} g$ and $b \in$ Values f and
$g(b)=a$. Consider x, y being objects such that $x \in \operatorname{dom} f$ and $y \in$ $\operatorname{dom}(f(x))$ and $b=f(x)(y)$.
(41) $\quad(g \odot f)(x)=g \cdot f(x)$.

Now we state the proposition:
(42) Let us consider a function yielding function f, a finite sequence g, and objects x, y. Then $(g \odot f)_{x, y}=g\left(f_{x, y}\right)$. The theorem is a consequence of (41).

Let f be a complex-functions-valued, finite sequence-yielding function. The functor $\sum f$ yielding a complex-valued function is defined by
(Def. 8) $\quad \operatorname{dom}$ it $=\operatorname{dom} f$ and for every set $x, i t(x)=\sum(f(x))$.
Let f be a complex-functions-valued, finite sequence-yielding finite sequence. One can verify that $\sum f$ is finite sequence-like and $\sum f$ is (len f)-element.

Let f be a natural-functions-valued, finite sequence-yielding function. One can verify that $\sum f$ is natural-valued.

Let f, g be complex-functions-valued finite sequences. One can check that $f^{\wedge} g$ is complex-functions-valued.

Let f, g be extended real-valued finite sequences. One can verify that $f \sim g$ is extended real-valued.

Let f be a complex-functions-valued function and X be a set. One can check that $f \upharpoonright X$ is complex-functions-valued.

Let f be a finite sequence-yielding function. One can check that $f\lceil X$ is finite sequence-yielding.

Let F be a complex-valued function. One can check that $\langle F\rangle$ is complex-functions-valued.

Let us consider finite sequences f, g. Now we state the propositions:
(43) If $f \sim g$ is finite sequence-yielding, then f is finite sequence-yielding and g is finite sequence-yielding.
(44) If $f^{\wedge} g$ is complex-functions-valued, then f is complex-functions-valued and g is complex-functions-valued.
Now we state the propositions:
(45) Let us consider a complex-valued finite sequence f. Then $\sum\langle f\rangle=\left\langle\sum f\right\rangle$.
(46) Let us consider complex-functions-valued, finite sequence-yielding finite sequences f, g. Then $\sum\left(f^{\wedge} g\right)=\sum f^{\wedge} \sum g$.
Proof: For every i such that $1 \leqslant i \leqslant \operatorname{len} f+\operatorname{len} g$ holds $\left(\sum\left(f^{\wedge} g\right)\right)(i)=$ $\left(\sum f^{\wedge} \sum g\right)(i)$ by [26, (25)], [6, (25)]. \square
(47) Let us consider a complex-valued finite sequence f, and a double reorganization o of dom f. Then $\sum f=\sum \sum(f \odot o)$.

Proof: Define \mathcal{P} [natural number] \equiv for every complex-valued finite sequence f for every double reorganization o of $\operatorname{dom} f$ such that len $f=\$_{1}$ holds $\sum f=\sum \sum(f \odot o) . \mathcal{P}[0]$ by [26, (29)], [11, (72)], [23, (11)], [11, (81)]. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [4, (11)], [26, (25)], (1), [12, (116)]. $\mathcal{P}[i]$ from [4, Sch. 2].
Let us note that \mathbb{N}^{*} is natural-functions-membered and \mathbb{C}^{*} is complex-functions-membered.

Now we state the proposition:
(48) Let us consider a finite sequence f of elements of \mathbb{C}^{*}.

Then $\sum($ the concatenation of $\mathbb{C} \odot f)=\sum \sum f$.
Proof: Set $C=$ the concatenation of \mathbb{C}. Define \mathcal{P} [natural number] \equiv for every finite sequence f of elements of \mathbb{C}^{*} such that len $f=\$_{1}$ holds $\sum(C \odot f)=\sum \sum f . \mathcal{P}[0]$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [8, (19), (16)], (46), (45). $\mathcal{P}[i]$ from [4, Sch. 2].

Let f be a finite function.
A valued reorganization of f is a double reorganization of $\operatorname{dom} f$ and is defined by
(Def. 9) for every n, there exists x such that $x=f\left(i t_{n, 1}\right)$ and \ldots and $x=$ $f\left(i t_{n, \operatorname{len}(i t(n))}\right)$ and for every natural numbers $n_{1}, n_{2}, i_{1}, i_{2}$ such that $i_{1} \in \operatorname{dom}\left(i t\left(n_{1}\right)\right)$ and $i_{2} \in \operatorname{dom}\left(i t\left(n_{2}\right)\right)$ and $f\left(i t_{n_{1}, i_{1}}\right)=f\left(i t_{n_{2}, i_{2}}\right)$ holds $n_{1}=n_{2}$.
Now we state the propositions:
(49) Let us consider a finite function f, and a valued reorganization of f. Then
(i) $\operatorname{rng}((f \odot o)(n))=\emptyset$, or
(ii) $\operatorname{rng}((f \odot o)(n))=\left\{f\left(o_{n, 1}\right)\right\}$ and $1 \in \operatorname{dom}(o(n))$.

Proof: Consider y such that $y \in \operatorname{rng}((f \odot o)(n))$. Consider x such that $x \in \operatorname{dom}((f \odot o)(n))$ and $(f \odot o)(n)(x)=y . n \in \operatorname{dom}(f \odot o)$. Consider w being an object such that $w=f\left(o_{n, 1}\right)$ and \ldots and $w=f\left(o_{n, \operatorname{len}(o(n))}\right)$. $\operatorname{rng}((f \odot o)(n)) \subseteq\left\{f\left(o_{n, 1}\right)\right\}$ by [9, (11), (12)], [26, (25)].
(50) Let us consider a finite sequence f, and valued reorganizations o_{1}, o_{2} of f. Suppose $\operatorname{rng}\left(\left(f \odot o_{1}\right)(i)\right)=\operatorname{rng}\left(\left(f \odot o_{2}\right)(i)\right)$. Then $\operatorname{rng}\left(o_{1}(i)\right)=\operatorname{rng}\left(o_{2}(i)\right)$.
(51) Let us consider a finite sequence f, a complex-valued finite sequence g, and double reorganizations o_{1}, o_{2} of $\operatorname{dom} g$. Suppose o_{1} is a valued reorganization of f and o_{2} is a valued reorganization of f and $\operatorname{rng}((f \odot$ $\left.\left.o_{1}\right)(i)\right)=\operatorname{rng}\left(\left(f \odot o_{2}\right)(i)\right)$. Then $\left(\sum\left(g \odot o_{1}\right)\right)(i)=\left(\sum\left(g \odot o_{2}\right)\right)(i)$. The theorem is a consequence of (41).

References

[1] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
[3] Grzegorz Bancerek. Monoids Formalized Mathematics, 3(2):213-225, 1992.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences Formalized Mathematics, 1(1):107-114, 1990.
[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions Formalized Mathematics, 5(4):485-492, 1996.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[10] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Bylinski. The sum and product of finite sequences of real numbers Formalized Mathematics, 1(4):661-668, 1990.
[12] Czesław Bylinski. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[13] Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Mathematics, 19(3):155-167, 2011. doi 10.2478/v10037-011-0025-2.
[14] Marco B. Caminati. First order languages: Further syntax and semantics. Formalized Mathematics, 19(3):179-192, 2011. doi 10.2478/v10037-011-0027-0.
[15] Agata Darmochwał. Finite sets, Formalized Mathematics, 1(1):165-167, 1990.
[16] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral Formalized Mathematics, 9(1):191-196, 2001.
[17] Yoshinori Fuiisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers Formalized Mathematıcs, 7(2):317-321, 1998.
[18] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009. doi $10.2478 / \mathrm{v} 10037-009-0005-\mathrm{y}$
[19] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[20] Yatsuka Nakamura and Hisashi Ito. Basic properties and concept of selected subsequence of zero based finite sequences. Formalized Mathematics, 16(3):283-288, 2008. doi:10.2478/v10037-008-0034-y
[21] Beata Padlewska. Families of sets Formalized Mathematics, 1(1):147-152, 1990.
[22] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms Formalized Mathematics, 2(2):213-216, 1991.
[23] Andrzej Trybulec. Binary operations applied to functions Formalized Mathematics, 1 (2):329-334, 1990.
[24] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.
[25] Michał J. Trybulec. Integers Formalized Mathematics, 1(3):501-505, 1990.
[26] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 1990.
[27] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1 (5):979-981, 1990.
[28] Zinaida Trybulec. Properties of subsets Formalized Mathematics, 1(1):67-71, 1990.
[29] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences Formalized Mathematics, 9(4):825-829, 2001.
[30] Freek Wiedijk. Formalizing 100 theorems
[31] Herbert S. Wilf. Lectures on integer partitions.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received March 26, 2015

[^0]: ${ }^{1}$ This work has been financed by the resources of the Polish National Science Centre granted by decision no. DEC-2012/07/N/ST6/02147.

