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Summary.We translate the articles covering group theory already availa-
ble in the Mizar Mathematical Library from multiplicative into additive notation.
We adapt the works of Wojciech A. Trybulec [41, 42, 43] and Artur Korniłowicz
[25].

In particular, these authors have defined the notions of group, abelian group,
power of an element of a group, order of a group and order of an element, sub-
group, coset of a subgroup, index of a subgroup, conjugation, normal subgroup,
topological group, dense subset and basis of a topological group. Lagrange’s the-
orem and some other theorems concerning these notions [9, 24, 22] are presented.

Note that “The term Z-module is simply another name for an additive abelian
group” [27]. We take an approach different than that used by Futa et al. [21] to
use in a future article the results obtained by Artur Korniłowicz [25]. Indeed,
Hölzl et al. showed that it was possible to build “a generic theory of limits based
on filters” in Isabelle/HOL [23, 10]. Our goal is to define the convergence of a
sequence and the convergence of a series in an abelian topological group [11]
using the notion of filters.
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1. Additive Notation for Groups – GROUP 1

From now on m, n denote natural numbers, i, j denote integers, S denotes
a non empty additive magma, and r, r1, r2, s, s1, s2, t, t1, t2 denote elements
of S.

The scheme SeqEx2Dbis deals with non empty sets X , Z and a ternary
predicate P and states that

(Sch. 1) There exists a function f from N×X into Z such that for every natural
number x for every element y of X , P[x, y, f(x, y)]

provided

• for every natural number x and for every element y of X , there exists an
element z of Z such that P[x, y, z].

Let I1 be an additive magma. We say that I1 is add-unital if and only if

(Def. 1) there exists an element e of I1 such that for every element h of I1,
h+ e = h and e+ h = h.

We say that I1 is additive group-like if and only if

(Def. 2) there exists an element e of I1 such that for every element h of I1,
h + e = h and e + h = h and there exists an element g of I1 such that
h+ g = e and g + h = e.

Let us note that every additive magma which is additive group-like is also
add-unital and there exists an additive magma which is strict, additive group-
like, add-associative, and non empty.

An additive group is an additive group-like, add-associative, non empty
additive magma. Now we state the propositions:

(1) Suppose for every r, s, and t, (r+ s) + t = r+ (s+ t) and there exists t
such that for every s1, s1+ t = s1 and t+ s1 = s1 and there exists s2 such
that s1 + s2 = t and s2 + s1 = t. Then S is an additive group.

(2) Suppose for every r, s, and t, (r+s) + t = r+ (s+ t) and for every r and
s, there exists t such that r+ t = s and there exists t such that t+ r = s.
Then S is add-associative and additive group-like.

(3) 〈R,+R〉 is add-associative and additive group-like.

From now on G denotes an additive group-like, non empty additive magma
and e, h denote elements of G.

Let G be an additive magma. Assume G is add-unital. The functor 0G yiel-
ding an element of G is defined by

(Def. 3) for every element h of G, h+ it = h and it + h = h.

Now we state the proposition:
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(4) If for every h, h+ e = h and e+ h = h, then e = 0G.

From now on G denotes an additive group and f , g, h denote elements of G.
Let us consider G and h. The functor −h yielding an element of G is defined

by

(Def. 4) h+ it = 0G and it + h = 0G.

Let us note that the functor is involutive.
Now we state the propositions:

(5) If h+ g = 0G and g + h = 0G, then g = −h.

(6) If h+ g = h+ f or g + h = f + h, then g = f .

(7) If h+ g = h or g+ h = h, then g = 0G. The theorem is a consequence of
(6).

(8) −0G = 0G.

(9) If −h = −g, then h = g. The theorem is a consequence of (6).

(10) If −h = 0G, then h = 0G. The theorem is a consequence of (8).

(11) If h+ g = 0G, then h = −g and g = −h. The theorem is a consequence
of (6).

(12) h + f = g if and only if f = −h + g. The theorem is a consequence of
(6).

(13) f + h = g if and only if f = g + −h. The theorem is a consequence of
(6).

(14) There exists f such that g + f = h. The theorem is a consequence of
(12).

(15) There exists f such that f + g = h. The theorem is a consequence of
(13).

(16) −(h+ g) = −g +−h. The theorem is a consequence of (11).

(17) g + h = h + g if and only if −(g + h) = −g + −h. The theorem is a
consequence of (16) and (6).

(18) g + h = h + g if and only if −g + −h = −h + −g. The theorem is a
consequence of (16) and (17).

(19) g+h = h+g if and only if g+−h = −h+g. The theorem is a consequence
of (18), (11), and (16).

From now on u denotes a unary operation on G.
Let us consider G. The functor add inverseG yielding a unary operation on

G is defined by

(Def. 5) it(h) = −h.

Let G be an add-associative, non empty additive magma. Let us note that
the addition of G is associative.
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Let us consider an add-unital, non empty additive magma G. Now we state
the propositions:

(20) 0G is a unity w.r.t. the addition of G.

(21) 1α = 0G, where α is the addition of G. The theorem is a consequence of
(20).

Let G be an add-unital, non empty additive magma. Let us note that the
addition of G is unital.

Now we state the proposition:

(22) add inverseG is an inverse operation w.r.t. the addition of G. The the-
orem is a consequence of (21).

Let us consider G. One can verify that the addition of G has inverse opera-
tion.

Now we state the proposition:

(23) The inverse operation w.r.t. the addition of G = add inverseG. The
theorem is a consequence of (22).

Let G be a non empty additive magma. The functor multG yielding a func-
tion from N× (the carrier of G) into the carrier of G is defined by

(Def. 6) for every element h of G, it(0, h) = 0G and for every natural number n,
it(n+ 1, h) = it(n, h) + h.

Let us consider G, i, and h. The functor i · h yielding an element of G is
defined by the term

(Def. 7)

{
(multG)(|i|, h), if 0 ¬ i,
−(multG)(|i|, h), otherwise.

Let us consider n. One can check that the functor n ·h is defined by the term

(Def. 8) (multG)(n, h).

Now we state the propositions:

(24) 0 · h = 0G.

(25) 1 · h = h.

(26) 2 · h = h+ h. The theorem is a consequence of (25).

(27) 3 · h = h+ h+ h. The theorem is a consequence of (26).

(28) 2 · h = 0G if and only if −h = h. The theorem is a consequence of (26)
and (11).

(29) If i ¬ 0, then i · h = −|i| · h. The theorem is a consequence of (8).

(30) i · 0G = 0G. The theorem is a consequence of (8).

(31) (−1) · h = −h. The theorem is a consequence of (25).

(32) (i+ j) · h = i · h+ j · h.
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Proof: Define P[integer] ≡ for every i, (i + $1) · h = i · h + $1 · h. For
every j such that P[j] holds P[j − 1] and P[j + 1]. P[0]. For every j, P[j]
from [40, Sch. 4]. �

(33) (i) (i+ 1) · h = i · h+ h, and

(ii) (i+ 1) · h = h+ i · h.
The theorem is a consequence of (25) and (32).

(34) (−i) · h = −i · h.

Let us assume that g + h = h+ g. Now we state the propositions:

(35) i · (g + h) = i · g + i · h. The theorem is a consequence of (16).

(36) i · g+ j · h = j · h+ i · g. The theorem is a consequence of (19) and (16).

(37) g + i · h = i · h+ g. The theorem is a consequence of (25) and (36).

Let us consider G and h. We say that h is of order 0 if and only if

(Def. 9) if n · h = 0G, then n = 0.

One can check that 0G is non of order 0.
Let us consider h. The functor ord(h) yielding an element of N is defined by

(Def. 10) (i) it = 0, if h is of order 0,

(ii) it · h = 0G and it 6= 0 and for every m such that m · h = 0G and
m 6= 0 holds it ¬ m, otherwise.

Now we state the propositions:

(38) ord(h) · h = 0G.

(39) ord(0G) = 1.

(40) If ord(h) = 1, then h = 0G. The theorem is a consequence of (25).

Observe that there exists an additive group which is strict and Abelian.
Now we state the proposition:

(41) 〈R,+R〉 is an Abelian additive group. The theorem is a consequence of
(3).

In the sequel A denotes an Abelian additive group and a, b denote elements
of A.

Now we state the propositions:

(42) −(a+ b) = −a+−b.
(43) i · (a+ b) = i · a+ i · b.
(44) 〈the carrier of A, the addition of A, 0A〉 is Abelian, add-associative, right

zeroed, and right complementable.

Let us consider an add-unital, non empty additive magma L and an element
x of L. Now we state the propositions:

(45) (multL)(1, x) = x.
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(46) (multL)(2, x) = x+ x. The theorem is a consequence of (45).

Now we state the proposition:

(47) Let us consider an add-associative, Abelian, add-unital, non empty
additive magma L, elements x, y of L, and a natural number n. Then
(multL)(n, x+ y) = (multL)(n, x) + (multL)(n, y).
Proof: Define P[natural number] ≡ (multL)($1, x+y) = (multL)($1, x)+
(multL)($1, y). For every natural number n, P[n] from [5, Sch. 2]. �

Let G, H be additive magmas and I1 be a function from G into H. We say
that I1 preserves zero if and only if

(Def. 11) I1(0G) = 0H .

2. Subgroups and Lagrange Theorem – GROUP 2

In the sequel x denotes an object, y, y1, y2, Y, Z denote sets, k denotes a
natural number, G denotes an additive group, a, g, h denote elements of G, and
A denotes a subset of G.

Let us consider G and A. The functor −A yielding a subset of G is defined
by the term

(Def. 12) {−g : g ∈ A}.

One can check that the functor is involutive.
Now we state the propositions:

(48) x ∈ −A if and only if there exists g such that x = −g and g ∈ A.

(49) −{g} = {−g}.
(50) −{g, h} = {−g,−h}.
(51) −∅α = ∅, where α is the carrier of G.

(52) −Ωα = the carrier of G, where α is the carrier of G.

(53) A 6= ∅ if and only if −A 6= ∅. The theorem is a consequence of (48).

Let us consider G. Let A be an empty subset of G. Observe that −A is
empty.

Let A be a non empty subset of G. One can check that −A is non empty.
In the sequelG denotes a non empty additive magma, A, B, C denote subsets

of G, and a, b, g, g1, g2, h, h1, h2 denote elements of G.
Let G be an Abelian, non empty additive magma and A, B be subsets of G.

One can check that the functor A+B is commutative.

(54) x ∈ A + B if and only if there exists g and there exists h such that
x = g + h and g ∈ A and h ∈ B.

(55) A 6= ∅ and B 6= ∅ if and only if A+B 6= ∅. The theorem is a consequence
of (54).
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(56) If G is add-associative, then (A+B) + C = A+ (B + C).

(57) Let us consider an additive group G, and subsets A, B of G. Then
−(A+B) = −B +−A. The theorem is a consequence of (16).

(58) A+ (B ∪ C) = A+B ∪ (A+ C).

(59) (A ∪B) + C = A+ C ∪ (B + C).

(60) A+B ∩ C ⊆ (A+B) ∩ (A+ C).

(61) A ∩B + C ⊆ (A+ C) ∩ (B + C).

(62) (i) ∅α +A = ∅, and

(ii) A+ ∅α = ∅,
where α is the carrier of G. The theorem is a consequence of (54).

(63) Let us consider an additive group G, and a subset A of G. Suppose
A 6= ∅. Then

(i) Ωα +A = the carrier of G, and

(ii) A+ Ωα = the carrier of G,

where α is the carrier of G.

(64) {g}+ {h} = {g + h}.
(65) {g}+ {g1, g2} = {g + g1, g + g2}.
(66) {g1, g2}+ {g} = {g1 + g, g2 + g}.
(67) {g, h}+ {g1, g2} = {g + g1, g + g2, h+ g1, h+ g2}.

Let us consider an additive group G and a subset A of G. Now we state the
propositions:

(68) Suppose for every elements g1, g2 of G such that g1, g2 ∈ A holds g1+g2 ∈
A and for every element g of G such that g ∈ A holds −g ∈ A. Then
A+A = A.

(69) If for every element g of G such that g ∈ A holds −g ∈ A, then −A = A.

(70) If for every a and b such that a ∈ A and b ∈ B holds a+ b = b+ a, then
A+B = B +A.

(71) If G is an Abelian additive group, then A+B = B +A.

(72) Let us consider an Abelian additive group G, and subsets A, B of G.
Then −(A+B) = −A+−B. The theorem is a consequence of (42).

Let us consider G, g, and A. The functors: g+A and A+ g yielding subsets
of G are defined by terms,

(Def. 13) {g}+A,

(Def. 14) A+ {g},
respectively. Now we state the propositions:

(73) x ∈ g +A if and only if there exists h such that x = g + h and h ∈ A.
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(74) x ∈ A+ g if and only if there exists h such that x = h+ g and h ∈ A.

Let us assume that G is add-associative. Now we state the propositions:

(75) (g +A) +B = g + (A+B).

(76) (A+ g) +B = A+ (g +B).

(77) (A+B) + g = A+ (B + g).

(78) (g + h) + A = g + (h + A). The theorem is a consequence of (64) and
(56).

(79) (g +A) + h = g + (A+ h).

(80) (A + g) + h = A + (g + h). The theorem is a consequence of (56) and
(64).

(81) (i) ∅α + a = ∅, and

(ii) a+ ∅α = ∅,
where α is the carrier of G.

From now on G denotes an additive group-like, non empty additive magma,
h, g, g1, g2 denote elements of G, and A denotes a subset of G.

(82) Let us consider an additive group G, and an element a of G. Then

(i) Ωα + a = the carrier of G, and

(ii) a+ Ωα = the carrier of G,

where α is the carrier of G.

(83) (i) 0G +A = A, and

(ii) A+ 0G = A.
The theorem is a consequence of (73) and (74).

(84) If G is an Abelian additive group, then g +A = A+ g.

Let G be an additive group-like, non empty additive magma.
A subgroup of G is an additive group-like, non empty additive magma and

is defined by

(Def. 15) the carrier of it ⊆ the carrier of G and the addition of it = (the addition
of G) � (the carrier of it).

In the sequel H denotes a subgroup of G and h, h1, h2 denote elements of
H.

Now we state the propositions:

(85) If G is finite, then H is finite.

(86) If x ∈ H, then x ∈ G.

(87) h ∈ G.

(88) h is an element of G.

(89) If h1 = g1 and h2 = g2, then h1 + h2 = g1 + g2.
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Let G be an additive group. Let us observe that every subgroup of G is
add-associative.

In the sequel G, G1, G2, G3 denote additive groups, a, a1, a2, b, b1, b2, g,
g1, g2 denote elements of G, A, B denote subsets of G, H, H1, H2, H3 denote
subgroups of G, and h, h1, h2 denote elements of H.

(90) 0H = 0G. The theorem is a consequence of (87), (89), and (7).

(91) 0H1 = 0H2 . The theorem is a consequence of (90).

(92) 0G ∈ H. The theorem is a consequence of (90).

(93) 0H1 ∈ H2. The theorem is a consequence of (90) and (92).

(94) If h = g, then −h = −g. The theorem is a consequence of (87), (89),
(90), and (11).

(95) add inverseH = add inverseG�(the carrier of H). The theorem is a con-
sequence of (87) and (94).

(96) If g1, g2 ∈ H, then g1 + g2 ∈ H. The theorem is a consequence of (89).

(97) If g ∈ H, then −g ∈ H. The theorem is a consequence of (94).

Let us consider G. Observe that there exists a subgroup of G which is strict.

(98) Suppose A 6= ∅ and for every g1 and g2 such that g1, g2 ∈ A holds
g1 + g2 ∈ A and for every g such that g ∈ A holds −g ∈ A. Then there
exists a strict subgroup H of G such that the carrier of H = A.
Proof: Reconsider D = A as a non empty set. Set o = (the addition of
G) � A. rng o ⊆ A by [17, (87)], [14, (47)]. Set H = 〈D, o〉. H is additive
group-like. �

(99) If G is an Abelian additive group, then H is Abelian. The theorem is a
consequence of (87) and (89).

Let G be an Abelian additive group. One can check that every subgroup of
G is Abelian.

(100) G is a subgroup of G.

(101) Suppose G1 is a subgroup of G2 and G2 is a subgroup of G1. Then
the additive magma of G1 = the additive magma of G2.

(102) If G1 is a subgroup of G2 and G2 is a subgroup of G3, then G1 is a
subgroup of G3.

(103) If the carrier of H1 ⊆ the carrier of H2, then H1 is a subgroup of H2.

(104) If for every g such that g ∈ H1 holds g ∈ H2, then H1 is a subgroup of
H2. The theorem is a consequence of (87) and (103).

(105) Suppose the carrier of H1 = the carrier of H2. Then the additive magma
of H1 = the additive magma of H2. The theorem is a consequence of (103)
and (101).



136 roland coghetto

(106) Suppose for every g, g ∈ H1 iff g ∈ H2. Then the additive magma of
H1 = the additive magma of H2. The theorem is a consequence of (104)
and (101).

Let us consider G. Let H1, H2 be strict subgroups of G. One can check that
H1 = H2 if and only if the condition (Def. 16) is satisfied.

(Def. 16) for every g, g ∈ H1 iff g ∈ H2.
Now we state the propositions:

(107) Let us consider an additive group G, and a subgroup H of G. Suppose
the carrier of G ⊆ the carrier of H. Then the additive magma of H =
the additive magma of G. The theorem is a consequence of (100) and
(105).

(108) Suppose for every element g of G, g ∈ H. Then the additive magma of
H = the additive magma of G. The theorem is a consequence of (100) and
(106).

Let us consider G. The functor 0G yielding a strict subgroup of G is defined
by

(Def. 17) the carrier of it = {0G}.
The functor ΩG yielding a strict subgroup of G is defined by the term

(Def. 18) the additive magma of G.

Note that the functor is projective.
Now we state the propositions:

(109) 0H = 0G. The theorem is a consequence of (90) and (102).

(110) 0H1 = 0H2 . The theorem is a consequence of (109).

(111) 0G is a subgroup of H. The theorem is a consequence of (109).

(112) Let us consider a strict additive group G. Then every subgroup of G is
a subgroup of ΩG.

(113) Every strict additive group is a subgroup of ΩG.

(114) 0G is finite.

Let us consider G. Note that 0G is finite and there exists a subgroup of G
which is strict and finite and there exists an additive group which is strict and
finite.

Let G be a finite additive group. One can verify that every subgroup of G
is finite.

Now we state the propositions:

(115) 0G = 1.

(116) Let us consider a strict, finite subgroup H of G. If H = 1, then H = 0G.
The theorem is a consequence of (92).
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(117) H ⊆ G .

Let us consider a finite additive group G and a subgroup H of G. Now we
state the propositions:

(118) H ¬ G .

(119) Suppose G = H . Then the additive magma of H = the additive magma
of G.
Proof: The carrier of H = the carrier of G by [3, (48)]. �

Let us consider G and H. The functor H yielding a subset of G is defined
by the term

(Def. 19) the carrier of H.

Now we state the propositions:

(120) If g1, g2 ∈ H, then g1 + g2 ∈ H. The theorem is a consequence of (96).

(121) If g ∈ H, then −g ∈ H. The theorem is a consequence of (97).

(122) H +H = H. The theorem is a consequence of (121), (120), and (68).

(123) −H = H. The theorem is a consequence of (121) and (69).

(124) (i) if H1 +H2 = H2 +H1, then there exists a strict subgroup H of G
such that the carrier of H = H1 +H2, and

(ii) if there exists H such that the carrier of H = H1+H2, thenH1+H2 =
H2 +H1.

The theorem is a consequence of (121), (16), (120), (55), and (98).

(125) Suppose G is an Abelian additive group. Then there exists a strict sub-
group H of G such that the carrier of H = H1 + H2. The theorem is a
consequence of (71) and (124).

Let us considerG,H1, andH2. The functorH1∩H2 yielding a strict subgroup
of G is defined by

(Def. 20) the carrier of it = H1 ∩H2.
Now we state the propositions:

(126) (i) for every subgroup H of G such that H = H1∩H2 holds the carrier
of H = (the carrier of H1) ∩ (the carrier of H2), and

(ii) for every strict subgroup H of G such that the carrier of H =

(the carrier of H1) ∩ (the carrier of H2) holds H = H1 ∩H2.
(127) H1 ∩H2 = H1 ∩H2.
(128) x ∈ H1 ∩H2 if and only if x ∈ H1 and x ∈ H2.
(129) Let us consider a strict subgroup H of G. Then H∩H = H. The theorem

is a consequence of (105).

Let us considerG,H1, andH2. Note that the functorH1∩H2 is commutative.



138 roland coghetto

(130) (H1∩H2)∩H3 = H1∩(H2∩H3). The theorem is a consequence of (105).

(131) (i) 0G ∩H = 0G, and

(ii) H ∩ 0G = 0G.
The theorem is a consequence of (111).

(132) Let us consider a strict additive group G, and a strict subgroup H of G.
Then

(i) H ∩ ΩG = H, and

(ii) ΩG ∩H = H.

(133) Let us consider a strict additive group G. Then ΩG ∩ ΩG = G.

(134) H1 ∩H2 is subgroup of H1 and subgroup of H2.

(135) Let us consider a subgroup H1 of G. Then H1 is a subgroup of H2 if and
only if the additive magma of H1 ∩H2 = the additive magma of H1.

(136) If H1 is a subgroup of H2, then H1∩H3 is a subgroup of H2. The theorem
is a consequence of (102).

(137) If H1 is subgroup of H2 and subgroup of H3, then H1 is a subgroup of
H2 ∩H3. The theorem is a consequence of (86), (128), and (104).

(138) If H1 is a subgroup of H2, then H1 ∩H3 is a subgroup of H2 ∩H3. The
theorem is a consequence of (126) and (103).

(139) If H1 is finite or H2 is finite, then H1 ∩H2 is finite.

Let us consider G, H, and A. The functors: A + H and H + A yielding
subsets of G are defined by terms,

(Def. 21) A+H,

(Def. 22) H +A,

respectively. Now we state the propositions:

(140) x ∈ A + H if and only if there exists g1 and there exists g2 such that
x = g1 + g2 and g1 ∈ A and g2 ∈ H.

(141) x ∈ H + A if and only if there exists g1 and there exists g2 such that
x = g1 + g2 and g1 ∈ H and g2 ∈ A.

(142) (A+B) +H = A+ (B +H).

(143) (A+H) +B = A+ (H +B).

(144) (H +A) +B = H + (A+B).

(145) (A+H1) +H2 = A+ (H1 +H2).

(146) (H1 +A) +H2 = H1 + (A+H2).

(147) (H1 +H2) +A = H1 + (H2 +A).

(148) If G is an Abelian additive group, then A+H = H +A.
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Let us consider G, H, and a. The functors: a+H and H+a yielding subsets
of G are defined by terms,

(Def. 23) a+H,

(Def. 24) H + a,

respectively. Now we state the propositions:

(149) x ∈ a + H if and only if there exists g such that x = a + g and g ∈ H.
The theorem is a consequence of (73).

(150) x ∈ H + a if and only if there exists g such that x = g + a and g ∈ H.
The theorem is a consequence of (74).

(151) (a+ b) +H = a+ (b+H).

(152) (a+H) + b = a+ (H + b).

(153) (H + a) + b = H + (a+ b).

(154) (i) a ∈ a+H, and

(ii) a ∈ H + a.
The theorem is a consequence of (92), (149), and (150).

(155) (i) 0G +H = H, and

(ii) H + 0G = H.

(156) (i) 0G + a = {a}, and

(ii) a+ 0G = {a}.
The theorem is a consequence of (64).

(157) (i) a+ ΩG = the carrier of G, and

(ii) ΩG + a = the carrier of G.
The theorem is a consequence of (63).

(158) If G is an Abelian additive group, then a+H = H + a.

(159) a ∈ H if and only if a+H = H. The theorem is a consequence of (149),
(96), (97), and (92).

(160) a+H = b+H if and only if −b+ a ∈ H. The theorem is a consequence
of (78), (83), and (159).

(161) a + H = b + H if and only if a + H meets b + H. The theorem is a
consequence of (154), (149), (97), (13), (12), (96), and (160).

(162) (a+ b) +H ⊆ a+H + (b+H). The theorem is a consequence of (149)
and (92).

(163) (i) H ⊆ a+H + (−a+H), and

(ii) H ⊆ −a+H + (a+H).
The theorem is a consequence of (83) and (162).
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(164) 2 · a+H ⊆ a+H + (a+H). The theorem is a consequence of (26) and
(162).

(165) a ∈ H if and only if H + a = H. The theorem is a consequence of (150),
(96), (97), and (92).

(166) H + a = H + b if and only if b+−a ∈ H. The theorem is a consequence
of (83), (80), and (165).

(167) H + a = H + b if and only if H + a meets H + b. The theorem is a
consequence of (154), (150), (97), (12), (13), (96), and (166).

(168) (H + a) + b ⊆ H + a + (H + b). The theorem is a consequence of (92),
(150), and (80).

(169) (i) H ⊆ H + a+ (H +−a), and

(ii) H ⊆ H +−a+ (H + a).
The theorem is a consequence of (80), (83), and (168).

(170) H + 2 · a ⊆ H + a+ (H + a). The theorem is a consequence of (80), (26),
and (168).

(171) a + H1 ∩ H2 = (a + H1) ∩ (a + H2). The theorem is a consequence of
(149), (128), and (6).

(172) H1 ∩ H2 + a = (H1 + a) ∩ (H2 + a). The theorem is a consequence of
(150), (128), and (6).

(173) There exists a strict subgroup H1 of G such that the carrier of H1 =
a + H2 + −a. The theorem is a consequence of (154), (74), (149), (97),
(150), (16), (73), (56), (96), and (98).

(174) a+H ≈ b+H.
Proof: Define P[object, object] ≡ there exists g1 such that $1 = g1 and
$2 = b+−a+ g1. For every object x such that x ∈ a+H there exists an
object y such that P[x, y]. Consider f being a function such that dom f =
a + H and for every object x such that x ∈ a + H holds P[x, f(x)] from
[4, Sch. 1]. rng f = b+H. f is one-to-one. �

(175) a+H ≈ H + b.
Proof: Define P[object, object] ≡ there exists g1 such that $1 = g1 and
$2 = −a+ g1 + b. For every object x such that x ∈ a+H there exists an
object y such that P[x, y]. Consider f being a function such that dom f =
a + H and for every object x such that x ∈ a + H holds P[x, f(x)] from
[4, Sch. 1]. rng f = H + b. f is one-to-one. �

(176) H + a ≈ H + b. The theorem is a consequence of (175).

(177) (i) H ≈ a+H, and

(ii) H ≈ H + a.
The theorem is a consequence of (83), (174), and (176).
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(178) (i) H = a+H , and

(ii) H = H + a .

(179) Let us consider a finite subgroup H of G. Then there exist finite sets B,
C such that

(i) B = a+H, and

(ii) C = H + a, and

(iii) H = B , and

(iv) H = C .

The theorem is a consequence of (177).

Let us consider G and H. The functors: the left cosets of H and the right
cosets of H yielding families of subsets of G are defined by conditions,

(Def. 25) A ∈ the left cosets of H iff there exists a such that A = a+H,

(Def. 26) A ∈ the right cosets of H iff there exists a such that A = H + a,

respectively. Now we state the propositions:

(180) If G is finite, then the right cosets of H is finite and the left cosets of H
is finite.

(181) (i) H ∈ the left cosets of H, and

(ii) H ∈ the right cosets of H.
The theorem is a consequence of (83).

(182) The left cosets of H ≈ the right cosets of H.
Proof: Define P[object, object] ≡ there exists g such that $1 = g+H and
$2 = H +−g. For every object x such that x ∈ the left cosets of H there
exists an object y such that P[x, y]. Consider f being a function such that
dom f = the left cosets of H and for every object x such that x ∈ the left
cosets of H holds P[x, f(x)] from [4, Sch. 1]. rng f = the right cosets of
H. f is one-to-one. �

(183) (i)
⋃

(the left cosets of H) = the carrier of G, and

(ii)
⋃

(the right cosets of H) = the carrier of G.
The theorem is a consequence of (87), (149), and (150).

(184) The left cosets of 0G = the set of all {a}. The theorem is a consequence
of (156).

(185) The right cosets of 0G = the set of all {a}. The theorem is a consequence
of (156).

Let us consider a strict subgroup H of G. Now we state the propositions:

(186) If the left cosets of H = the set of all {a}, then H = 0G. The theorem
is a consequence of (87), (149), (92), and (6).
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(187) If the right cosets of H = the set of all {a}, then H = 0G. The theorem
is a consequence of (87), (150), (92), and (6).

(188) (i) the left cosets of ΩG = {the carrier of G}, and

(ii) the right cosets of ΩG = {the carrier of G}.
The theorem is a consequence of (157).

Let us consider a strict additive group G and a strict subgroup H of G. Now
we state the propositions:

(189) If the left cosets of H = {the carrier of G}, then H = G. The theorem
is a consequence of (149), (6), and (108).

(190) If the right cosets of H = {the carrier of G}, then H = G. The theorem
is a consequence of (150), (6), and (108).

Let us consider G and H. The functor |• : H| yielding a cardinal number is
defined by the term

(Def. 27) α , where α is the left cosets of H.

Now we state the proposition:

(191) (i) |• : H| = α , and

(ii) |• : H| = β ,
where α is the left cosets of H and β is the right cosets of H.

Let us consider G and H. Assume the left cosets of H is finite. The functor
|• : H|N yielding an element of N is defined by

(Def. 28) there exists a finite set B such that B = the left cosets of H and it = B .

Now we state the proposition:

(192) Suppose the left cosets of H is finite. Then

(i) there exists a finite set B such that B = the left cosets of H and
|• : H|N = B , and

(ii) there exists a finite set C such that C = the right cosets of H and
|• : H|N = C .

The theorem is a consequence of (182).

Let us consider a finite additive group G and a subgroup H of G. Now we
state the propositions:

(193) Lagrange theorem for additive groups:
G = H · |• : H|N. The theorem is a consequence of (179), (174), (161),
and (183).

(194) H | G . The theorem is a consequence of (193).
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(195) Let us consider a finite additive group G, subgroups I, H of G, and a
subgroup J of H. Suppose I = J . Then |• : I|N = |• : J |N · |• : H|N. The
theorem is a consequence of (193).

(196) |• : ΩG|N = 1. The theorem is a consequence of (188).

(197) Let us consider a strict additive group G, and a strict subgroup H of G.
Suppose the left cosets of H is finite and |• : H|N = 1. Then H = G. The
theorem is a consequence of (183) and (189).

(198) |• : 0G| = G .
Proof: Define F(object) = {$1}. Consider f being a function such that
dom f = the carrier of G and for every object x such that x ∈ the carrier
of G holds f(x) = F(x) from [14, Sch. 3]. rng f = the left cosets of 0G. f
is one-to-one by [17, (3)]. �

(199) Let us consider a finite additive group G. Then |• : 0G|N = G . The
theorem is a consequence of (193) and (115).

(200) Let us consider a finite additive group G, and a strict subgroup H of G.
Suppose |• : H|N = G . Then H = 0G. The theorem is a consequence of
(193) and (116).

(201) Let us consider a strict subgroup H of G. Suppose the left cosets of H
is finite and |• : H| = G . Then

(i) G is finite, and

(ii) H = 0G.

The theorem is a consequence of (200).

3. Classes of Conjugation and Normal Subgroups – GROUP 3

From now on x, y, y1, y2 denote sets, G denotes an additive group, a, b, c,
d, g, h denote elements of G, A, B, C, D denote subsets of G, H, H1, H2, H3
denote subgroups of G, n denotes a natural number, and i denotes an integer.

Now we state the propositions:

(202) (i) a+ b+−b = a, and

(ii) a+−b+ b = a, and

(iii) −b+ b+ a = a, and

(iv) b+−b+ a = a, and

(v) a+ (b+−b) = a, and

(vi) a+ (−b+ b) = a, and

(vii) −b+ (b+ a) = a, and
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(viii) b+ (−b+ a) = a.

(203) G is an Abelian additive group if and only if the addition of G is com-
mutative.

(204) 0G is Abelian.

(205) If A ⊆ B and C ⊆ D, then A+ C ⊆ B +D.

(206) If A ⊆ B, then a+A ⊆ a+B and A+ a ⊆ B + a.

(207) If H1 is a subgroup of H2, then a+H1 ⊆ a+H2 and H1 + a ⊆ H2 + a.
The theorem is a consequence of (205).

(208) a+H = {a}+H.

(209) H + a = H + {a}.
(210) (A+ a) +H = A+ (a+H). The theorem is a consequence of (142).

(211) (a+H) +A = a+ (H +A). The theorem is a consequence of (143).

(212) (A+H) + a = A+ (H + a). The theorem is a consequence of (143).

(213) (H + a) +A = H + (a+A). The theorem is a consequence of (144).

(214) (H1 + a) +H2 = H1 + (a+H2).

Let us consider G. The functor SubGrG yielding a set is defined by

(Def. 29) for every object x, x ∈ it iff x is a strict subgroup of G.

Note that SubGrG is non empty.
Now we state the propositions:

(215) Let us consider a strict additive group G. Then G ∈ SubGrG. The
theorem is a consequence of (100).

(216) If G is finite, then SubGrG is finite.
Proof: Define P[object, object] ≡ there exists a strict subgroup H of G
such that $1 = H and $2 = the carrier of H. For every object x such that
x ∈ SubGrG there exists an object y such that P[x, y]. Consider f being
a function such that dom f = SubGrG and for every object x such that
x ∈ SubGrG holds P[x, f(x)] from [4, Sch. 1]. rng f ⊆ 2α, where α is the
carrier of G. f is one-to-one. �

Let us consider G, a, and b. The functor a · b yielding an element of G is
defined by the term

(Def. 30) −b+ a+ b.

Now we state the propositions:

(217) If a · g = b · g, then a = b. The theorem is a consequence of (6).

(218) 0G ·a = 0G.

(219) If a · b = 0G, then a = 0G. The theorem is a consequence of (11) and (7).

(220) a · 0G = a. The theorem is a consequence of (8).
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(221) a · a = a.

(222) (i) a · (−a) = a, and

(ii) (−a) · a = −a.

(223) a · b = a if and only if a + b = b + a. The theorem is a consequence of
(12).

(224) (a+ b) · g = a · g + b · g.

(225) a · g · h = a · (g + h). The theorem is a consequence of (16).

(226) (i) a · b · (−b) = a, and

(ii) a · (−b) · b = a.
The theorem is a consequence of (225) and (220).

(227) (−a) · b = −a · b. The theorem is a consequence of (16).

(228) (n · a) · b = n · (a · b).
(229) (i · a) · b = i · (a · b). The theorem is a consequence of (29) and (227).

(230) If G is an Abelian additive group, then a · b = a. The theorem is a
consequence of (202).

(231) If for every a and b, a · b = a, then G is Abelian. The theorem is a
consequence of (223).

Let us consider G, A, and B. The functor A · B yielding a subset of G is
defined by the term

(Def. 31) {g · h : g ∈ A and h ∈ B}.

Now we state the propositions:

(232) x ∈ A·B if and only if there exists g and there exists h such that x = g ·h
and g ∈ A and h ∈ B.

(233) A ·B 6= ∅ if and only if A 6= ∅ and B 6= ∅. The theorem is a consequence
of (232).

(234) A ·B ⊆ −B +A+B.

(235) (A+B) · C ⊆ A · C +B · C. The theorem is a consequence of (224).

(236) A ·B · C = A · (B + C). The theorem is a consequence of (225).

(237) (−A) ·B = −A ·B. The theorem is a consequence of (227).

(238) {a} ·{b} = {a ·b}. The theorem is a consequence of (49), (64), (233), and
(234).

(239) {a} · {b, c} = {a · b, a · c}.
(240) {a, b} · {c} = {a · c, b · c}.
(241) {a, b} · {c, d} = {a · c, a · d, b · c, b · d}.

Let us consider G, A, and g. The functors: A · g and g · A yielding subsets
of G are defined by terms,
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(Def. 32) A · {g},
(Def. 33) {g} ·A,

respectively. Now we state the propositions:

(242) x ∈ A · g if and only if there exists h such that x = h · g and h ∈ A.

(243) x ∈ g ·A if and only if there exists h such that x = g · h and h ∈ A.

(244) g ·A ⊆ −A+ g +A. The theorem is a consequence of (243) and (74).

(245) A ·B · g = A · (B + g).

(246) A · g ·B = A · (g +B).

(247) g ·A ·B = g · (A+B).

(248) A · a · b = A · (a+ b). The theorem is a consequence of (236) and (64).

(249) a ·A · b = a · (A+ b).

(250) a · b ·A = a · (b+A). The theorem is a consequence of (238) and (236).

(251) A · g = −g + A + g. The theorem is a consequence of (234), (49), (74),
(73), and (242).

(252) (A+B) · a ⊆ A · a+B · a.

(253) A · 0G = A. The theorem is a consequence of (251), (83), and (8).

(254) If A 6= ∅, then 0G ·A = {0G}. The theorem is a consequence of (243) and
(218).

(255) (i) A · a · (−a) = A, and

(ii) A · (−a) · a = A.
The theorem is a consequence of (248) and (253).

(256) G is an Abelian additive group if and only if for every A and B such
that B 6= ∅ holds A ·B = A. The theorem is a consequence of (230), (238),
and (231).

(257) G is an Abelian additive group if and only if for every A and g, A ·g = A.
The theorem is a consequence of (256), (238), and (231).

(258) G is an Abelian additive group if and only if for every A and g such that
A 6= ∅ holds g · A = {g}. The theorem is a consequence of (256), (238),
and (231).

Let us consider G, H, and a. The functor H · a yielding a strict subgroup of
G is defined by

(Def. 34) the carrier of it = H · a.

Now we state the propositions:

(259) x ∈ H · a if and only if there exists g such that x = g · a and g ∈ H. The
theorem is a consequence of (242).
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(260) The carrier of H · a = −a + H + a. The theorem is a consequence of
(251).

(261) H · a · b = H · (a+ b). The theorem is a consequence of (248) and (105).

Let us consider a strict subgroup H of G. Now we state the propositions:

(262) H · 0G = H. The theorem is a consequence of (253) and (105).

(263) (i) H · a · (−a) = H, and

(ii) H · (−a) · a = H.
The theorem is a consequence of (261) and (262).

Now we state the propositions:

(264) (H1 ∩H2) · a = H1 · a∩ (H2 · a). The theorem is a consequence of (259),
(128), and (217).

(265) H = H · a .
Proof: Define F(element of G) = $1 ·a. Consider f being a function from
the carrier of G into the carrier of G such that for every g, f(g) = F(g)
from [15, Sch. 4]. Set g = f�(the carrier of H). rng g = the carrier of H · a
by [46, (62)], (88), (242), [14, (47)]. g is one-to-one by [46, (62)], (88), [14,
(47)], (217). �

(266) H is finite if and only if H · a is finite. The theorem is a consequence of
(265).

Let us consider G and a. Let H be a finite subgroup of G. Observe that H ·a
is finite.

Now we state the propositions:

(267) Let us consider a finite subgroup H of G. Then H = H · a .

(268) 0G · a = 0G. The theorem is a consequence of (238) and (218).

(269) Let us consider a strict subgroup H of G. If H · a = 0G, then H = 0G.
The theorem is a consequence of (266), (115), (265), and (116).

(270) Let us consider an additive group G, and an element a of G. Then
ΩG · a = ΩG. The theorem is a consequence of (225), (220), and (259).

(271) Let us consider a strict subgroup H of G. If H · a = G, then H = G.
The theorem is a consequence of (259), (217), and (108).

(272) |• : H| = |• : H · a|.
Proof: Define P[object, object] ≡ there exists b such that $1 = b + H

and $2 = b · a+H · a. For every object x such that x ∈ the left cosets of
H there exists an object y such that P[x, y]. Consider f being a function
such that dom f = the left cosets of H and for every object x such that
x ∈ the left cosets of H holds P[x, f(x)] from [4, Sch. 1]. For every x, y1,
and y2 such that x ∈ the left cosets of H and P[x, y1] and P[x, y2] holds
y1 = y2. rng f = the left cosets of H · a. f is one-to-one. �
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(273) If the left cosets of H is finite, then |• : H|N = |• : H · a|N. The theorem
is a consequence of (272).

(274) If G is an Abelian additive group, then for every strict subgroup H of G
and for every a, H · a = H. The theorem is a consequence of (260), (158),
(153), (155), and (105).

Let us consider G, a, and b. We say that a and b are conjugated if and only
if

(Def. 35) there exists g such that a = b · g.

Now we state the proposition:

(275) a and b are conjugated if and only if there exists g such that b = a · g.
The theorem is a consequence of (226).

Let us consider G, a, and b. Observe that a and b are conjugated is reflexive
and symmetric.

Now we state the propositions:

(276) If a and b are conjugated and b and c are conjugated, then a and c are
conjugated. The theorem is a consequence of (225).

(277) If a and 0G are conjugated or 0G and a are conjugated, then a = 0G.
The theorem is a consequence of (275) and (219).

(278) a · ΩG = {b : a and b are conjugated}. The theorem is a consequence of
(243).

Let us consider G and a. The functor a• yielding a subset of G is defined by
the term

(Def. 36) a · ΩG.

Now we state the propositions:

(279) x ∈ a• if and only if there exists b such that b = x and a and b are
conjugated. The theorem is a consequence of (278).

(280) a ∈ b• if and only if a and b are conjugated. The theorem is a consequence
of (279).

(281) a · g ∈ a•.
(282) a ∈ a•.
(283) If a ∈ b•, then b ∈ a•. The theorem is a consequence of (280).

(284) a• = b• if and only if a• meets b•. The theorem is a consequence of (280),
(279), and (276).

(285) a• = {0G} if and only if a = 0G. The theorem is a consequence of (280),
(279), and (277).

(286) a• + A = A + a•. The theorem is a consequence of (280), (202), (226),
(224), (221), (225), (279), and (275).
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Let us consider G, A, and B. We say that A and B are conjugated if and
only if

(Def. 37) there exists g such that A = B · g.

Now we state the propositions:

(287) A and B are conjugated if and only if there exists g such that B = A · g.
The theorem is a consequence of (255).

(288) A and A are conjugated. The theorem is a consequence of (253).

(289) If A and B are conjugated, then B and A are conjugated. The theorem
is a consequence of (255).

Let us consider G, A, and B. Let us observe that A and B are conjugated
is reflexive and symmetric.

Now we state the propositions:

(290) If A and B are conjugated and B and C are conjugated, then A and C

are conjugated. The theorem is a consequence of (248).

(291) {a} and {b} are conjugated if and only if a and b are conjugated.
Proof: If {a} and {b} are conjugated, then a and b are conjugated by
(287), (238), (275), [17, (3)]. Consider g such that a · g = b. {b} = {a} · g.
�

(292) If A and H1 are conjugated, then there exists a strict subgroup H2 of G
such that the carrier of H2 = A.

Let us consider G and A. The functor A• yielding a family of subsets of G
is defined by the term

(Def. 38) {B : A and B are conjugated}.

Now we state the propositions:

(293) x ∈ A• if and only if there exists B such that x = B and A and B are
conjugated.

(294) A ∈ B• if and only if A and B are conjugated.

(295) A · g ∈ A•. The theorem is a consequence of (287).

(296) A ∈ A•.
(297) If A ∈ B•, then B ∈ A•. The theorem is a consequence of (294).

(298) A• = B• if and only if A• meets B•. The theorem is a consequence of
(294) and (290).

(299) {a}• = {{b} : b ∈ a•}. The theorem is a consequence of (287), (275),
(280), (238), and (291).

(300) If G is finite, then A• is finite.

Let us consider G, H1, and H2. We say that H1 and H2 are conjugated if
and only if
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(Def. 39) there exists g such that the additive magma of H1 = H2 · g.

Now we state the propositions:

(301) Let us consider strict subgroups H1, H2 of G. Then H1 and H2 are
conjugated if and only if there exists g such that H2 = H1 ·g. The theorem
is a consequence of (263).

(302) Let us consider a strict subgroup H1 of G. Then H1 and H1 are conju-
gated. The theorem is a consequence of (262).

(303) Let us consider strict subgroups H1, H2 of G. If H1 and H2 are conju-
gated, then H2 and H1 are conjugated. The theorem is a consequence of
(263).

Let us consider G. Let H1, H2 be strict subgroups of G. Observe that H1
and H2 are conjugated is reflexive and symmetric.

Now we state the proposition:

(304) Let us consider strict subgroups H1, H2 of G. Suppose H1 and H2 are
conjugated and H2 and H3 are conjugated. Then H1 and H3 are conjuga-
ted. The theorem is a consequence of (261).

In the sequel L denotes a subset of SubGrG.
Let us consider G and H. The functor H• yielding a subset of SubGrG is

defined by

(Def. 40) for every object x, x ∈ it iff there exists a strict subgroup H1 of G such
that x = H1 and H and H1 are conjugated.

Now we state the propositions:

(305) If x ∈ H•, then x is a strict subgroup of G.

(306) Let us consider strict subgroups H1, H2 of G. Then H1 ∈ H2
• if and

only if H1 and H2 are conjugated.

Let us consider a strict subgroup H of G. Now we state the propositions:

(307) H · g ∈ H•. The theorem is a consequence of (301).

(308) H ∈ H•.
Let us consider strict subgroups H1, H2 of G. Now we state the propositions:

(309) If H1 ∈ H2•, then H2 ∈ H1•. The theorem is a consequence of (306).

(310) H1
• = H2

• if and only if H1• meets H2•. The theorem is a consequence
of (308), (305), (306), and (304).

Now we state the propositions:

(311) If G is finite, then H• is finite.

(312) Let us consider a strict subgroup H1 of G. Then H1 and H2 are conju-
gated if and only if H1 and H2 are conjugated.
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Let us consider G. Let I1 be a subgroup of G. We say that I1 is normal if
and only if

(Def. 41) for every a, I1 · a = the additive magma of I1.

Let us note that there exists a subgroup of G which is strict and normal.
From now on N2 denotes a normal subgroup of G.
Now we state the propositions:

(313) (i) 0G is normal, and

(ii) ΩG is normal.

(314) Let us consider strict, normal subgroups N1, N2 of G. Then N1 ∩N2 is
normal. The theorem is a consequence of (264).

(315) Let us consider a strict subgroup H of G. If G is an Abelian additive
group, then H is normal.

(316) H is a normal subgroup of G if and only if for every a, a+H = H + a.
The theorem is a consequence of (260), (79), (151), (83), (153), (155), and
(105).

Let us consider a subgroup H of G. Now we state the propositions:

(317) H is a normal subgroup of G if and only if for every a, a+H ⊆ H + a.
The theorem is a consequence of (316), (205), (151), (155), (152), (80),
and (83).

(318) H is a normal subgroup of G if and only if for every a, H + a ⊆ a+H.
The theorem is a consequence of (316), (205), (151), (155), (152), (80),
and (83).

(319) H is a normal subgroup of G if and only if for every A, A+H = H +A.
The theorem is a consequence of (140), (149), (316), (150), and (141).

Let us consider a strict subgroup H of G. Now we state the propositions:

(320) H is a normal subgroup of G if and only if for every a, H is a subgroup
of H · a. The theorem is a consequence of (100), (260), (80), (83), (207),
and (318).

(321) H is a normal subgroup of G if and only if for every a, H ·a is a subgroup
of H. The theorem is a consequence of (100), (260), (80), (83), (207), and
(317).

(322) H is a normal subgroup of G if and only if H• = {H}.
Proof: If H is a normal subgroup of G, then H• = {H} by (301), (308),
[17, (31)]. H is normal. �

(323) H is a normal subgroup of G if and only if for every a such that a ∈ H
holds a• ⊆ H. The theorem is a consequence of (279), (275), (259), and
(226).
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Let us consider strict, normal subgroups N1, N2 of G. Now we state the
propositions:

(324) N1 +N2 = N2 +N1.

(325) There exists a strict, normal subgroup N of G such that the carrier of
N = N1 + N2. The theorem is a consequence of (124), (75), (316), (76),
and (77).

Now we state the propositions:

(326) Let us consider a normal subgroup N of G. Then the left cosets of
N = the right cosets of N . The theorem is a consequence of (316).

(327) Let us consider a subgroup H of G. Suppose the left cosets of H is finite
and |• : H|N = 2. Then H is a normal subgroup of G.
Proof: There exists a finite set B such that B = the left cosets of
H and |• : H|N = B . Consider x, y being objects such that x 6= y

and the left cosets of H = {x, y}. H ∈ the left cosets of H. Consider
z3 being an object such that {x, y} = {H, z3}. H misses z3 by (155),
(161), [34, (29)], [17, (4)].

⋃
(the left cosets of H) = the carrier of G and⋃

(the left cosets of H) = H ∪ z3.
⋃

(the right cosets of H) = the carrier
of G and z3 = (the carrier of G) \H. There exists a finite set C such that
C = the right cosets of H and |• : H|N = C . Consider z1, z2 being objects
such that z1 6= z2 and the right cosets of H = {z1, z2}. H ∈ the right
cosets of H. Consider z4 being an object such that {z1, z2} = {H, z4}. H
misses z4 by (155), (167), [34, (29)], [17, (4)]. �

Let us consider G and A. The functor N(A) yielding a strict subgroup of G
is defined by

(Def. 42) the carrier of it = {h : A · h = A}.
Now we state the propositions:

(328) x ∈ N(A) if and only if there exists h such that x = h and A · h = A.

(329) A• = |• : N(A)|.
Proof: Define P[object, object] ≡ there exists a such that $1 = A · a and
$2 = N(A) + a. For every object x such that x ∈ A• there exists an object
y such that P[x, y]. Consider f being a function such that dom f = A•

and for every object x such that x ∈ A• holds P[x, f(x)] from [4, Sch. 1].
For every x, y1, and y2 such that x ∈ A• and P[x, y1] and P[x, y2] holds
y1 = y2. rng f = the right cosets of N(A). f is one-to-one. �

(330) Suppose A• is finite or the left cosets of N(A) is finite. Then there exists
a finite set C such that

(i) C = A•, and

(ii) C = |• : N(A)|N.
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The theorem is a consequence of (329).

(331) a• = |• : N({a})|.
Proof: Define F(object) = {$1}. Consider f being a function such that
dom f = a• and for every object x such that x ∈ a• holds f(x) = F(x)
from [14, Sch. 3]. rng f = {a}•. f is one-to-one by [17, (3)]. �

(332) Suppose a• is finite or the left cosets of N({a}) is finite. Then there exists
a finite set C such that

(i) C = a•, and

(ii) C = |• : N({a})|N.

The theorem is a consequence of (331).

Let us consider G and H. The functor N(H) yielding a strict subgroup of G
is defined by the term

(Def. 43) N(H).

Let us consider a strict subgroup H of G. Now we state the propositions:

(333) x ∈ N(H) if and only if there exists h such that x = h and H · h = H.
The theorem is a consequence of (328).

(334) H• = |• : N(H)|.
Proof: Define P[object, object] ≡ there exists a strict subgroup H1 of G
such that $1 = H1 and $2 = H1. For every object x such that x ∈ H• there
exists an object y such that P[x, y]. Consider f being a function such that
dom f = H• and for every object x such that x ∈ H• holds P[x, f(x)]
from [4, Sch. 1]. rng f = H

•. f is one-to-one. �

(335) Suppose H• is finite or the left cosets of N(H) is finite. Then there exists
a finite set C such that

(i) C = H•, and

(ii) C = |• : N(H)|N.

The theorem is a consequence of (334).

Now we state the proposition:

(336) Let us consider a strict additive group G, and a strict subgroup H of G.
Then H is a normal subgroup of G if and only if N(H) = G. The theorem
is a consequence of (333) and (108).

Let us consider a strict additive group G. Now we state the propositions:

(337) N(0G) = G. The theorem is a consequence of (313) and (336).

(338) N(ΩG) = G. The theorem is a consequence of (313) and (336).
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4. Topological Groups – TOPGRP 1

In the sequel S, R denote 1-sorted structures, X denotes a subset of R, T
denotes a topological structure, x denotes a set, H denotes a non empty additive
magma, P , Q, P1, Q1 denote subsets of H, and h denotes an element of H.

Now we state the proposition:

(339) If P ⊆ P1 and Q ⊆ Q1, then P +Q ⊆ P1 +Q1.

Let us assume that P ⊆ Q. Now we state the propositions:

(340) P + h ⊆ Q+ h. The theorem is a consequence of (74).

(341) h+ P ⊆ h+Q. The theorem is a consequence of (73).

From now on a denotes an element of G.
Now we state the propositions:

(342) a ∈ −A if and only if −a ∈ A.

(343) A ⊆ B if and only if −A ⊆ −B.

(344) (add inverseG)◦A = −A.

(345) (add inverseG)−1(A) = −A.

(346) add inverseG is one-to-one. The theorem is a consequence of (9).

(347) rng add inverseG = the carrier of G.

Let G be an additive group. One can verify that add inverseG is one-to-one
and onto.

Now we state the propositions:

(348) (add inverseG)−1 = add inverseG.

(349) (The addition of H)◦(P ×Q) = P +Q.

Let G be a non empty additive magma and a be an element of G. The
functors: a+ and +a yielding functions from G into G are defined by conditions,

(Def. 44) for every element x of G, a+(x) = a+ x,

(Def. 45) for every element x of G, +a(x) = x+ a,

respectively. Let G be an additive group. One can verify that a+ is one-to-one
and onto and +a is one-to-one and onto.

Now we state the propositions:

(350) (h+)◦P = h+ P . The theorem is a consequence of (73).

(351) (+h)◦P = P + h. The theorem is a consequence of (74).

(352) (a+)−1 = (−a)+.

(353) (+a)−1 = +(−a).

We consider topological additive group structures which extend additive
magmas and topological structures and are systems

〈〈a carrier, an addition, a topology〉〉
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where the carrier is a set, the addition is a binary operation on the carrier, the
topology is a family of subsets of the carrier.

Let A be a non empty set, R be a binary operation on A, and T be a family
of subsets of A. Let us observe that 〈〈A,R, T 〉〉 is non empty.

Let x be a set, R be a binary operation on {x}, and T be a family of
subsets of {x}. Observe that 〈〈{x}, R, T 〉〉 is trivial and every 1-element additive
magma is additive group-like, add-associative, and Abelian and there exists a
topological additive group structure which is strict and non empty and there
exists a topological additive group structure which is strict, topological space-
like, and 1-element.

Let G be an additive group-like, add-associative, non empty topological
additive group structure. We say that G is inverse-continuous if and only if

(Def. 46) add inverseG is continuous.

Let G be a topological space-like topological additive group structure. We
say that G is continuous if and only if

(Def. 47) for every function f from G × G into G such that f = the addition of
G holds f is continuous.

One can check that there exists a topological space-like, additive group-like,
add-associative, 1-element topological additive group structure which is strict,
Abelian, inverse-continuous, and continuous.

A semi additive topological group is a topological space-like, additive group-
like, add-associative, non empty topological additive group structure.

A topological additive group is an inverse-continuous, continuous semi ad-
ditive topological group. Now we state the propositions:

(354) Let us consider a continuous, non empty, topological space-like topolo-
gical additive group structure T , elements a, b of T , and a neighbourhood
W of a + b. Then there exists an open neighbourhood A of a and there
exists an open neighbourhood B of b such that A+B ⊆W .

(355) Let us consider a topological space-like, non empty topological additive
group structure T . Suppose for every elements a, b of T for every neighbo-
urhood W of a + b, there exists a neighbourhood A of a and there exists
a neighbourhood B of b such that A+B ⊆W . Then T is continuous.
Proof: For every point W of T × T and for every neighbourhood G of
f(W ), there exists a neighbourhood H of W such that f◦H ⊆ G by [32,
(10)], (349). �

(356) Let us consider an inverse-continuous semi additive topological group T ,
an element a of T , and a neighbourhood W of −a. Then there exists an
open neighbourhood A of a such that −A ⊆W .

(357) Let us consider a semi additive topological group T . Suppose for every
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element a of T for every neighbourhood W of −a, there exists a neigh-
bourhood A of a such that −A ⊆ W . Then T is inverse-continuous. The
theorem is a consequence of (344).

(358) Let us consider a topological additive group T , elements a, b of T , and a
neighbourhood W of a+−b. Then there exists an open neighbourhood A of
a and there exists an open neighbourhood B of b such that A+−B ⊆W .
The theorem is a consequence of (354) and (356).

(359) Let us consider a semi additive topological group T . Suppose for every
elements a, b of T for every neighbourhood W of a + −b, there exists a
neighbourhood A of a and there exists a neighbourhood B of b such that
A+−B ⊆W . Then T is a topological additive group.
Proof: For every element a of T and for every neighbourhood W of −a,
there exists a neighbourhood A of a such that −A ⊆ W by [28, (4)]. For
every elements a, b of T and for every neighbourhood W of a + b, there
exists a neighbourhood A of a and there exists a neighbourhood B of b
such that A+B ⊆W . �

LetG be a continuous, non empty, topological space-like topological additive
group structure and a be an element of G. One can check that a+ is continuous
and +a is continuous.

Let us consider a continuous semi additive topological group G and an ele-
ment a of G. Now we state the propositions:

(360) a+ is a homeomorphism of G. The theorem is a consequence of (352).

(361) +a is a homeomorphism of G. The theorem is a consequence of (353).

Let G be a continuous semi additive topological group and a be an element
of G. The functors: a+ and +a yield homeomorphisms of G. Now we state the
proposition:

(362) Let us consider an inverse-continuous semi additive topological group G.
Then add inverseG is a homeomorphism of G. The theorem is a consequ-
ence of (348).

Let G be an inverse-continuous semi additive topological group. Let us note
that the functor add inverseG yields a homeomorphism of G. Let us note that
every semi additive topological group which is continuous is also homogeneous.

Let us consider a continuous semi additive topological group G, a closed
subset F of G, and an element a of G. Now we state the propositions:

(363) F + a is closed. The theorem is a consequence of (351).

(364) a+ F is closed. The theorem is a consequence of (350).

Let G be a continuous semi additive topological group, F be a closed subset
of G, and a be an element of G. Let us note that F + a is closed and a + F is
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closed.
Now we state the proposition:

(365) Let us consider an inverse-continuous semi additive topological group
G, and a closed subset F of G. Then −F is closed. The theorem is a
consequence of (344).

Let G be an inverse-continuous semi additive topological group and F be a
closed subset of G. One can verify that −F is closed.

Let us consider a continuous semi additive topological group G, an open
subset O of G, and an element a of G. Now we state the propositions:

(366) O + a is open. The theorem is a consequence of (351).

(367) a+O is open. The theorem is a consequence of (350).

Let G be a continuous semi additive topological group, A be an open subset
of G, and a be an element of G. One can check that A+ a is open and a+A is
open.

Now we state the proposition:

(368) Let us consider an inverse-continuous semi additive topological group
G, and an open subset O of G. Then −O is open. The theorem is a
consequence of (344).

Let G be an inverse-continuous semi additive topological group and A be an
open subset of G. Observe that −A is open.

Let us consider a continuous semi additive topological group G and subsets
A, O of G.

Let us assume that O is open. Now we state the propositions:

(369) O +A is open.
Proof: Int(O +A) = O +A by [48, (16)], (74), [48, (22)]. �

(370) A+O is open.
Proof: Int(A+O) = A+O by [48, (16)], (73), [48, (22)]. �

Let G be a continuous semi additive topological group, A be an open subset
of G, and B be a subset of G. Note that A+B is open and B +A is open.

Now we state the propositions:

(371) Let us consider an inverse-continuous semi additive topological group G,
a point a of G, and a neighbourhood A of a. Then −A is a neighbourhood
of −a. The theorem is a consequence of (343).

(372) Let us consider a topological additive group G, a point a of G, and a
neighbourhood A of a+−a. Then there exists an open neighbourhood B
of a such that B + −B ⊆ A. The theorem is a consequence of (358) and
(342).
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(373) Let us consider an inverse-continuous semi additive topological group
G, and a dense subset A of G. Then −A is dense. The theorem is a
consequence of (345).

Let G be an inverse-continuous semi additive topological group and A be a
dense subset of G. Observe that −A is dense.

Let us consider a continuous semi additive topological group G, a dense
subset A of G, and a point a of G. Now we state the propositions:

(374) a+A is dense. The theorem is a consequence of (350).

(375) A+ a is dense. The theorem is a consequence of (351).

Let G be a continuous semi additive topological group, A be a dense subset
of G, and a be a point of G. Let us observe that A + a is dense and a + A is
dense.

Now we state the proposition:

(376) Let us consider a topological additive group G, a basis B of 0G, and a
dense subset M of G. Then {V +x, where V is a subset of G, x is a point
of G : V ∈ B and x ∈M} is a basis of G.
Proof: Set Z = {V +x, where V is a subset of G, x is a point of G : V ∈
B and x ∈ M}. Z ⊆ the topology of G by [38, (12)]. For every subset W
of G such that W is open for every point a of G such that a ∈ W there
exists a subset V of G such that V ∈ Z and a ∈ V and V ⊆ W by (8),
[28, (3)], (74), (372). Z ⊆ 2α, where α is the carrier of G. �

One can check that every topological additive group is regular.

Acknowledgement: The author wants to express his gratitude to the ano-
nymous referee for his/her work on merging the three initial articles.
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