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Summary. We formalize that the image of a semiring of sets [I7] by an
injective function is a semiring of sets. We offer a non-trivial example of a semiring
of sets in a topological space [2I]. Finally, we show that the finite product of a
semiring of sets is also a semiring of sets [2I] and that the finite product of a
classical semiring of sets [8] is a classical semiring of sets. In this case, we use
here the notation from the book of Aliprantis and Border [].
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1. PRELIMINARIES

From now on X1, Xo, X3, X4 denote sets.
Now we state the propositions:

(1) (1) XiNXs\ (X2UX3) misses X1 \ ((X2U X3) U Xy), and
(i) X1 N X4\ (X2U X3) misses (X1 N X3)N Xy \ Xo, and
(i) X7\ ((X2U X3) U Xy) misses (X1 N X3)N Xy \ Xo.

(2) (X1 \ X2) \ (X3\ Xy) = (X1 \ (X2U X3)) U (X1 N Xy \ Xo).

(3) (Xa\(X2UX3))U(X1NXy\ Xo) = ((X1NXyg \ (X2UX3))U (X1 \ ((X2U
X3)UXy))) U ((X1NX3)N Xy \ Xo).
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(4) (X1 \ X2) \ (X3\ Xy) = (X1 N Xg\ (X2 UX3)) U (X7 \ ((X2UX3) U
X4))) U ((X1 N X3) N X4\ X2). The theorem is a consequence of (2) and
(3)-

(5) U{X1, X2, X3} = (X1 U Xp) U X3,

2. THE DIRECT IMAGE OF A SEMIRING OF SETS BY AN INJECTIVE
FuncTIiON

Now we state the proposition:
(6) Let us consider sets T', S, a function f from 7 into S, and a family G of
subsets of T'. Then f°G = {f°A, where A is a subset of T': A € G}.

Let T, S be sets, f be a function from T into S, and G be a finite family of
subsets of T'. Let us note that f°G is finite.

Let f be a function and A be a countable set. Let us note that f°A is
countable.

The scheme FraenkelCountable deals with a set A and a set X and a unary
functor F yielding a set and states that

(Sch. 1) {F(w), where w is an element of A : w € X'} is countable

provided
e X is countable.

Let T, S be sets, f be a function from 7T into S, and G be a countable family
of subsets of T'. Let us note that f°G is countable.

Let X, Y be sets, S be a family of subsets of X with the empty element, and
f be a function from X into Y. One can verify that f°.S has the empty element.

Now we state the propositions:

(7) Let us consider sets X, Y, a function f from X into Y, and families
S1, So of subsets of X. If S; C Sy, then f°S; C f°Ss. The theorem is a
consequence of (6).

(8) Let us consider sets X, Y, a N-closed family S of subsets of X, and a
function f from X into Y. Suppose f is one-to-one. Then f°S is a N-closed
family of subsets of Y.

(9) Let us consider non empty sets X, Y, a Nyy-closed family S of subsets
of X, and a function f from X into Y. Suppose f is one-to-one. Then f°S
is a Nyp-closed family of subsets of Y.

(10) Let us consider non empty sets X, Y, a \%p—closed family S of subsets of
X, and a function f from X into Y. Suppose f is one-to-one and f°S is
not empty. Then f°S is a \%p-closed family of subsets of Y.
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PROOF: Reconsider f; = f°S as a family of subsets of Y. f; is \%p-closed
by [10, (64), (87)], [LT, (103)], [26, (123)]. O

(11) Let us consider non empty sets X, Y, a \ s)-closed family S of subsets of
X, and a function f from X into Y. Suppose f is one-to-one. Then f°S is
a \ sp-closed family of subsets of Y.

(12) Let us consider non empty sets X, Y, a semiring S of sets of X, and a
function f from X into Y. If f is one-to-one, then f°S is a semiring of sets
of Y.

3. THE SET OF SET DIFFERENCES OF ALL ELEMENTS OF A SEMIRING OF
SETS

Now we state the proposition:

(13) Let us consider a l-element finite sequence X. Suppose X (1) is not
empty. Then there exists a function I from X (1) into [[ X such that

(i) I is one-to-one and onto, and
(ii) for every object = such that x € X (1) holds I(z) = (z).

Let X be a set. Observe that 2 is N-closed and there exists a N-closed
family of subsets of X which has the empty element and there exists a N-closed
family of subsets of X with the empty element which is U-closed.

Let X, Y be non empty sets. Let us observe that X \\ Y is non empty.

Now we state the proposition:

(14) Let us consider a set X, and a family S of subsets of X with the empty
element. Then S'\\ S = the set of all A\ B where A, B are elements of S.

Let X be a set and S be a family of subsets of X with the empty element.
The functor semidiff S yielding a family of subsets of X is defined by the term

(Def. 1) S\ S.
Now we state the proposition:
(15) Let us consider a set X, a family S of subsets of X with the empty ele-

ment, and an object x. Suppose = € semidiff S. Then there exist elements
A, B of S such that z = A\ B. The theorem is a consequence of (14).

Let X be a set and S be a family of subsets of X with the empty element.
Observe that semidiff S has the empty element.

Let S be a N-closed, U-closed family of subsets of X with the empty element.
Note that semidiff S is N-closed and \ f,-closed.

Now we state the proposition:

(16) Let us consider a set X, and a N-closed, U-closed family S of subsets of
X with the empty element. Then semidiff S is a semiring of sets of X.
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4. THE COLLECTION OF ALL LocALLY CLOSED SETS LC(X,T) OF A
TOPOLOGICAL SPACE (X, 7)

Let T be a non empty topological space. The functor LC(T) yielding a family
of subsets of Qp is defined by the term
(Def. 2) {AN B, where A, B are subsets of T : A is open and B is closed}.
Let us note that LC(T') is N-closed and \ y,-closed and has the empty element.

(17) Let us consider a non empty topological space T. Then LC(T) is a se-
miring of sets of Q.

5. THE FINITE PRODUCT OF SEMIRINGS OF SETS

Let n be a natural number. Note that there exists an n-element finite sequ-
ence which is non-empty.
Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.
A semiring family of X is an n-element finite sequence and is defined by
(Def. 3) for every natural number i such that i € Segn holds it(i) is a semiring
of sets of X (7).
In the sequel n denotes a non zero natural number and X denotes a non-
empty, n-element finite sequence. Now we state the propositions:
(18) Let us consider a semiring family S of X. Then dom S = dom X.
(19) Let us consider a semiring family S of X, and a natural number 4. If
i € Segn, then J(S(7)) C X (4).
(20) Let us consider a function f, and an n-element finite sequence X. If
f €J]X, then f is an n-element finite sequence.
Let n be a non zero natural number and X be an n-element finite sequence.
The functor SemiringProduct X yielding a set is defined by
(Def. 4) for every object f, f € it iff there exists a function g such that f =[]g
and g € [[ X.
Now we state the propositions:
(21) Let us consider an n-element finite sequence X.
Then SemiringProduct X C a(UUx)dom

(22) Let us consider a semiring family S of X. Then SemiringProduct S is a
family of subsets of [ X.
PRrROOF: Reconsider S; = SemiringProduct S as a subset of 2UUS)
Sy 21X by [3,(9)], (18), [ (89)], (19). O

dom S
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(23) Let us consider a non-empty, 1-element finite sequence X. Then [[ X =
the set of all (z) where x is an element of X (1). The theorem is a conse-
quence of (13).

One can check that [](0) is empty. Now we state the propositions:

(24) Let us consider a non empty set x. Then [[(z) = the set of all (y) where
y is an element of z. The theorem is a consequence of (23).

(25) Let us consider a non-empty, 1-element finite sequence X, and a semi-
ring family S of X. Then SemiringProduct S = the set of all [](s) where
s is an element of S(1). PROOF: S is non-empty by (18), [7, (3)]. [IS =
the set of all (s) where s is an element of S(1). O
Let us consider sets z, y. Now we state the propositions:
(26) TI{(z) NTI{y) = [I{(x Ny). The theorem is a consequence of (24).
(27) TLz)\II{y) = I1{= \ y). The theorem is a consequence of (24).

Let us consider a non-empty, 1-element finite sequence X and a semiring
family S of X. Now we state the propositions:

(28) the set of all [[(s) where s is an element of S(1) is a semiring of sets
of the set of all (x) where z is an element of X(1). The theorem is a
consequence of (24), (26), and (27).

(29) SemiringProduct S is a semiring of sets of [] X. The theorem is a con-
sequence of (23), (25), and (28).

(30) Let us consider sets X1, X9, a semiring S; of sets of X;, and a semiring
Sy of sets of Xs. Then the set of all s; X so where s1 is an element of Sq,
so is an element of S5 is a semiring of sets of X x Xo.

(31) Let us consider a non-empty, n-element finite sequence X3, a non-empty,
1-element finite sequence X7, a semiring family S35 of X3, and a semiring
family S1 of X;. Suppose SemiringProduct Ss is a semiring of sets of [| X3
and SemiringProduct S is a semiring of sets of [][ X;. Let us consider a
family Sy of subsets of [[ X3 x [[ X1. Suppose S4 = the set of all s; x
so where s1 is an element of SemiringProduct S3, s9 is an element of
SemiringProduct S;. Then there exists a function I from [] X3 x [[ X1
into [[(X3 ™ X1) such that

(i) I is one-to-one and onto, and

(ii) for every finite sequences x, y such that x € [[ X3 and y € [[ X3
holds I(z,y) = = "y, and

(iii) I°Sy = SemiringProduct(Ss ™~ Sy).

Proor: J(S1(1)) € X1(1). Consider I being a function from [] X3 x [T X;
into [T(X3 ™ X7) such that I is one-to-one and [ is onto and for every finite
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sequences x, y such that € [[ X3 and y € [[ X3 holds I(x,y) = = " y.
I°S, = SemiringProduct(Ss ~ S1) by (25), (20), [7, (89)], [24, (153)]. O

(32) Let us consider a non-empty, n-element finite sequence X3, a non-empty,
1-element finite sequence X;, a semiring family S3 of X3, and a semi-
ring family S7 of Xi. Suppose SemiringProduct S5 is a semiring of sets
of J[ X3 and SemiringProduct S; is a semiring of sets of []X;. Then
SemiringProduct(S37~57) is a semiring of sets of [](X3~X1). The theorem
is a consequence of (30), (31), (9), and (10).

(33) Let us consider a semiring family S of X. Then SemiringProduct S is a
semiring of sets of [] X. PROOF: Define P[non zero natural number] = for
every non-empty, $;1-element finite sequence X for every semiring family
S of X, SemiringProduct S is a semiring of sets of [[ X. P[1]. For every
non zero natural number n, P[n] from [5, Sch. 10]. O

Let n be a non zero natural number, X be a non-empty, n-element finite
sequence, and S be a semiring family of X. We say that S is N-closed yielding
if and only if

(Def. 5) for every natural number i such that ¢ € Segn holds S(7) is N-closed.
Note that there exists a semiring family of X which is N-closed yielding.

6. THE FINITE PRODUCT OF CLASSICAL SEMIRINGS OF SETS

Let X be a set. Note that there exists a semiring of sets of X which is
N-closed.

Let us consider a non-empty, 1-element finite sequence X and a N-closed
yielding semiring family S of X. Now we state the propositions:

(34) the set of all [](s) where s is an element of S(1) is a N-closed semiring
of sets of the set of all (z) where = is an element of X (1). The theorem is
a consequence of (26) and (28).

(35) SemiringProduct S is a N-closed semiring of sets of [ X. The theorem
is a consequence of (23), (25), and (34).

Now we state the propositions:

(36) Let us consider sets X1, Xo, a N-closed semiring S; of sets of X3, and a
N-closed semiring So of sets of Xs5. Then the set of all s1 x so where s is
an element of S, s9 is an element of S is a N-closed semiring of sets of
X1 X X2.

(37) Let us consider a non-empty, n-element finite sequence X3, a non-empty,
1-element finite sequence X1, a N-closed yielding semiring family Ss of X3,
and a N-closed yielding semiring family S7 of X. Suppose SemiringProduct
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Ss is a N-closed semiring of sets of [[ X3 and SemiringProduct S; is a
N-closed semiring of sets of [[ X;. Then SemiringProduct(Ss ~ S1) is a
N-closed semiring of sets of [[(X3 ™ X7). The theorem is a consequence of
(30), (31), (36), (8), and (10).
Let us consider n and X. Let S be a N-closed yielding semiring family of X.
One can check that SemiringProduct S is N-closed.

(38) Let us consider a N-closed yielding semiring family S of X.
Then SemiringProduct S is a N-closed semiring of sets of [] X.

7. MEASURABLE RECTANGLE

Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.
A classical semiring family of X is an n-element finite sequence and is defined
by
(Def. 6) for every natural number i such that ¢ € Segn holds (i) is a semi-diff-
closed, N-closed family of subsets of X (i) with the empty element.

Let X be an n-element finite sequence. We introduce MeasurableRectangle X
as a synonym of SemiringProduct X. Now we state the propositions:

(39) Every classical semiring family of X is a N-closed yielding semiring family
of X.

(40) Let us consider a classical semiring family S of X.
Then MeasurableRectangle S is a semi-diff-closed, N-closed family of sub-
sets of [[ X with the empty element. The theorem is a consequence of (39)
and (33).
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