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Finite Product of Semiring of Sets
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Summary. We formalize that the image of a semiring of sets [17] by an
injective function is a semiring of sets. We offer a non-trivial example of a semiring
of sets in a topological space [21]. Finally, we show that the finite product of a
semiring of sets is also a semiring of sets [21] and that the finite product of a
classical semiring of sets [8] is a classical semiring of sets. In this case, we use
here the notation from the book of Aliprantis and Border [1].
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The notation and terminology used in this paper have been introduced in the
following articles: [9], [2], [3], [4], [22], [7], [15], [23], [10], [11], [6], [12], [20], [26],
[27], [19], [14], [16], [25], [18], and [13].

1. Preliminaries

From now on X1, X2, X3, X4 denote sets.
Now we state the propositions:

(1) (i) X1 ∩X4 \ (X2 ∪X3) misses X1 \ ((X2 ∪X3) ∪X4), and

(ii) X1 ∩X4 \ (X2 ∪X3) misses (X1 ∩X3) ∩X4 \X2, and

(iii) X1 \ ((X2 ∪X3) ∪X4) misses (X1 ∩X3) ∩X4 \X2.
(2) (X1 \X2) \ (X3 \X4) = (X1 \ (X2 ∪X3)) ∪ (X1 ∩X4 \X2).
(3) (X1 \ (X2∪X3))∪ (X1∩X4 \X2) = ((X1∩X4 \ (X2∪X3))∪ (X1 \ ((X2∪

X3) ∪X4))) ∪ ((X1 ∩X3) ∩X4 \X2).
c© 2015 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)107

http://www.degruyter.com/view/j/forma
http://zbmath.org/classification/?q=cc:28A05
http://zbmath.org/classification/?q=cc:03E02
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/srings_4.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


108 roland coghetto

(4) (X1 \ X2) \ (X3 \ X4) = ((X1 ∩ X4 \ (X2 ∪ X3)) ∪ (X1 \ ((X2 ∪ X3) ∪
X4))) ∪ ((X1 ∩X3) ∩X4 \X2). The theorem is a consequence of (2) and
(3).

(5)
⋃
{X1, X2, X3} = (X1 ∪X2) ∪X3.

2. The Direct Image of a Semiring of Sets by an Injective
Function

Now we state the proposition:

(6) Let us consider sets T , S, a function f from T into S, and a family G of
subsets of T . Then f◦G = {f◦A, where A is a subset of T : A ∈ G}.

Let T , S be sets, f be a function from T into S, and G be a finite family of
subsets of T . Let us note that f◦G is finite.

Let f be a function and A be a countable set. Let us note that f◦A is
countable.

The scheme FraenkelCountable deals with a set A and a set X and a unary
functor F yielding a set and states that

(Sch. 1) {F(w), where w is an element of A : w ∈ X} is countable

provided

• X is countable.

Let T , S be sets, f be a function from T into S, and G be a countable family
of subsets of T . Let us note that f◦G is countable.

Let X, Y be sets, S be a family of subsets of X with the empty element, and
f be a function from X into Y. One can verify that f◦S has the empty element.

Now we state the propositions:

(7) Let us consider sets X, Y, a function f from X into Y, and families
S1, S2 of subsets of X. If S1 ⊆ S2, then f◦S1 ⊆ f◦S2. The theorem is a
consequence of (6).

(8) Let us consider sets X, Y, a ∩-closed family S of subsets of X, and a
function f from X into Y. Suppose f is one-to-one. Then f◦S is a ∩-closed
family of subsets of Y.

(9) Let us consider non empty sets X, Y, a ∩fp-closed family S of subsets
of X, and a function f from X into Y. Suppose f is one-to-one. Then f◦S
is a ∩fp-closed family of subsets of Y.

(10) Let us consider non empty sets X, Y, a \⊆fp-closed family S of subsets of
X, and a function f from X into Y. Suppose f is one-to-one and f◦S is
not empty. Then f◦S is a \⊆fp-closed family of subsets of Y.
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Proof: Reconsider f1 = f◦S as a family of subsets of Y. f1 is \⊆fp-closed
by [10, (64), (87)], [11, (103)], [26, (123)]. �

(11) Let us consider non empty sets X, Y, a \fp-closed family S of subsets of
X, and a function f from X into Y. Suppose f is one-to-one. Then f◦S is
a \fp-closed family of subsets of Y.

(12) Let us consider non empty sets X, Y, a semiring S of sets of X, and a
function f from X into Y. If f is one-to-one, then f◦S is a semiring of sets
of Y.

3. The Set of Set Differences of All Elements of a Semiring of
Sets

Now we state the proposition:

(13) Let us consider a 1-element finite sequence X. Suppose X(1) is not
empty. Then there exists a function I from X(1) into

∏
X such that

(i) I is one-to-one and onto, and

(ii) for every object x such that x ∈ X(1) holds I(x) = 〈x〉.
Let X be a set. Observe that 2X∗ is ∩-closed and there exists a ∩-closed

family of subsets of X which has the empty element and there exists a ∩-closed
family of subsets of X with the empty element which is ∪-closed.

Let X, Y be non empty sets. Let us observe that X \\Y is non empty.
Now we state the proposition:

(14) Let us consider a set X, and a family S of subsets of X with the empty
element. Then S \\S = the set of all A \B where A,B are elements of S.

Let X be a set and S be a family of subsets of X with the empty element.
The functor semidiff S yielding a family of subsets of X is defined by the term

(Def. 1) S \\S.

Now we state the proposition:

(15) Let us consider a set X, a family S of subsets of X with the empty ele-
ment, and an object x. Suppose x ∈ semidiff S. Then there exist elements
A, B of S such that x = A \B. The theorem is a consequence of (14).

Let X be a set and S be a family of subsets of X with the empty element.
Observe that semidiff S has the empty element.

Let S be a ∩-closed, ∪-closed family of subsets of X with the empty element.
Note that semidiff S is ∩-closed and \fp-closed.

Now we state the proposition:

(16) Let us consider a set X, and a ∩-closed, ∪-closed family S of subsets of
X with the empty element. Then semidiff S is a semiring of sets of X.
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4. The Collection of All Locally Closed Sets LC(X, τ) of a
Topological Space (X, τ)

Let T be a non empty topological space. The functor LC(T ) yielding a family
of subsets of ΩT is defined by the term

(Def. 2) {A ∩B, where A, B are subsets of T : A is open and B is closed}.

Let us note that LC(T ) is ∩-closed and \fp-closed and has the empty element.

(17) Let us consider a non empty topological space T . Then LC(T ) is a se-
miring of sets of ΩT .

5. The Finite Product of Semirings of Sets

Let n be a natural number. Note that there exists an n-element finite sequ-
ence which is non-empty.

Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.

A semiring family of X is an n-element finite sequence and is defined by

(Def. 3) for every natural number i such that i ∈ Seg n holds it(i) is a semiring
of sets of X(i).

In the sequel n denotes a non zero natural number and X denotes a non-
empty, n-element finite sequence. Now we state the propositions:

(18) Let us consider a semiring family S of X. Then domS = domX.

(19) Let us consider a semiring family S of X, and a natural number i. If
i ∈ Seg n, then

⋃
(S(i)) ⊆ X(i).

(20) Let us consider a function f , and an n-element finite sequence X. If
f ∈
∏
X, then f is an n-element finite sequence.

Let n be a non zero natural number and X be an n-element finite sequence.
The functor SemiringProductX yielding a set is defined by

(Def. 4) for every object f , f ∈ it iff there exists a function g such that f =
∏
g

and g ∈
∏
X.

Now we state the propositions:

(21) Let us consider an n-element finite sequence X.
Then SemiringProductX ⊆ 2(

⋃⋃
X)domX .

(22) Let us consider a semiring family S of X. Then SemiringProductS is a
family of subsets of

∏
X.

Proof: Reconsider S1 = SemiringProductS as a subset of 2(
⋃⋃

S)domS .
S1 ⊆ 2

∏
X by [3, (9)], (18), [7, (89)], (19). �
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(23) Let us consider a non-empty, 1-element finite sequence X. Then
∏
X =

the set of all 〈x〉 where x is an element of X(1). The theorem is a conse-
quence of (13).

One can check that
∏
〈∅〉 is empty. Now we state the propositions:

(24) Let us consider a non empty set x. Then
∏
〈x〉 = the set of all 〈y〉 where

y is an element of x. The theorem is a consequence of (23).

(25) Let us consider a non-empty, 1-element finite sequence X, and a semi-
ring family S of X. Then SemiringProductS = the set of all

∏
〈s〉 where

s is an element of S(1). Proof: S is non-empty by (18), [7, (3)].
∏
S =

the set of all 〈s〉 where s is an element of S(1). �

Let us consider sets x, y. Now we state the propositions:

(26)
∏
〈x〉 ∩

∏
〈y〉 =

∏
〈x ∩ y〉. The theorem is a consequence of (24).

(27)
∏
〈x〉 \

∏
〈y〉 =

∏
〈x \ y〉. The theorem is a consequence of (24).

Let us consider a non-empty, 1-element finite sequence X and a semiring
family S of X. Now we state the propositions:

(28) the set of all
∏
〈s〉 where s is an element of S(1) is a semiring of sets

of the set of all 〈x〉 where x is an element of X(1). The theorem is a
consequence of (24), (26), and (27).

(29) SemiringProductS is a semiring of sets of
∏
X. The theorem is a con-

sequence of (23), (25), and (28).

(30) Let us consider sets X1, X2, a semiring S1 of sets of X1, and a semiring
S2 of sets of X2. Then the set of all s1 × s2 where s1 is an element of S1,
s2 is an element of S2 is a semiring of sets of X1 ×X2.

(31) Let us consider a non-empty, n-element finite sequence X3, a non-empty,
1-element finite sequence X1, a semiring family S3 of X3, and a semiring
family S1 of X1. Suppose SemiringProductS3 is a semiring of sets of

∏
X3

and SemiringProductS1 is a semiring of sets of
∏
X1. Let us consider a

family S4 of subsets of
∏
X3 ×

∏
X1. Suppose S4 = the set of all s1 ×

s2 where s1 is an element of SemiringProductS3, s2 is an element of
SemiringProductS1. Then there exists a function I from

∏
X3 ×

∏
X1

into
∏

(X3 a X1) such that

(i) I is one-to-one and onto, and

(ii) for every finite sequences x, y such that x ∈
∏
X3 and y ∈

∏
X1

holds I(x, y) = x a y, and

(iii) I◦S4 = SemiringProduct(S3 a S1).

Proof:
⋃

(S1(1)) ⊆ X1(1). Consider I being a function from
∏
X3×

∏
X1

into
∏

(X3aX1) such that I is one-to-one and I is onto and for every finite
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sequences x, y such that x ∈
∏
X3 and y ∈

∏
X1 holds I(x, y) = x a y.

I◦S4 = SemiringProduct(S3 a S1) by (25), (20), [7, (89)], [24, (153)]. �

(32) Let us consider a non-empty, n-element finite sequence X3, a non-empty,
1-element finite sequence X1, a semiring family S3 of X3, and a semi-
ring family S1 of X1. Suppose SemiringProductS3 is a semiring of sets
of
∏
X3 and SemiringProductS1 is a semiring of sets of

∏
X1. Then

SemiringProduct(S3aS1) is a semiring of sets of
∏

(X3aX1). The theorem
is a consequence of (30), (31), (9), and (10).

(33) Let us consider a semiring family S of X. Then SemiringProductS is a
semiring of sets of

∏
X. Proof: Define P[non zero natural number] ≡ for

every non-empty, $1-element finite sequence X for every semiring family
S of X, SemiringProductS is a semiring of sets of

∏
X. P[1]. For every

non zero natural number n, P[n] from [5, Sch. 10]. �

Let n be a non zero natural number, X be a non-empty, n-element finite
sequence, and S be a semiring family of X. We say that S is ∩-closed yielding
if and only if

(Def. 5) for every natural number i such that i ∈ Seg n holds S(i) is ∩-closed.

Note that there exists a semiring family of X which is ∩-closed yielding.

6. The Finite Product of Classical Semirings of Sets

Let X be a set. Note that there exists a semiring of sets of X which is
∩-closed.

Let us consider a non-empty, 1-element finite sequence X and a ∩-closed
yielding semiring family S of X. Now we state the propositions:

(34) the set of all
∏
〈s〉 where s is an element of S(1) is a ∩-closed semiring

of sets of the set of all 〈x〉 where x is an element of X(1). The theorem is
a consequence of (26) and (28).

(35) SemiringProductS is a ∩-closed semiring of sets of
∏
X. The theorem

is a consequence of (23), (25), and (34).

Now we state the propositions:

(36) Let us consider sets X1, X2, a ∩-closed semiring S1 of sets of X1, and a
∩-closed semiring S2 of sets of X2. Then the set of all s1 × s2 where s1 is
an element of S1, s2 is an element of S2 is a ∩-closed semiring of sets of
X1 ×X2.

(37) Let us consider a non-empty, n-element finite sequence X3, a non-empty,
1-element finite sequence X1, a ∩-closed yielding semiring family S3 of X3,
and a ∩-closed yielding semiring family S1 ofX1. Suppose SemiringProduct
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S3 is a ∩-closed semiring of sets of
∏
X3 and SemiringProductS1 is a

∩-closed semiring of sets of
∏
X1. Then SemiringProduct(S3 a S1) is a

∩-closed semiring of sets of
∏

(X3 a X1). The theorem is a consequence of
(30), (31), (36), (8), and (10).

Let us consider n and X. Let S be a ∩-closed yielding semiring family of X.
One can check that SemiringProductS is ∩-closed.

(38) Let us consider a ∩-closed yielding semiring family S of X.
Then SemiringProductS is a ∩-closed semiring of sets of

∏
X.

7. Measurable Rectangle

Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.

A classical semiring family of X is an n-element finite sequence and is defined
by

(Def. 6) for every natural number i such that i ∈ Seg n holds it(i) is a semi-diff-
closed, ∩-closed family of subsets of X(i) with the empty element.

LetX be an n-element finite sequence. We introduce MeasurableRectangleX
as a synonym of SemiringProductX. Now we state the propositions:

(39) Every classical semiring family ofX is a ∩-closed yielding semiring family
of X.

(40) Let us consider a classical semiring family S of X.
Then MeasurableRectangleS is a semi-diff-closed, ∩-closed family of sub-
sets of

∏
X with the empty element. The theorem is a consequence of (39)

and (33).
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