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Summary. In this article, we continue the development of the theory of
fuzzy sets [23], started with [14] with the future aim to provide the formalization
of fuzzy numbers [8] in terms reflecting the current state of the Mizar Mathema-
tical Library. Note that in order to have more usable approach in [14], we revised
that article as well; some of the ideas were described in [12]. As we can actu-
ally understand fuzzy sets just as their membership functions (via the equality
of membership function and their set-theoretic counterpart), all the calculations
are much simpler. To test our newly proposed approach, we give the notions of
(normal) triangular and trapezoidal fuzzy sets as the examples of concrete fuz-
zy objects. Also α-cuts, the core of a fuzzy set, and normalized fuzzy sets were
defined. Main technical obstacle was to prove continuity of the glued maps, and
in fact we did this not through its topological counterpart, but extensively reu-
sing properties of the real line (with loss of generality of the approach, though),
because we aim at formalizing fuzzy numbers in our future submissions, as well
as merging with rough set approach as introduced in [13] and [11]. Our base for
formalization was [9] and [10].
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1. Preliminaries: Affine Maps

Now we state the proposition:

(1) Let us consider real numbers a, b. Suppose a ¬ b. Then R \ ]a, b[ 6= ∅.
From now on a, b, c, x denote real numbers.
Now we state the propositions:

(2) (AffineMap( 1b−a ,−
a
b−a))(a) = 0.

(3) If b− a 6= 0, then (AffineMap( 1b−a ,−
a
b−a))(b) = 1.

(4) If c− b 6= 0, then (AffineMap(− 1
c−b ,

c
c−b))(b) = 1.

(5) (AffineMap(− 1
c−b ,

c
c−b))(c) = 0.

(6) If b−a 6= 0 and (AffineMap( 1b−a ,−
a
b−a))(x) = 1, then x = b. The theorem

is a consequence of (3).

(7) If c−b 6= 0 and (AffineMap(− 1
c−b ,

c
c−b))(x) = 1, then x = b. The theorem

is a consequence of (4).

(8) rng(AffineMap(0, a)) = {a}.
(9) Let us consider a non empty subset C of R.

Then rng((AffineMap(0, a))�C) = {a}.
Proof: Set f = (AffineMap(0, a))�C. rng f ⊆ {a} by [3, (49)]. �

(10) If b− a > 0, then rng((AffineMap( 1b−a ,−
a
b−a))�[a, b]) = [0, 1].

Proof: Set f = AffineMap( 1b−a ,−
a
b−a). Set g = f�[a, b]. rng g ⊆ [0, 1] by

[21, (57)], [3, (47)], (2), [16, (53)]. �

Let us assume that c− b > 0. Now we state the propositions:

(11) rng((AffineMap(− 1
c−b ,

c
c−b))�]b, c]) = [0, 1[.

Proof: Set f = AffineMap(− 1
c−b ,

c
c−b). Set g = f�]b, c]. rng g ⊆ [0, 1[ by

[21, (57)], [3, (47)], (4), [16, (52), (54)]. �

(12) rng((AffineMap(− 1
c−b ,

c
c−b))�[b, c]) = [0, 1].

Proof: Set f = AffineMap(− 1
c−b ,

c
c−b). Set g = f�[b, c]. rng g ⊆ [0, 1] by

[21, (57)], [3, (47)], (4), [16, (54)]. �

Now we state the propositions:

(13) (AffineMap(0, 0))(x) 6= 1.

(14) (AffineMap(0, 1))(b) = 1.

(15) Let us consider a real number a. Then (AffineMap(0, b))(a) = b.
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2. Towards Development of Fuzzy Numbers

In the sequel C denotes a non empty set.
Let C be a non empty set.
A fuzzy set of C is a membership function of C. Let F be a fuzzy set of C.

We say that F is normalized if and only if

(Def. 1) there exists an element x of C such that F (x) = 1.

We introduce F is normal as a synonym of F is normalized.
We introduce F is subnormal as an antonym for F is normal.
We say that F is strictly normalized if and only if

(Def. 2) there exists an element x of C such that F (x) = 1 and for every element
y of C such that F (y) = 1 holds y = x.

One can verify that every fuzzy set of C which is strictly normalized is also
normalized.

Let F be a fuzzy set of C and α be a real number. The functor α-cut(F )
yielding a subset of C is defined by the term

(Def. 3) {x, where x is an element of C : F (x)  α}.

Now we state the proposition:

(16) Let us consider a fuzzy set F of C, and a real number α. Then α-cut(F ) =
F−1([α, 1]).
Proof: α-cut(F ) ⊆ F−1([α, 1]) by [6, (4)]. �

Let us consider C. Let us note that UMFC is normalized and there exists a
fuzzy set of C which is normalized.

Let F be a fuzzy set of C. The functor CoreF yielding a subset of C is
defined by the term

(Def. 4) {x, where x is an element of C : F (x) = 1}.

Now we state the propositions:

(17) Core UMFC = C.

(18) Core EMFC = ∅.
Let us consider C. One can check that Core EMFC is empty.
Let us consider a fuzzy set F of C. Now we state the propositions:

(19) CoreF = F−1({1}).
(20) CoreF = 1-cut(F ). The theorem is a consequence of (16) and (19).
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3. Convexity and the Height of a Fuzzy Set

Let F be a fuzzy set of R. We say that F is convex if and only if

(Def. 5) for every real numbers x1, x2 and for every real number l such that
0 ¬ l ¬ 1 holds F (l · x1 + (1− l) · x2)  min(F (x1), F (x2)).

Observe that UMF R is convex and EMF R is convex.
Let C be a non empty set and F be a fuzzy set of C. The functor heightF

yielding an extended real is defined by the term

(Def. 6) sup rngF .

Now we state the propositions:

(21) Let us consider a fuzzy set F of C. Then 0 ¬ heightF ¬ 1.
Proof: 0 is a lower bound of rngF by [15, (1)]. 1 is a upper bound of
rngF by [15, (1)]. �

(22) Let us consider a fuzzy set F of C. If F is normalized, then heightF = 1.
The theorem is a consequence of (21).

4. Pasting aka Glueing Lemmas

Let us consider partial functions f , g from R to R. Now we state the propo-
sition:

(23) Suppose f is continuous and g is continuous and there exists an object
x such that dom f ∩ dom g = {x} and for every object x such that x ∈
dom f ∩ dom g holds f(x) = g(x). Then there exists a partial function h

from R to R such that

(i) h = f+·g, and

(ii) for every real number x such that x ∈ dom f ∩ dom g holds h is
continuous in x.

Proof: Reconsider h = f+·g as a partial function from R to R. For every
real number r such that 0 < r there exists a real number s such that 0 < s

and for every real number x1 such that x1 ∈ domh and |x1− x| < s holds
|h(x1)− h(x)| < r by [21, (57)], [16, (3)], [5, (12)], [3, (47)]. �

Let us assume that f is continuous and non empty and g is continuous and
non empty and there exist real numbers a, b, c such that dom f = [a, b] and
dom g = [b, c] and f ≈ g. Now we state the propositions:

(24) There exists a partial function h from R to R such that

(i) h = f+·g, and
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(ii) for every real number x such that x ∈ domh holds h is continuous in
x.

(25) f+·g is continuous. The theorem is a consequence of (24).

Now we state the proposition:

(26) Suppose g is not empty and f = (AffineMap(0, 0))�(R\]a, b[) and dom g =
[a, b] and g(a) = 0 and g(b) = 0. Then f ≈ g.
Proof: For every object x such that x ∈ dom f ∩dom g holds f(x) = g(x)
by [18, (1)], [3, (47)], (15). �

Let us assume that g is continuous and non empty and
f = (AffineMap(0, 0))�(R \ ]a, b[) and dom g = [a, b] and g(a) = 0 and

g(b) = 0. Now we state the propositions:

(27) There exists a partial function h from R to R such that

(i) h = f+·g, and

(ii) for every real number x such that x ∈ domh holds h is continuous in
x.

The theorem is a consequence of (26).

(28) f+·g is continuous. The theorem is a consequence of (27).

Note that there exists a subset of R which is non trivial, closed interval, and
closed.

5. Triangular and Trapezoidal Fuzzy Sets

Let a, b, c be real numbers. Assume a < b and b < c.
The functor TriangularFS(a, b, c) yielding a fuzzy set of R is defined by the

term

(Def. 7) ((AffineMap(0, 0))�(R \ ]a, c[)+·
(AffineMap( 1b−a ,−

a
b−a))�[a, b])+·

(AffineMap(− 1
c−b ,

c
c−b))�[b, c].

Let us consider real numbers a, b, c. Let us assume that a < b < c. Now we
state the propositions:

(29) TriangularFS(a, b, c) is strictly normalized.
Proof: Set F = TriangularFS(a, b, c). Reconsider b1 = b as an element of
R. For every element y of R such that F (y) = 1 holds y = b1 by [21, (57)],
[5, (11), (13)], [3, (49)]. �

(30) TriangularFS(a, b, c) is continuous.
Proof: Set f1 = AffineMap(0, 0). Set f = f1�(R \ ]a, c[). Set g1 =
AffineMap( 1b−a ,−

a
b−a). Reconsider g = g1�[a, b] as a partial function from
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R to R. Set h1 = AffineMap(− 1
c−b ,

c
c−b). Reconsider h = h1�[b, c] as a par-

tial function from R to R. For every object x such that x ∈ dom g∩domh

holds g(x) = h(x) by [3, (49)], (4), (3). Set h = g+·h. Consider h2 being
a partial function from R to R such that h2 = f+·h and for every real
number x such that x ∈ domh2 holds h2 is continuous in x. �

Let a, b, c, d be real numbers. Assume a < b and b < c and c < d. The
functor TrapezoidalFS(a, b, c, d) yielding a fuzzy set of R is defined by the term

(Def. 8) (((AffineMap(0, 0))�(R \ ]a, d[)+·
(AffineMap( 1b−a ,−

a
b−a))�[a, b])+·

(AffineMap(0, 1))�[b, c])+·(AffineMap(− 1
d−c ,

d
d−c))�[c, d].

Let us consider real numbers a, b, c, d. Let us assume that a < b < c < d.
Now we state the propositions:

(31) TrapezoidalFS(a, b, c, d) is normalized. The theorem is a consequence of
(4).

(32) TrapezoidalFS(a, b, c, d) is continuous.
Proof: Set f1 = AffineMap(0, 0). Set f = f1�(R \ ]a, d[). Set g1 =
AffineMap( 1b−a ,−

a
b−a). Reconsider g = g1�[a, b] as a partial function from

R to R. Set h1 = AffineMap(− 1
d−c ,

d
d−c). Reconsider h = h1�[c, d] as

a partial function from R to R. Set i1 = AffineMap(0, 1). Reconsider
i = i1�[b, c] as a partial function from R to R. For every object x such
that x ∈ dom g ∩ dom i holds g(x) = i(x) by [3, (49)], (15), (3). Set
h = g+·i. h is continuous. For every object x such that x ∈ dom h∩domh

holds h(x) = h(x) by [5, (13)], [3, (49)], (15). Set g2 = h+·h. Consider h2
being a partial function from R to R such that h2 = f+·g2 and for every
real number x such that x ∈ domh2 holds h2 is continuous in x. �

Let F be a fuzzy set of R. We say that F is triangular if and only if

(Def. 9) there exist real numbers a, b, c such that F = TriangularFS(a, b, c).

We say that F is trapezoidal if and only if

(Def. 10) there exist real numbers a, b, c, d such that F = TrapezoidalFS(a, b, c, d).

One can verify that there exists a fuzzy set of R which is triangular and
there exists a fuzzy set of R which is trapezoidal.
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