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Summary. In this article, we considered bidual spaces and reflexivity of
real normed spaces. At first we proved some corollaries applying Hahn-Banach
theorem and showed related theorems. In the second section, we proved the
norm of dual spaces and defined the natural mapping, from real normed spaces
to bidual spaces. We also proved some properties of this mapping. Next, we
defined real normed space of R, real number spaces as real normed spaces and
proved related theorems. We can regard linear functionals as linear operators by
this definition. Accordingly we proved Uniform Boundedness Theorem for linear
functionals using the theorem (5) from [21]. Finally, we defined reflexivity of real
normed spaces and proved some theorems about isomorphism of linear operators.
Using them, we proved some properties about reflexivity. These formalizations
are based on [19], [20], [8] and [1].
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1. The Application of Hahn-Banach Theorem

Now we state the propositions:

(1) Let us consider a real normed space V , a real normed subspace X of V ,
a point x0 of V , and a real number d. Suppose there exists a non empty
subset Z of R such that Z = {‖x− x0‖, where x is a point of V : x ∈ X}
and d = inf Z > 0. Then

(i) x0 /∈ X, and

(ii) there exists a point G of DualSp(V ) such that for every point x
of V such that x ∈ X holds (Bound2Lipschitz(G,V ))(x) = 0 and
(Bound2Lipschitz(G,V ))(x0) = 1 and ‖G‖ = 1

d .

Proof: Consider Z being a non empty subset of R such that Z = {‖x−
x0‖, where x is a point of V : x ∈ X} and d = inf Z > 0. Set M0 =
{z + a · x0, where z is a point of V, a is a real number : z ∈ X}. Set M =
NLinM0. M0 is linearly closed by [25, (20), (21)]. For every point v of M ,
there exists a point x of V and there exists a real number a such that
v = x+a ·x0 and x ∈ X by [13, (31)]. Reconsider r0 = 0 as a real number.
For every extended real r such that r ∈ Z holds r0 ¬ r. For every points
x1, x2 of V and for every real numbers a1, a2 such that x1, x2 ∈ X and
x1+a1 ·x0 = x2+a2 ·x0 holds x1 = x2 and a1 = a2 by [26, (5), (35), (15)].
Define P[object, object] ≡ there exists a point z of V and there exists a
real number a such that z ∈ X and $1 = z + a · x0 and $2 = a. For every
element v of M , there exists an element a of R such that P[v, a]. Consider
f being a function from M into R such that for every element x of M ,
P[x, f(x)] from [4, Sch. 3]. For every point v of M and for every point z
of V and for every real number a such that z ∈ X and v = z + a · x0
holds f(v) = a. f is a linear functional in M by [13, (28)], [25, (20), (21)].
For every point v of M , |f(v)| ¬ 1d · ‖v‖ by [17, (2)], [18, (2)], [26, (30),
(25)]. Reconsider F = f as a point of DualSp(M). Consider g being a
Lipschitzian linear functional in V , G being a point of DualSp(V ) such
that g = G and g�(the carrier of M) = f and ‖G‖ = ‖F‖. For every point
x of V such that x ∈ X holds (Bound2Lipschitz(G,V ))(x) = 0 by [26,
(10)], [3, (49)]. �

(2) Let us consider a real normed space V , a non empty subset Y of V , and
a point x0 of V . Suppose Y is linearly closed and closed and x0 /∈ Y. Then
there exists a point G of DualSp(V ) such that

(i) for every point x of V such that x ∈ Y holds

(Bound2Lipschitz(G,V ))(x) = 0, and
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(ii) (Bound2Lipschitz(G,V ))(x0) = 1.

Proof: Set X = NLinY. Set Z = {‖x−x0‖, where x is a point of V : x ∈
X}. Reconsider r0 = 0 as a real number. For every extended real r such
that r ∈ Z holds r0 ¬ r. Reconsider d = inf Z as a real number. d > 0 by
[9, (16), (7)], [18, (7)]. Consider G being a point of DualSp(V ) such that for
every point x of V such that x ∈ X holds (Bound2Lipschitz(G,V ))(x) = 0
and (Bound2Lipschitz(G,V ))(x0) = 1 and ‖G‖ = 1

d . �

Let us consider a real normed space V and a point x0 of V .
Let us assume that x0 6= 0V . Now we state the propositions:

(3) There exists a point G of DualSp(V ) such that

(i) (Bound2Lipschitz(G,V ))(x0) = 1, and

(ii) ‖G‖ = 1
‖x0‖ .

Proof: Set X = NLin{0V }. Set Y = the carrier of Lin({0V }). For every
object s, s ∈ Y iff s ∈ {0V } by [27, (8)]. Set Z = {‖x − x0‖, where x is
a point of V : x ∈ X}. For every object s, s ∈ Z iff s ∈ {‖x0‖} by [18,
(2)]. Reconsider d = inf Z as a real number. Consider G being a point
of DualSp(V ) such that for every point x of V such that x ∈ X holds
(Bound2Lipschitz(G,V ))(x) = 0 and (Bound2Lipschitz(G,V ))(x0) = 1
and ‖G‖ = 1

d . �

(4) There exists a point F of DualSp(V ) such that

(i) ‖F‖ = 1, and

(ii) (Bound2Lipschitz(F, V ))(x0) = ‖x0‖.
The theorem is a consequence of (3).

Let us consider a real normed space V .
Let us assume that V is not trivial. Now we state the propositions:

(5) There exists a point F of DualSp(V ) such that ‖F‖ = 1. The theorem
is a consequence of (4).

(6) DualSp(V ) is not trivial. The theorem is a consequence of (5).

2. Bidual Spaces of Real Normed Spaces

Let us consider a real normed space V and a point x of V . Now we state the
propositions:

(7) Suppose V is not trivial. Then

(i) there exists a non empty subset X of R such that
X = {|(Bound2Lipschitz(F, V ))(x)|, where F is a point of DualSp(V ) :
‖F‖ = 1} and ‖x‖ = supX, and
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(ii) there exists a non empty subset Y of R such that

Y = {|(Bound2Lipschitz(F, V ))(x)|, where F is a point of DualSp(V ) :
‖F‖ ¬ 1} and ‖x‖ = supY.

The theorem is a consequence of (5) and (4).

(8) If for every Lipschitzian linear functional f in V , f(x) = 0, then x = 0V .
The theorem is a consequence of (3).

Let X be a real normed space and x be a point of X. The functor Bidualx
yielding a point of DualSp(DualSp(X)) is defined by

(Def. 1) for every point f of DualSp(X), it(f) = f(x).

The functor BidualFuncX yielding a function from X
into DualSp(DualSp(X)) is defined by

(Def. 2) for every point x of X, it(x) = Bidualx.

Let us observe that BidualFuncX is additive and homogeneous and
BidualFuncX is one-to-one.
Let us consider a real normed space X.
Let us assume that X is not trivial. Now we state the propositions:

(9) (i) BidualFuncX is a linear operator fromX into DualSp(DualSp(X)),
and

(ii) for every point x of X, ‖x‖ = ‖(BidualFuncX)(x)‖.
(10) There exists a real normed subspace D of DualSp(DualSp(X)) and there

exists a Lipschitzian linear operator L from X into D such that L is
bijective and D = =(BidualFuncX) and for every point x of X, L(x) =
Bidualx and for every point x of X, ‖x‖ = ‖L(x)‖.
Proof: Set F = BidualFuncX. Set V1 = rngF . V1 6= ∅ by [29, (42)].
Reconsider L = BidualFuncX as a function from X into =(F ). L is addi-
tive by [13, (28)]. L is homogeneous by [13, (28)]. For every point x of X,
‖x‖ = ‖L(x)‖ by [13, (28)]. �

3. Uniform Boundedness Theorem for Linear Functionals

The real normed space of R yielding a real normed space is defined by the
term

(Def. 3) 〈R, 0(∈ R),+R, ·R, |�|R〉.
Now we state the proposition:

(11) Let us consider a real normed space X, an element x of R, and a point
v of the real normed space of R. If x = v, then −x = −v.
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Let us consider a real normed space X and an object x. Now we state the
propositions:

(12) x is an additive, homogeneous function from X into R if and only if x is
an additive, homogeneous function from X into the real normed space of
R.

(13) x is a Lipschitzian, additive, homogeneous function from X into R if
and only if x is a Lipschitzian, additive, homogeneous function from X
into the real normed space of R. The theorem is a consequence of (12).

Now we state the propositions:

(14) Let us consider a real normed spaceX. Then the carrier of DualSp(X) =
the carrier of the real norm space of bounded linear operators fromX into
the real normed space of R. The theorem is a consequence of (13).

(15) Let us consider a real normed space X, points x, y of DualSp(X), and
points v, w of the real norm space of bounded linear operators from X
into the real normed space of R. If x = v and y = w, then x+ y = v + w.
Proof: Reconsider z = x + y as a point of DualSp(X). Reconsider u =
v + w as a point of the real norm space of bounded linear operators from
X into the real normed space of R. For every object t such that t ∈ dom z
holds z(t) = u(t) by [14, (29)], [22, (35)]. �

(16) Let us consider a real normed space X, an element a of R, a point
x of DualSp(X), and a point v of the real norm space of bounded linear
operators fromX into the real normed space of R. If x = v, then a·x = a·v.
Proof: Reconsider z = a ·x as a point of DualSp(X). Reconsider u = a ·v
as a point of the real norm space of bounded linear operators from X into
the real normed space of R. For every object t such that t ∈ dom z holds
z(t) = u(t) by [14, (30)], [22, (36)]. �

Let us consider a real normed spaceX, a point x of DualSp(X), and a point v
of the real norm space of bounded linear operators from X into the real normed
space of R.

Let us assume that x = v. Now we state the propositions:

(17) −x = −v. The theorem is a consequence of (16).

(18) ‖x‖ = ‖v‖.
Now we state the propositions:

(19) Let us consider a real normed space X, and a subset L of X. Suppose
X is not trivial and for every point f of DualSp(X), there exists a real
number K1 such that 0 ¬ K1 and for every point x of X such that x ∈ L
holds |f(x)| ¬ K1. Then there exists a real number M such that

(i) 0 ¬M , and
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(ii) for every point x of X such that x ∈ L holds ‖x‖ ¬M .

The theorem is a consequence of (14) and (18).

(20) Let us consider a real normed space X, and a non empty subset L of X.
Suppose X is not trivial and for every point f of DualSp(X), there exists
a subset Y1 of R such that Y1 = {|f(x)|, where x is a point of X : x ∈ L}
and supY1 < +∞. Then there exists a subset Y of R such that

(i) Y = {‖x‖, where x is a point of X : x ∈ L}, and

(ii) supY < +∞.

Proof: For every point f of DualSp(X), there exists a real number K1
such that 0 ¬ K1 and for every point x of X such that x ∈ L holds
|f(x)| ¬ K1 by [2, (46)]. Consider M being a real number such that
0 ¬ M and for every point x of X such that x ∈ L holds ‖x‖ ¬ M .
Consider x0 being an object such that x0 ∈ L. Set Y = {‖x‖, where x is
a point of X : x ∈ L}. Y ⊆ R. For every extended real r such that r ∈ Y
holds r ¬M . �

4. Reflexivity of Real Normed Spaces

Let X be a real normed space. We say that X is reflexive if and only if

(Def. 4) BidualFuncX is onto.

Let us consider a real normed space X. Now we state the propositions:

(21) X is reflexive if and only if for every point f of DualSp(DualSp(X)),
there exists a point x of X such that for every point g of DualSp(X),
f(g) = g(x).

(22) X is reflexive if and only if =(BidualFuncX) = DualSp(DualSp(X)).

(23) If X is non trivial and reflexive, then X is a real Banach space.
Proof: For every sequence s1 of X such that s1 is Cauchy sequence by
norm holds s1 is convergent by [23, (8)], [3, (13)], [26, (16)], [4, (113)]. �

Now we state the propositions:

(24) Let us consider a real Banach space X, and a non empty subsetM of X.
Suppose X is reflexive and M is linearly closed and closed. Then NLinM
is reflexive.
Proof: Set M0 = NLinM . For every point y of DualSp(DualSp(M0)),
there exists a point x of M0 such that for every point g of DualSp(M0),
y(g) = g(x) by [4, (32)], [13, (28)], [3, (49)], [14, (26), (29), (30)]. �

(25) Let us consider real normed spaces X, Y, a Lipschitzian linear operator
L from X into Y, and a Lipschitzian linear functional y in Y. Then y · L
is a Lipschitzian linear functional in X.
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Proof: Consider M being a real number such that 0 ¬ M and for every
vector x of X, ‖L(x)‖ ¬M · ‖x‖. Set x = y · L. For every vectors v, w of
X, x(v + w) = x(v) + x(w) by [3, (13)]. For every vector v of X and for
every real number r, x(r · v) = r · x(v) by [3, (13)]. Consider N being a
real number such that 0 ¬ N and for every vector v of Y, |y(v)| ¬ N · ‖v‖.
For every vector v of X, |x(v)| ¬M ·N · ‖v‖ by [3, (13)]. �

(26) Let us consider real normed spaces X, Y, and a Lipschitzian linear ope-
rator L from X into Y. Suppose L is isomorphism. Then there exists a
Lipschitzian linear operator T from DualSp(X) into DualSp(Y ) such that

(i) T is isomorphism, and

(ii) for every point x of DualSp(X), T (x) = x · L−1.

Proof: Consider K being a Lipschitzian linear operator from Y into X
such that K = L−1 and K is isomorphism. Define P[function, function] ≡
$2 = $1 ·K. For every element x of DualSp(X), there exists an element y of
DualSp(Y ) such that P[x, y]. Consider T being a function from DualSp(X)
into DualSp(Y ) such that for every element x of DualSp(X), P[x, T (x)]
from [4, Sch. 3]. For every points v, w of DualSp(X), T (v + w) = T (v) +
T (w) by [3, (13)], [14, (29)]. For every point v of DualSp(X) and for every
real number r, T (r · v) = r · T (v) by [3, (13)], [14, (30)]. For every object
v such that v ∈ the carrier of DualSp(Y ) there exists an object s such
that s ∈ the carrier of DualSp(X) and v = T (s) by (25), [29, (36)], [3,
(39)], [29, (51)]. For every point v of DualSp(X), ‖T (v)‖ = ‖v‖ by [3, (34),
(13)], [14, (23)]. For every objects x1, x2 such that x1, x2 ∈ the carrier of
DualSp(X) and T (x1) = T (x2) holds x1 = x2 by [26, (16), (5)], [18, (6)].
�

(27) Let us consider real normed spaces X, Y, a Lipschitzian linear operator L
from X into Y, and a Lipschitzian linear operator T from DualSp(X) into
DualSp(Y ). Suppose L is isomorphism and T is isomorphism and for every
point x of DualSp(X), T (x) = x · L−1. Then there exists a Lipschitzian
linear operator S from DualSp(Y ) into DualSp(X) such that

(i) S is isomorphism, and

(ii) S = T−1, and

(iii) for every point y of DualSp(Y ), S(y) = y · L.

Proof: Consider K being a Lipschitzian linear operator from Y into X
such that K = L−1 and K is isomorphism. Consider S being a Lipschit-
zian linear operator from DualSp(Y ) into DualSp(X) such that S is iso-
morphism and for every point y of DualSp(Y ), S(y) = y ·K−1. For every
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objects y, x, y ∈ the carrier of DualSp(Y ) and S(y) = x iff x ∈ the carrier
of DualSp(X) and T (x) = y by [4, (5)], [29, (36)], [3, (39)], [29, (51)]. �

(28) Let us consider real normed spaces X, Y. Suppose there exists a Lip-
schitzian linear operator L from X into Y such that L is isomorphism.
Then X is reflexive if and only if Y is reflexive.

(29) Let us consider a real normed space X. Suppose X is not trivial. Then
there exists a Lipschitzian linear operator L from X into =(BidualFuncX)
such that L is isomorphism. The theorem is a consequence of (10).

(30) Let us consider a real Banach space X. Suppose X is not trivial. Then
X is reflexive if and only if DualSp(X) is reflexive.
Proof: DualSp(X) is not trivial. Consider L being a Lipschitzian linear
operator from X into =(BidualFuncX) such that L is isomorphism. Set
f = BidualFuncX. rng f 6= ∅ by [29, (42)]. =(f) is reflexive. �
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