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1. Torsion Z-module and Torsion-free Z-module

Now we state the proposition:

(1) Let us consider a Z-module V , and a submoduleW of V . Then 1ZR◦W =
ΩW .

Let us consider a Z-module V and submodules W1, W2, W3 of V . Now we
state the propositions:

(2) W1 ∩W2 is a submodule of (W1 +W3) ∩W2.
Proof: For every vector v of V such that v ∈ W1 ∩W2 holds v ∈ (W1 +
W3) ∩W2 by [12, (94), (93)]. �

(3) If W1 ∩W2 6= 0V , then (W1 +W3) ∩W2 6= 0V .

(4) Let us consider a Z-module V , and linearly independent subsets I, I1 of
V . If I1 ⊆ I, then Lin(I \ I1) ∩ Lin(I1) = 0V .

From now on V denotes a Z-module, W denotes a submodule of V , v, u
denote vectors of V , and i denotes an element of ZR. Let V be a Z-module and
v be a vector of V . We say that v is torsion if and only if

(Def. 1) there exists an element i of ZR such that i 6= 0ZR and i · v = 0V .

One can verify that 0V is torsion.
Now we state the propositions:

(5) If v is torsion and u is torsion, then v + u is torsion.

(6) If v is torsion, then −v is torsion.

(7) If v is torsion and u is torsion, then v − u is torsion.

(8) If v is torsion, then i · v is torsion.

(9) Let us consider a vector v of V , and a vector w of W . If v = w, then v
is torsion iff w is torsion.

Let V be a Z-module. One can verify that there exists a vector of V which
is torsion.

Now we state the propositions:

(10) If v is not torsion, then −v is not torsion.

(11) If v is not torsion and i 6= 0, then i · v is not torsion.

(12) v is not torsion if and only if {v} is linearly independent.
Proof: If v is not torsion, then {v} is linearly independent by [9, (33)],
[13, (24)]. If {v} is linearly independent, then v is not torsion by [14, (1)],
[13, (8), (29), (53)]. �

Let V be a Z-module. We say that V is torsion if and only if

(Def. 2) every vector of V is torsion.
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Let us note that 0V is torsion and there exists a Z-module which is torsion.
Now we state the propositions:

(13) Let us consider an element v of ZR, and an integer v1. Suppose v = v1.
Let us consider a natural number n. Then (Nat-mult-left ZR)(n, v) = n·v1.
Proof: Define P[natural number] ≡ (Nat-mult-left ZR)($1, v) = $1 · v1.
For every natural number n such that P[n] holds P[n + 1]. For every
natural number n, P[n] from [3, Sch. 2]. �

(14) Let us consider an element x of ZR, an element v of ZR, and an integer v1.
Suppose v = v1. Then (the left integer multiplication of (ZR))(x, v) = x·v1.
The theorem is a consequence of (13).

Note that there exists a Z-module which is non torsion.
Let V be a non torsion Z-module. Let us observe that there exists a vector

of V which is non torsion.
Let V be a Z-module. We say that V is torsion-free if and only if

(Def. 3) for every vector v of V such that v 6= 0V holds v is not torsion.

Now we state the proposition:

(15) V is cancelable on multiplication if and only if V is torsion-free.

One can verify that every cancelable on multiplication Z-module is torsion-
free and every torsion-free Z-module is cancelable on multiplication and every
free Z-module is torsion-free and there exists a Z-module which is torsion-free
and free.

Now we state the proposition:

(16) Let us consider a torsion-free Z-module V , and a vector v of V . Then v
is torsion if and only if v = 0V .

Let V be a torsion-free Z-module. Note that every submodule of V is torsion-
free.

Let V be a Z-module. Observe that 0V is trivial and every non trivial,
torsion-free Z-module is non torsion and there exists a Z-module which is trivial.

Let V be a non trivial Z-module. Let us note that there exists a vector of V
which is non zero.

Now we state the proposition:

(17) v is not torsion if and only if Lin({v}) is free and v 6= 0V . The theorem
is a consequence of (12) and (9).

Let V be a non torsion Z-module and v be a non torsion vector of V . Let us
note that Lin({v}) is free.

Now we state the propositions:

(18) Let us consider a Z-module V , a subset A of V , and a vector v of V . If
A is linearly independent and v ∈ A, then v is not torsion. The theorem
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is a consequence of (12).

(19) Let us consider an object u. Suppose u ∈ Lin({v}). Then there exists an
element i of ZR such that u = i · v.

(20) v ∈ Lin({v}).
(21) i · v ∈ Lin({v}).
(22) Lin({0V }) = 0V .
Proof: For every object x, x ∈ Lin({0V }) iff x ∈ 0V by [13, (64), (21)],
[12, (1)], [13, (66)]. �

Let V be a torsion-free Z-module and v be a vector of V . Let us note that
Lin({v}) is free. Now we state the propositions:

(23) Let us consider subsets A1, A2 of V . Suppose A1 is linearly independent
and A2 is linearly independent and A1 ∩ A2 = ∅ and A1 ∪ A2 is linearly
dependent. Then Lin(A1) ∩ Lin(A2) 6= 0V .

(24) Let us consider a Z-module V , a free submoduleW of V , a subset I of V ,
and a vector v of V . Suppose I is linearly independent and Lin(I) = ΩW
and v ∈ I. Then

(i) ΩW = Lin(I \ {v}) + Lin({v}), and

(ii) Lin(I \ {v}) ∩ Lin({v}) = 0V , and

(iii) Lin(I \ {v}) is free, and

(iv) Lin({v}) is free, and

(v) v 6= 0V .

Proof: v is not torsion. Lin(I \ {v}) ∩ Lin({v}) = 0V by [16, (24)], [12,
(94)], [13, (64), (23), (10)]. �

(25) Let us consider a Z-module V , and a free submoduleW of V . Then there
exists a subset A of V such that

(i) A is subset of W and linearly independent, and

(ii) Lin(A) = ΩW .

(26) Let us consider a Z-module V , and a finite rank, free submodule W of
V . Then there exists a finite subset A of V such that

(i) A is finite subset of W and linearly independent, and

(ii) Lin(A) = ΩW , and

(iii) A = rankW .

Let us consider a torsion-free Z-module V and vectors v1, v2 of V .
Let us assume that v1 6= 0V and v2 6= 0V and Lin({v1}) ∩ Lin({v2}) 6= 0V .

Now we state the propositions:
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(27) There exists a vector u of V such that

(i) u 6= 0V , and

(ii) Lin({v1}) ∩ Lin({v2}) = Lin({u}).
Proof: Consider x being a vector of V such that x ∈ Lin({v1})∩Lin({v2})
and x 6= 0V . Consider i3 being an element of ZR such that x = i3 · v1.
Consider i4 being an element of ZR such that x = i4 · v2. Consider i1, i2
being integers such that i3 = (gcd(i3, i4)) · i1 and i4 = (gcd(i3, i4)) · i2 and
i1 and i2 are relatively prime. Reconsider I1 = i1, I2 = i2 as an element
of ZR. I1 · v1 ∈ Lin({v1}) and I2 · v2 ∈ Lin({v2}). For every vector y of V
such that y ∈ Lin({I1 · v1}) holds y ∈ Lin({v1}) ∩ Lin({v2}) by (19), [12,
(37)]. Lin({I1 · v1}) = Lin({v1}) ∩ Lin({v2}) by [12, (46), (94)], (19), [12,
(37), (36)]. �

(28) There exists a vector u of V such that

(i) u 6= 0V , and

(ii) Lin({v1}) + Lin({v2}) = Lin({u}).
Proof: Consider x being a vector of V such that x 6= 0V and Lin({v1})∩
Lin({v2}) = Lin({x}). Consider i1 being an element of ZR such that x = i1·
v1. Consider i2 being an element of ZR such that x = i2 ·v2. gcd(|i1|, |i2|) =
1 by [19, (5)], [23, (2)], [12, (1)], [3, (25)]. Consider j1, j2 being elements
of ZR such that i1 · j1 + i2 · j2 = 1. Reconsider J1 = j1, J2 = j2 as
an element of ZR. Reconsider u = J1 · v2 + J2 · v1 as a vector of V .
Lin({v1}) + Lin({v2}) = Lin({u}) by (19), [12, (37), (92), (36)]. �

(29) Let us consider a torsion-free Z-module V , a finite rank, free submodule
W of V , and vectors v, u of V . Suppose v 6= 0V and u 6= 0V and W ∩
Lin({v}) = 0V and (W + Lin({u})) ∩ Lin({v}) 6= 0V and Lin({u}) ∩
Lin({v}) = 0V . Then there exist vectors w1, w2 of V such that

(i) w1 6= 0V , and

(ii) w2 6= 0V , and

(iii) W + Lin({u}) + Lin({v}) =W + Lin({w1}) + Lin({w2}), and

(iv) W ∩ Lin({w1}) 6= 0V , and

(v) (W + Lin({w1})) ∩ Lin({w2}) = 0V , and

(vi) u, v ∈ Lin({w1}) + Lin({w2}), and

(vii) w1, w2 ∈ Lin({u}) + Lin({v}).
Proof: Consider x being a vector of V such that x ∈ (W + Lin({u})) ∩
Lin({v}) and x 6= 0V . Consider x1, x2 being vectors of V such that x1 ∈W
and x2 ∈ Lin({u}) and x = x1 + x2. Consider i4 being an element of ZR
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such that x = i4·v. Consider i3 being an element of ZR such that x2 = i3·u.
Consider i2, i1 being integers such that i4 = (gcd(i4, i3)) · i2 and i3 =
(gcd(i4, i3)) · i1 and i2 and i1 are relatively prime. Consider J4, J3 being
elements of ZR such that i2 ·J4+ i1 ·J3 = 1. Reconsider j4 = J4, j3 = J3 as
an element of ZR. Set w1 = i2 ·v− i1 ·u. Set w2 = j4 ·u+ j3 ·v. w1 6= 0V by
[29, (21)], [12, (37)], (20), [12, (94), (1)]. Reconsider i6 = gcd(i4, i3) as an
element of ZR. i6 ·w1 ∈W by [12, (8)]. W ∩Lin({w1}) 6= 0V by [12, (37)],
(20), [12, (94)], [13, (66)]. u = i2 ·w2 − j3 ·w1 by [12, (8)], [29, (29), (28),
(15)]. v = j4 · w1 + i1 · w2 by [12, (8)], [29, (28), (15)]. u ∈ Lin({w1}) +
Lin({w2}) by [12, (37)], (20), [12, (38), (92)]. v ∈ Lin({w1})+Lin({w2}) by
[12, (37)], (20), [12, (92)]. w1 ∈ Lin({u})+Lin({v}) by [12, (37)], (20), [12,
(38), (92)]. w2 ∈ Lin({u})+Lin({v}) by [12, (37)], (20), [12, (92)]. For every
object x such that x ∈W+Lin({u})+Lin({v}) holds x ∈W+Lin({w1})+
Lin({w2}) by [12, (92)], (19), [12, (37), (36), (96)]. For every object x such
that x ∈W + Lin({w1}) + Lin({w2}) holds x ∈W + Lin({u}) + Lin({v})
by [12, (92)], (19), [12, (37), (36), (96)]. w2 6= 0V by [29, (6)], [12, (37)],
(20), [12, (38), (94), (1)]. (W +Lin({w1}))∩Lin({w2}) = 0V by [16, (24)],
[12, (94), (92)], (19). �

(30) Let us consider a torsion-free Z-module V , a finite rank, free submodule
W of V , and a vector v of V . Suppose v 6= 0V and W ∩ Lin({v}) 6= 0V .
Then W + Lin({v}) is free.
Proof: Define P[natural number] ≡ for every finite rank, free submodule
W of V for every vector v of V such that v 6= 0V and W ∩ Lin({v}) 6= 0V
and rankW = $1 + 1 holds W + Lin({v}) is free. P[0] by [22, (5)], [12,
(25)], [14, (20)], [16, (22), (23)]. For every natural number n such that
P[n] holds P[n+1] by [16, (33)], [12, (25)], [14, (20)], [12, (97), (51), (94)].
For every natural number n, P[n] from [3, Sch. 2]. Set r1 = rankW . r1−1
is a natural number by [22, (1)], [12, (51)], [16, (23)], [12, (107)]. �

Let V be a torsion-free Z-module, v be a vector of V , and W be a finite
rank, free submodule of V . Let us note that W + Lin({v}) is free.

Let V be a Z-module and W be a finitely generated submodule of V . One
can verify that W + Lin({v}) is finitely generated.

Let W1, W2 be finitely generated submodules of V . Observe that W1 +W2
is finitely generated. Now we state the proposition:

(31) Let us consider a Z-module V , a submodule W of V , submodules W6,
W8 of W , and submodules W1, W2 of V . If W6 =W1 and W8 =W2, then
W6 +W8 =W1 +W2.
Proof: Reconsider S = W6 +W8 as a strict submodule of V . For every
vector v of V , v ∈ S iff v ∈W1 +W2 by [12, (92), (28)]. �
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Let V be a torsion-free Z-module and U1, U2 be finite rank, free submodules
of V . Note that U1+U2 is free and every finitely generated, torsion-free Z-module
is free.

2. Rank of Finite Rank Free Z-module

Now we state the propositions:

(32) Let us consider a torsion-free Z-module V , and finite rank, free submo-
dules W1, W2 of V . Suppose W1 ∩ W2 = 0V . Then rank(W1 + W2) =
rankW1 + rankW2.

(33) Let us consider a finite rank, free Z-module V , and finite rank, free
submodules W1, W2 of V . Suppose V is the direct sum of W1 and W2.
Then rankV = rankW1+ rankW2. The theorem is a consequence of (32).

(34) Let us consider a torsion-free Z-module V , and finite rank, free submo-
dules W1, W2 of V . Then rank(W1 ∩W2) ¬ rankW1.

(35) Let us consider a torsion-free Z-module V , and a vector v of V . If v 6= 0V ,
then rank Lin({v}) = 1.

(36) Let us consider a Z-module V . Then rank0V = 0.

(37) Let us consider a torsion-free Z-module V , and vectors v, u of V . Suppose
v 6= 0V and u 6= 0V and Lin({v})∩Lin({u}) 6= 0V . Then rank(Lin({v}) +
Lin({u})) = 1. The theorem is a consequence of (28).

(38) Let us consider a torsion-free Z-module V , a finite rank, free submodule
W of V , and a vector v of V . Suppose v 6= 0V and W ∩ Lin({v}) 6= 0V .
Then rank(W + Lin({v})) = rankW .
Proof: Define P[natural number] ≡ for every finite rank, free submodule
W of V for every vector v of V such that v 6= 0V and W ∩ Lin({v}) 6= 0V
and rankW = $1 + 1 holds rank(W + Lin({v})) = rankW . P[0] by [22,
(5)], [12, (25), (26), (42)]. For every natural number n such that P[n] holds
P[n+1] by (26), (24), [9, (31)], [2, (44)]. For every natural number n, P[n]
from [3, Sch. 2]. Set r1 = rankW . r1 − 1 is a natural number by [22, (1)],
[12, (51)], [16, (23)], [12, (107)]. �

(39) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a vector v of V . Suppose W1 ∩ Lin({v}) 6= 0V and
W2 ∩ Lin({v}) 6= 0V . Then (W1 ∩W2) ∩ Lin({v}) 6= 0V . The theorem is a
consequence of (19).

(40) Let us consider Z-modules V , W , a linear transformation T from V to
W , and a subset A of V . Then T ◦(the carrier of Lin(A)) ⊆ the carrier of
Lin(T ◦A).
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Proof: For every object y such that y ∈ T ◦(the carrier of Lin(A)) holds
y ∈ the carrier of Lin(T ◦A) by [7, (65)], [13, (64)], [22, (44), (46)]. �

Let us consider Z-modules X, Y and a linear transformation L from X to
Y. Now we state the propositions:

(41) L(0X) = 0Y .

(42) If L is bijective, then there exists a linear transformation K from Y to
X such that K = L−1 and K is bijective.
Proof: Reconsider K = L−1 as a function from Y into X. K is additive
by [7, (113)], [6, (34)]. For every element r of ZR and for every element x
of Y, K(r · x) = r ·K(x) by [7, (113)], [6, (34)]. �

(43) Let us consider Z-modulesX, Y, a linear combination l ofX, and a linear
transformation L from X to Y. If L is bijective, then L@∗ l = l · L−1.
Proof: Reconsider K = L−1 as a function from Y into X. For every
element a of Y, (L@∗ l)(a) = (l · K)(a) by [6, (35)], [7, (35)], [6, (12),
(34)]. �

(44) Let us consider Z-modules X, Y, a subset X0 of X, a linear transfor-
mation L from X to Y, and a linear combination l of L◦X0. Suppose
X0 = the carrier of X and L is one-to-one. Then L#l = l · L.

(45) Let us consider Z-modules X, Y, a subset A of X, and a linear trans-
formation L from X to Y. Suppose L is bijective. Then A is linearly in-
dependent if and only if L◦A is linearly independent. The theorem is a
consequence of (42).

(46) Let us consider Z-modules X, Y, a subset A of X, and a linear trans-
formation T from X to Y. Suppose T is bijective. Then T ◦(the carrier of
Lin(A)) = the carrier of Lin(T ◦A). The theorem is a consequence of (40)
and (42).

(47) Let us consider a Z-module Y, and a subset A of Y. Then Lin(A) is a
strict submodule of ΩY .

(48) Let us consider Z-modules X, Y, and a linear transformation T from
X to Y. If T is bijective, then X is free iff Y is free. The theorem is a
consequence of (42).

(49) Let us consider free Z-modules X, Y, a linear transformation T from X
to Y, and a subset A of X. Suppose T is bijective. Then A is a basis of X
if and only if T ◦A is a basis of Y. The theorem is a consequence of (42).

(50) Let us consider free Z-modules X, Y, and a linear transformation T from
X to Y. If T is bijective, then X is finite rank iff Y is finite rank. The
theorem is a consequence of (42).

(51) Let us consider finite rank, free Z-modules X, Y, and a linear transfor-
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mation T from X to Y. If T is bijective, then rankX = rankY.
Proof: For every basis I of X, rankY = I by [1, (5), (33)], (49). �

(52) Let us consider a Z-module V , a finite rank, free submodule W of V ,
and an element a of ZR. If a 6= 0ZR , then rank(a ◦W ) = rankW .
Proof: Define P[element of W, object] ≡ $2 = a · $1. For every element
x of W , there exists an element y of a ◦W such that P[x, y]. Consider
F being a function from W into a ◦W such that for every element x of
W , P[x, F (x)] from [7, Sch. 3]. For every objects x1, x2 such that x1,
x2 ∈ the carrier of W and F (x1) = F (x2) holds x1 = x2 by [12, (10)]. For
every object y such that y ∈ the carrier of a ◦W holds y ∈ rngF by [7,
(4)]. F is additive by [12, (28)]. For every element r of ZR and for every
element x of W , F (r · x) = r · F (x) by [12, (29)]. �

(53) Let us consider a Z-module V , finite rank, free submodules W1, W2, W3
of V , and an element a of ZR. Suppose a 6= 0ZR and W3 = a ◦W1. Then
rank(W3 ∩W2) = rank(W1 ∩W2).
Proof: W3 ∩ W2 is a submodule of W1 ∩ W2 by [12, (105), (42)], [13,
(75)]. a ◦ (W1 ∩W2) is a submodule of W3 ∩W2 by [12, (42), (25), (94)].
rank(W1 ∩W2) ¬ rank(W3 ∩W2). �

(54) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2, W3 of V , and an element a of ZR. Suppose a 6= 0ZR and W3 =
a ◦W1. Then rank(W3 +W2) = rank(W1 +W2).
Proof: For every vector v of V such that v ∈W3+W2 holds v ∈W1+W2
by [12, (92)]. For every vector v of V such that v ∈ a ◦ (W1 +W2) holds
v ∈ W3 +W2 by [12, (25), (92), (29)]. rank(W1 +W2) ¬ rank(W3 +W2).
�

Let us consider a torsion-free Z-module V , finite rank, free submodules W1,
W2 of V , and a basis I of W1. Now we state the propositions:

(55) Suppose for every vector v of V such that v ∈ I holds (W1 ∩ W2) ∩
Lin({v}) 6= 0V . Then rank(W1 ∩W2) = rankW1.
Proof: Define P[natural number] ≡ for every finite rank, free submodules
W1, W2 of V for every basis I of W1 such that for every vector v of V
such that v ∈ I holds (W1 ∩W2)∩Lin({v}) 6= 0V and rankW1 = $1 holds
rank(W1 ∩W2) = rankW1. P[0]. For every natural number n such that
P[n] holds P[n+ 1] by [12, (25)], [14, (15)], [13, (56)], [14, (20)]. For every
natural number n, P[n] from [3, Sch. 2]. �

(56) Suppose rank(W1 ∩W2) < rankW1. Then there exists a vector v of V
such that

(i) v ∈ I, and

(ii) (W1 ∩W2) ∩ Lin({v}) = 0V .
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(57) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a basis I of W1. Suppose rank(W1 ∩W2) = rankW1.
Let us consider a vector v of V . If v ∈ I, then (W1∩W2)∩Lin({v}) 6= 0V .
The theorem is a consequence of (24), (32), and (35).

(58) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1,W2 of V , and a basis I ofW1. Suppose for every vector v of V such that
v ∈ I holds (W1 ∩W2)∩Lin({v}) 6= 0V . Then rank(W1+W2) = rankW2.
Proof: Define P[natural number] ≡ for every finite rank, free submodules
W1, W2 of V for every basis I of W1 such that for every vector v of V
such that v ∈ I holds (W1 ∩W2)∩Lin({v}) 6= 0V and rankW1 = $1 holds
rank(W1 +W2) = rankW2. P[0] by [22, (1)], [12, (51), (42)], [16, (22)].
For every natural number n such that P[n] holds P[n + 1] by [12, (25)],
[14, (15)], [13, (56)], [14, (20)]. For every natural number n, P[n] from [3,
Sch. 2]. �

(59) Let us consider a torsion-free Z-module V , and finite rank, free submo-
dules W1, W2 of V . Suppose rank(W1 ∩W2) = rankW1. Then rank(W1 +
W2) = rankW2. The theorem is a consequence of (57) and (58).

(60) Let us consider a field G, a vector space V over G, and a subset A of V .
If A is linearly independent, then A is a basis of Lin(A).

(61) Let us consider a cancelable on multiplication, finite rank, free Z-module
V , and finite rank, free submodules W1, W2 of V . Then rank(W1+W2) +
rank(W1 ∩W2) = rankW1 + rankW2.
Proof: Consider I1 being a finite subset of V such that I1 is finite subset
of W1 and linearly independent and Lin(I1) = ΩW1 and I1 = rankW1.
Consider I2 being a finite subset of V such that I2 is finite subset of W2
and linearly independent and Lin(I2) = ΩW2 and I2 = rankW2. Consider
I4 being a finite subset of V such that I4 is finite subset of W1 + W2
and linearly independent and Lin(I4) = ΩW1+W2 and I4 = rank(W1 +
W2). Consider I3 being a finite subset of V such that I3 is finite subset
of W1 ∩W2 and linearly independent and Lin(I3) = ΩW1∩W2 and I3 =
rank(W1 ∩W2). Set I6 = (MorphsZQV )◦I1. Set I8 = (MorphsZQV )◦I2.
Set I5 = (MorphsZQV )◦I4. Set I7 = (MorphsZQV )◦I3. For every vector
v of Z MQ VectSpV , v ∈ Lin(I6) + Lin(I8) iff v ∈ Lin(I5) by [30, (1)], [31,
(7)], [16, (9), (10)]. For every vector v of Z MQ VectSpV , v ∈ Lin(I6) ∩
Lin(I8) iff v ∈ Lin(I7) by [30, (3)], [31, (7)], [16, (9), (10)]. �

Let us consider a torsion-free Z-module V and finite rank, free submodules
W1, W2 of V . Now we state the propositions:

(62) rank(W1 +W2) + rank(W1 ∩W2) = rankW1 + rankW2.
Proof: Set W5 = W1 +W2. Reconsider W4 = W1 as a finite rank, free
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submodule of W5. Reconsider W7 = W2 as a finite rank, free submodule
of W5. rank(W4 +W7) + rank(W4 ∩W7) = rankW4 + rankW7. For every
vector v of V , v ∈ W4 +W7 iff v ∈ W1 +W2 by [12, (92), (25), (28)]. For
every vector v of V , v ∈W4 ∩W7 iff v ∈W1 ∩W2 by [12, (94)]. �

(63) If rank(W1 + W2) = rankW2, then rank(W1 ∩ W2) = rankW1. The
theorem is a consequence of (62).

(64) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1,W2 of V , and a vector v of V . Suppose v 6= 0V andW1∩Lin({v}) = 0V
and (W1 +W2) ∩ Lin({v}) = 0V . Then rank((W1 + Lin({v})) ∩W2) =
rank(W1 ∩W2).
Proof: For every vector u of V such that u ∈W1 ∩W2 holds u ∈ (W1 +
Lin({v})) ∩W2 by [12, (94), (93)]. There exists a vector u of V such that
u ∈ (W1+Lin({v}))∩W2 and u /∈W1∩W2 by [12, (44)], [22, (2)]. Consider
u being a vector of V such that u ∈ (W1+Lin({v}))∩W2 and u /∈W1∩W2.
Consider u1, u2 being vectors of V such that u1 ∈ W1 and u2 ∈ Lin({v})
and u = u1 + u2. �

Let us consider a torsion-free Z-module V , a finite rank, free submodule W
of V , and a vector v of V .

Let us assume that v 6= 0V and W ∩ Lin({v}) 6= 0V . Now we state the
propositions:

(65) rank(W ∩ Lin({v})) = 1.
Proof: rank Lin({v}) = 1. rank(W ∩Lin({v})) 6= 0 by [22, (1)], [12, (51)].
�

(66) There exists a vector u of V such that

(i) u 6= 0V , and

(ii) W ∩ Lin({v}) = Lin({u}).

The theorem is a consequence of (65).

(67) Let us consider a torsion-free Z-module V , a finite rank, free submodule
W of V , and vectors u, v of V . Suppose W ∩ Lin({v}) = 0V and (W +
Lin({u})) ∩ Lin({v}) 6= 0V . Then W ∩ Lin({u}) = 0V . The theorem is a
consequence of (19).

(68) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a vector v of V . Suppose rank(W1∩W2) = rankW1 and
(W1 +W2) ∩ Lin({v}) 6= 0V . Then W2 ∩ Lin({v}) 6= 0V .
Proof: Define P[natural number] ≡ for every finite rank, free submodules
W1, W2 of V for every vector v of V such that rank(W1 ∩W2) = rankW1
and (W1+W2)∩Lin({v}) 6= 0V and rankW1 = $1 holds W2 ∩Lin({v}) 6=
0V . P[0] by [22, (1)], [12, (51), (42)], [16, (22)]. For every natural number
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n such that P[n] holds P[n + 1] by (26), [14, (20), (16)], (24). For every
natural number n, P[n] from [3, Sch. 2]. �

(69) Let us consider a torsion-free Z-module V , and finite rank, free submo-
dules W1, W2, W3 of V . Suppose rank(W1 +W2) = rankW2 and W3 is a
submodule of W1. Then rank(W3 +W2) = rankW2.

Proof: For every vector v of V such that v ∈W3+W2 holds v ∈W1+W2
by [12, (92), (23)]. �

(70) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a basis I of W1. Suppose rank(W1 +W2) = rankW2.
Let us consider a vector v of V . If v ∈ I, then (W1∩W2)∩Lin({v}) 6= 0V .

Proof: For every vector v of V such that v ∈ I holds (W1 ∩ W2) ∩
Lin({v}) 6= 0V by [14, (15)], [13, (57), (65)], [9, (31)]. �

(71) Let us consider a torsion-free Z-module V , and finite rank, free submo-
dules W1, W2 of V . Suppose rank(W1 ∩W2) = rankW1. Then there exists
an element a of ZR such that a ◦W1 is a submodule of W2.

Proof: Define P[natural number] ≡ for every finite rank, free submodules
W1, W2 of V such that rank(W1∩W2) = rankW1 and rankW1 = $1 there
exists an element a of ZR such that a ◦W1 is a submodule of W2. P[0] by
[22, (1)], [12, (55)], (1). For every natural number n such that P[n] holds
P[n + 1] by [12, (25)], [14, (15)], [13, (56)], [14, (20)]. For every natural
number n, P[n] from [3, Sch. 2]. �
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