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Summary.We introduce algorithmic logic – an algebraic approach accor-
ding to [25]. It is done in three stages: propositional calculus, quantifier calculus
with equality, and finally proper algorithmic logic. For each stage appropriate
signature and theory are defined. Propositional calculus and quantifier calculus
with equality are explored according to [24]. A language is introduced with lan-
guage signature including free variables, substitution, and equality. Algorithmic
logic requires a bialgebra structure which is an extension of language signature
and program algebra. While-if algebra of generator set and algebraic signature is
bialgebra with appropriate properties and is used as basic type of algebraic logic.
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The notation and terminology used in this paper have been introduced in the
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1. Algorithmic Langugage Signature

From now on X , Y denote sets, x, y, z denote objects, and i, j, n denote
natural numbers.

Let f be a non empty yielding function. One can check that
⋃
f is non

empty.
Let I be a set, f be a many sorted set indexed by I, and i be a set. Let us

consider x. One can verify that the functor f +· (i, x) yields a many sorted set
indexed by I. Let f be a non-empty many sorted set indexed by I and x be a
non empty set. One can check that f +· (i, x) is non-empty.
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Let Σ be a non empty, non void many sorted signature. Let us observe that
there exists a strict free variable algebra over Σ which is non-empty.

Let f , g be functions. We say that g is f -tolerating if and only if

(Def. 1) f ≈ g.

Now we state the propositions:

(1) Let us consider functions f , g. Then g is f -tolerating if and only if for
every x such that x ∈ dom f and x ∈ dom g holds f(x) = g(x).

(2) Let us consider sets I, Ω, a many sorted set f indexed by I, and a
many sorted set g indexed by Ω. Then g is f -tolerating if and only if for
every x such that x ∈ I and x ∈ Ω holds f(x) = g(x). The theorem is a
consequence of (1).

(3) Let us consider functions f , g. Then f ≈ g+·f .

Let X , Y be functions. Note that Y+·X is X -tolerating.
Let X be a function, Ω be a set, and Y be a many sorted set indexed by

Ω. Observe that Y+·X �Ω is X -tolerating and there exists a many sorted set
indexed by Ω which is X -tolerating.

Let X be a non-empty function. Note that there exists a non-empty many
sorted set indexed by Ω which is X -tolerating.

Let I be a non empty set and X be a non empty yielding many sorted set
indexed by I. One can verify that

⋃
X is non empty.

Now we state the propositions:

(4) Let us consider a non empty, non void many sorted signature Σ, an
operation symbol o of Σ, a sort symbol r of Σ, and an algebra T over Σ.
If o is of type ∅ → r, then ∅ ∈ Args(o,T).

(5) Let us consider a non empty, non void many sorted signature Σ, an
operation symbol o of Σ, sort symbols σ, r of Σ, and an algebra T over
Σ. Suppose o is of type 〈σ〉 → r and x ∈ (the sorts of T)(σ). Then 〈x〉 ∈
Args(o,T).

(6) Let us consider a non empty, non void many sorted signature Σ, an
operation symbol o of Σ, sort symbols σ1, σ2, r of Σ, and an algebra T

over Σ. Suppose o is of type 〈σ1, σ2〉 → r and x ∈ (the sorts of T)(σ1) and
y ∈ (the sorts of T)(σ2). Then 〈x, y〉 ∈ Args(o,T).

(7) Let us consider a non empty, non void many sorted signature Σ, an
operation symbol o of Σ, sort symbols σ1, σ2, σ3, r of Σ, and an algebra
T over Σ. Suppose o is of type 〈σ1, σ2, σ3〉 → r and x ∈ (the sorts of
T)(σ1) and y ∈ (the sorts of T)(σ2) and z ∈ (the sorts of T)(σ3). Then 〈x,
y, z〉 ∈ Args(o,T).

Let Σ, E be signatures. We say that E is Σ-extension if and only if
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(Def. 2) Σ is a subsignature of E.

Let Σ be a signature. Let us observe that every extension of Σ is Σ-extension.
Now we state the propositions:

(8) Let us consider non empty signatures Σ, E. Suppose E is Σ-extension.
Then every sort symbol of Σ is a sort symbol of E.

(9) Let us consider non void signatures Σ, E. Suppose E is Σ-extension. Let
us consider an operation symbol o of Σ, a set a, an element r of Σ, and
an element r1 of E. If r = r1 and o is of type a → r, then o is of type a
→ r1.

Let X be a function and Ω, Y be sets. The functor X extended by(Y,Ω)
yielding a many sorted set indexed by Ω is defined by the term

(Def. 3) (Ω 7−→ Y )+·X �Ω.

One can check that X extended by(Y,Ω) is X -tolerating.
We consider PC language signatures which extend connectives signatures

and are systems

〈〈a carrier, a carrier’, an arity, a result sort,

a formula sort, connectives〉〉

where the carrier is a set, the carrier’ is a set, the arity is a function from the
carrier’ into (the carrier)∗, the result sort is a function from the carrier’ into the
carrier, the formula sort is an element of the carrier, the connectives constitute
a finite sequence of elements of the carrier’.

Let X be a set. We consider QC language signatures over X which extend
PC language signatures and are systems

〈〈a carrier, a carrier’, an arity, a result sort,

a formula sort, connectives, a quantifier sort, quantifiers〉〉

where the carrier is a set, the carrier’ is a set, the arity is a function from the
carrier’ into (the carrier)∗, the result sort is a function from the carrier’ into the
carrier, the formula sort is an element of the carrier, the connectives constitute
a finite sequence of elements of the carrier’, the quantifier sort is a set, the
quantifiers constitute a function from (the quantifier sort)×X into the carrier’.

We consider algorithmic language signatures of X which extend QC language
signatures over X and are systems

〈〈a carrier, a carrier’, an arity, a result sort,

a formula sort, a program sort, connectives, a quantifier sort, quantifiers〉〉
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where the carrier is a set, the carrier’ is a set, the arity is a function from the
carrier’ into (the carrier)∗, the result sort is a function from the carrier’ into the
carrier, the formula sort and the program sort are elements of the carrier, the
connectives constitute a finite sequence of elements of the carrier’, the quantifier
sort is a set, the quantifiers constitute a function from (the quantifier sort)×X
into the carrier’.

Let n be a natural number and L be a PC language signature. We say that
L is PC correct w.r.t. n if and only if

(Def. 4) len(the connectives of L) ­ n+5 and (the connectives of L)�{n, n+1, n+
2, n+ 3, n+ 4, n+ 5} is one-to-one and (the connectives of L)(n) is of type
〈the formula sort of L〉 → the formula sort of L and (the connectives
of L)(n + 5) is of type ∅ → the formula sort of L and (the connectives
of L)(n + 1) is of type 〈the formula sort of L, the formula sort of L〉 →
the formula sort of L and ... and (the connectives of L)(n + 4) is of type
〈the formula sort of L, the formula sort of L〉 → the formula sort of L.

Let us consider X . Let L be a QC language signature over X . We say that
L is QC correct if and only if

(Def. 5) the quantifier sort of L = {1, 2} and the quantifiers of L is one-to-one
and rng(the quantifiers of L) misses rng(the connectives of L) and for
every objects q, x such that q ∈ the quantifier sort of L and x ∈ X holds
(the quantifiers of L)(q, x) is of type 〈the formula sort of L〉 → the formula
sort of L.

Let n be a natural number, X be a set, and L be an algorithmic language
signature of X . We say that L is AL correct w.r.t. n if and only if

(Def. 6) the program sort of L 6= the formula sort of L and len(the connectives
of L) ­ n + 8 and (the connectives of L)(n + 6) is of type 〈the program
sort of L, the formula sort of L〉 → the formula sort of L and ... and
(the connectives of L)(n+8) is of type 〈the program sort of L, the formula
sort of L〉 → the formula sort of L.

Let us consider n. Let us note that every PC language signature which is
PC correct w.r.t. n is also non void.

Let X , Y be sets. Assume Y ⊆ X . The functor incl(Y,X ) yielding a function
from Y into X is defined by the term

(Def. 7) idY .

Let n be a non empty, natural number and X be a set. Let us observe that
there exists a QC language signature over X which is non void, non empty, PC
correct w.r.t. n, and QC correct and there exists a PC language signature which
is non void, non empty, and PC correct w.r.t. n.

Let X be a set. Note that there exists a strict algorithmic language signature
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of X which is non void and non empty and every set which is ordinal is also non
pair.

(10) Let us consider an ordinal number a and natural numbers n1, n2. If
n1 6= n2, then a+ n1 6= a+ n2.

Let R be a non empty binary relation. Observe that every element of R is
pair.

(11) Let us consider a non empty, natural number n, a non empty set X , and
a signature Ω. Then there exists a strict, non void, non empty algorithmic
language signature Σ of X such that

(i) Σ is PC correct w.r.t. n, QC correct, AL correct w.r.t. n, and Ω-
extension, and

(ii) for every i such that i = 0 or ... or i = 8 holds (the connectives of
Σ)(n+ i) = sup(the carrier’ of Ω) + i, and

(iii) for every element x of X , (the quantifiers of Σ)(1, x) = 〈〈the carrier’
of Ω, 1, x〉〉 and (the quantifiers of Σ)(2, x) = 〈〈the carrier’ of Ω, 2, x〉〉,
and

(iv) the formula sort of Σ = sup(the carrier of Ω), and

(v) the program sort of Σ = sup(the carrier of Ω) + 1, and

(vi) the carrier of Σ = (the carrier of Ω)∪{the formula sort of Σ, the pro-
gram sort of Σ}, and

(vii) for every ordinal number w such that w = sup(the carrier’ of Ω) holds
the carrier’ of Σ = ((the carrier’ of Ω)∪{w+0, w+1, w+2, w+3, w+
4, w + 5, w + 6, w + 7, w + 8}) ∪ ({the carrier’ of Ω} × {1, 2} × X ).

Proof: Set w = sup(the carrier’ of Ω). Set u = sup(the carrier of Ω). Set
O1 = {w+0, w+1, w+2, w+3, w+4, w+5, w+6, w+7, w+8}∪({the carrier’
of Ω} × {1, 2} × X ). Set O = (the carrier’ of Ω) ∪ O1. Set a = ((({w +
1, w+2, w+3, w+4} 7−→ 〈u+0, u+0〉)∪ ({w+0}∪ ({the carrier’ of Ω}×
{1, 2} × X ) 7−→ 〈u+ 0〉)) ∪ ({w + 5} 7−→ ∅)) ∪ ({w + 6, w + 7, w + 8} 7−→
〈u + 1, u + 0〉). Set r = O1 7−→ u + 0. Set r2 = (the result sort of
Ω)+·r. {w+ 0, w+ 1, w+ 2, w+ 3, w+ 4, w+ 5, w+ 6, w+ 7, w+ 8} misses
{the carrier’ of Ω} × {1, 2} × X by [30, (68)]. {w + 1, w + 2, w + 3, w + 4}
misses {w+ 0}∪ ({the carrier’ of Ω}×{1, 2}×X ) by [11, (21)], [30, (68)].
{w + 0, w + 1, w + 2, w + 3, w + 4} ∪ ({the carrier’ of Ω} × {1, 2} × X )
misses {w + 5} by [11, (21)], [30, (68)]. {w + 0, w + 1, w + 2, w + 3, w +
4, w + 5} ∪ ({the carrier’ of Ω} × {1, 2} × X ) misses {w + 6, w + 7, w + 8}
by [11, (21)], [30, (68)]. O1 misses the carrier’ of Ω by [10, (19), (27)], [30,
(68)], [11, (22)]. Reconsider a1 = (the arity of Ω) ∪ a as a function. Set
γ = (the carrier of Ω)∪{u+0, u+1}. Reconsider 00 = u+0, 01 = u+1 as
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an element of γ. Reconsider o0 = w+0, o1 = w+1, o2 = w+2, o3 = w+3,
o4 = w+ 4, o5 = w+ 5, o6 = w+ 6, o7 = w+ 7, o8 = w+ 8 as an element
of O. Set p = the (n−′ 1 qua natural number)-element finite sequence of
elements of {w + 0, w + 1, w + 2, w + 3, w + 4, w + 5, w + 6, w + 7, w + 8}.
Set c′ = 〈〈o0, o1, o2, o3, o4, o5, o6, o7〉〉 a 〈o8〉. Reconsider c = p a c′ as a finite
sequence of elements of O. If i = 0 or ... or i = 8, then c(n+i) = w+i by [2,
(29)]. Define Q(object) = 〈〈the carrier’ of Ω, $11, $12〉〉. Consider q being a
function such that dom q = {1, 2}×X and for every x such that x ∈ {1, 2}×
X holds q(x) = Q(x) from [17, Sch. 3]. rng q ⊆ O by [30, (69)]. Set L =
〈〈γ,O, a1, r2, 00, 01, c, {1, 2}, q〉〉. Set N = {n, n+1, n+2, n+3, n+4, n+5}.
(The connectives of L)�N is one-to-one by [35, (57)], [17, (49)], [11, (21)].
(the connectives of L)(n) is of type 〈the formula sort of L〉 → the formula
sort of L by [21, (106)], [17, (1)], [21, (87)], [19, (13)]. (the connectives
of L)(n+ 5) is of type ∅ → the formula sort of L by [21, (106)], [17, (1)],
[21, (87)], [19, (13)]. (the connectives of L)(n+ 1) is of type 〈the formula
sort of L, the formula sort of L〉 → the formula sort of L and ... and
(the connectives of L)(n+4) is of type 〈the formula sort of L, the formula
sort of L〉 → the formula sort of L by [21, (106)], [17, (1)], [19, (13)]. The
quantifiers of L is one-to-one. rng(the quantifiers of L) ⊆ {the carrier’ of
Ω}×{1, 2}×X by [30, (10), (69)]. (the connectives of L)(n+ 6) is of type
〈the program sort of L, the formula sort of L〉 → the formula sort of L
and ... and (the connectives of L)(n + 8) is of type 〈the program sort of
L, the formula sort of L〉 → the formula sort of L by [21, (106)], [17, (1)],
[19, (13)]. L is Ω-extension by [35, (53)], [19, (33)], [35, (65)], [17, (102)].
�

Let n be a non empty, natural number, X be a non empty set, and Ω be
a signature. Let us observe that there exists a non void, non empty, strict
algorithmic language signature of X which is Ω-extension, PC correct w.r.t. n,
QC correct, and AL correct w.r.t. n and there exists a non void, non empty,
strict algorithmic language signature of X which is PC correct w.r.t. n, QC
correct, and AL correct w.r.t. n.

2. Language

Let Ω be a non empty, non void signature and T be an algebra over Ω.
A variable set in T is a set and is defined by

(Def. 8) there exists a generator set G of T such that it =
⋃
G.

Let X be a generator set of T. Note that the functor
⋃
X yields a variable

set in T. Now we state the proposition:
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(12) Let us consider a non empty, non void signature Ω, an algebra T over Ω,
and a variable set X in T. Then X ⊆

⋃
(the sorts of T).

Let Σ be a non empty, non void signature, X be a many sorted set indexed
by the carrier of Σ, and T be a free variable algebra over Σ. We say that T is
X -vf-yielding if and only if

(Def. 9) the free variables of T is a double many sorted set of the sorts of T and
X .

Let Ω be a non empty set, Q be a many sorted set indexed by Ω, Y be a set,
and f be a function from

⋃
Q× Y into

⋃
Q. We say that f is sort-preserving if

and only if

(Def. 10) for every element j of Ω, f◦(Q(j)× Y ) ⊆ Q(j).

One can verify that there exists a function from
⋃
Q× Y into

⋃
Q which is

sort-preserving.
Let Ω be a non empty, non void signature and X be a many sorted set

indexed by the carrier of Ω. We consider algebras over Ω, X with substitution
which extend algebras over Ω and are systems

〈〈sorts, a characteristics, a substitution operation〉〉

where the sorts constitute a many sorted set indexed by the carrier of Ω, the
characteristics is a many sorted function from (the sorts)# · (the arity of Ω) into
(the sorts) · (the result sort of Ω), the substitution operation is a sort-preserving
function from

⋃
(the sorts)×

⋃
[[X , the sorts]] into

⋃
(the sorts).

Now we state the proposition:

(13) Let us consider a set I, a many sorted set X indexed by I, a many sorted
subset Σ of X , and x. Then Σ(x) is a subset of X (x).

Let Ω be a non empty, non void signature, X be a non empty yielding many
sorted set indexed by the carrier of Ω, and Q be an algebra over Ω, X with
substitution. Assume X is a many sorted subset of the sorts of Q. Let x be an
element of

⋃
X . The functor @(x,Q) yielding an element of

⋃
(the sorts of Q) is

defined by the term

(Def. 11) x.

Assume X is a many sorted subset of the sorts of Q. Let j be a sort symbol
of Ω. Assume (the sorts of Q)(j) 6= ∅. Let α be an element of Q from j and y

be an element of
⋃
X . Given sort symbol a of Ω such that x, y ∈ X (a). The

functor α(x←y) yielding an element of Q from j is defined by the term

(Def. 12) (the substitution operation of Q)(〈〈α, 〈〈x, y〉〉〉〉).
Assume (the sorts of Q)(j) 6= ∅. Let τ be an element of

⋃
(the sorts of Q).

Given sort symbol a of Ω such that x ∈ X (a) and τ ∈ (the sorts of Q)(a). The
functor α(x←τ) yielding an element of Q from j is defined by the term
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(Def. 13) (the substitution operation of Q)(〈〈α, 〈〈x, τ〉〉〉〉).
Let Ω be a non empty, non void many sorted signature and X be a many

sorted set indexed by the carrier of Ω. One can verify that there exists an algebra
over Ω, X with substitution which is non-empty.

Let Ω be a non empty, non void signature, X be a non empty yielding many
sorted set indexed by the carrier of Ω, Q be a non-empty algebra over Ω, X with
substitution, o be an operation symbol of Ω, p be an element of Args(o,Q), x
be an element of

⋃
X , and y be an element of

⋃
(the sorts of Q). The functor

p(x←y) yielding an element of Args(o,Q) is defined by

(Def. 14) for every natural number i such that i ∈ dom Arity(o) there exists a sort
symbol j of Ω such that j = Arity(o)(i) and there exists an element α of
Q from j such that α = p(i) and it(i) = α(x←y).

Let I be a non empty set, X be a non-empty many sorted set indexed by I,
Σ be a non-empty many sorted subset of X , x be an element of I, and z be an
element of Σ(x). The functor @z yielding an element of X (x) is defined by the
term

(Def. 15) z.

Let Ω be a non empty, non void signature, X be a non empty yielding many
sorted set indexed by the carrier of Ω, and Q be a non-empty algebra over Ω,
X with substitution. We say that Q is substitution correct (1) if and only if

(Def. 16) for every element x of
⋃
X and for every sort symbol a of Ω such that

x ∈ X (a) holds for every sort symbol j of Ω and for every element α of Q
from j, α(x←x) = α and for every element y of

⋃
(the sorts of Q) such that

y ∈ (the sorts of Q)(a) for every operation symbol o of Ω for every element
p of Args(o,Q) for every element α of Q from the result sort of o such that
α = (Den(o,Q))(p) holds if there exists no QC language signature Σ over⋃
X such that Ω = Σ and there exists an element z of

⋃
X and there

exists an element q of {1, 2} such that o = (the quantifiers of Σ)(q, z),
then α(x←y) = (Den(o,Q))(p(x←y)).

We say that Q is substitution correct (2) if and only if

(Def. 17) for every sort symbol j of Ω and for every element q of Q from j and
for every element τ of Q from j and for every element x of

⋃
X such that

τ = x ∈ X (j) holds τ(x←q) = q.

Now we state the proposition:

(14) Let us consider a non empty, non void signature Ω, a non empty yielding
many sorted set X indexed by the carrier of Ω, and an algebra Q over Ω,
X with substitution. Suppose X is a many sorted subset of the sorts of
Q. Let us consider a sort symbol a of Ω. Suppose (the sorts of Q)(a) 6= ∅.
Let us consider an element α of Q from a, elements x, y of

⋃
X , and an
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element τ of
⋃

(the sorts of Q). Suppose y = τ . Let us consider a sort
symbol j of Ω. If x, y ∈ X (j), then α(x←y) = α(x←τ). The theorem is a
consequence of (13).

Let Ω be a non void signature. Let us note that every signature which is
Ω-extension is also non void and non empty.

Let Ω be a signature. Let us note that there exists a non empty, non void
signature which is Ω-extension.

Let X be a non empty set. Let us note that there exists a non empty, non
void QC language signature over X which is Ω-extension.

Let n be a non empty, natural number. Note that there exists a non empty,
non void, PC correct w.r.t. n, QC correct QC language signature over X which
is Ω-extension.

Let n be a non empty natural number and Σ be an Ω-extension, PC correct
w.r.t. n, feasible algorithmic language signature of X . We say that Σ is essential
if and only if

(Def. 18) (the connectives of Σ)◦(n+9\n) misses the carrier’ of Ω and rng(the quan-
tifiers of Σ) misses the carrier’ of Ω and {the formula sort of Σ, the program
sort of Σ} misses the carrier of Ω.

Let n be a non empty, natural number. Observe that there exists an Ω-
extension, PC correct w.r.t. n, QC correct, AL correct w.r.t. n, non void, non
empty, strict algorithmic language signature of X which is essential.

Let Ω be a non empty signature, Σ be an Ω-extension, non empty signature,
and X be a non empty yielding many sorted set indexed by the carrier of Ω.
Note that there exists a non empty yielding many sorted set indexed by the
carrier of Σ which is X -tolerating.

Let Σ be a non empty signature, T be an algebra over Ω, and Q be an algebra
over Σ. We say that Q is T-extension if and only if

(Def. 19) Q�Ω = the algebra of T.

Now we state the propositions:

(15) Let us consider a non empty, non void signature Ω, an Ω-extension si-
gnature Σ, an algebra T over Ω, and algebras Q1, Q2 over Σ. Suppose
the algebra of Q1 = the algebra of Q2. If Q1 is T-extension, then Q2 is
T-extension.

(16) Let us consider a non empty, non void signature Ω, an Ω-extension
signature Σ, an algebra T over Ω, and an algebra Q over Σ. Suppo-
se Q is T-extension. Suppose x ∈ the carrier of Ω. Then (the sorts of
T)(x) = (the sorts of Q)(x).

(17) Let us consider a non empty, non void signature Ω, an Ω-extension si-
gnature Σ, an algebra T over Ω, and a set I. Suppose I ⊆ (the carrier of
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Σ) \ (the carrier of Ω). Let us consider a many sorted set X indexed by I.
Then there exists an algebra Q over Σ such that

(i) Q is T-extension, and

(ii) (the sorts of Q)�I = X .

Proof: Set U = (the many sorted set indexed by the carrier of Σ+·(the so-
rts of T))+·X . Set γ = the many sorted function from U# · (the arity of
Σ) into U · (the result sort of Σ)+·(the characteristics of T). γ is a many
sorted function from U# · (the arity of Σ) into U · (the result sort of Σ) by
[19, (13)], [6, (12)], [17, (49)], [13, (11)]. Q is T-extension by [35, (65)], [19,
(72), (23)]. �

(18) Let us consider a non empty, non void signature Ω, an Ω-extension si-
gnature Σ, a non-empty algebra T over Ω, and a set I. Suppose I ⊆
(the carrier of Σ) \ (the carrier of Ω). Let us consider a non-empty many
sorted set X indexed by I. Then there exists a non-empty algebra Q over
Σ such that

(i) Q is T-extension, and

(ii) (the sorts of Q)�I = X .

The theorem is a consequence of (17) and (16).

Let Ω be a non empty, non void signature, Σ be an Ω-extension signature,
and T be an algebra over Ω. One can verify that there exists an algebra over Σ
which is T-extension.

Let T be a non-empty algebra over Ω. One can check that there exists a
non-empty algebra over Σ which is T-extension.

Now we state the propositions:

(19) Let us consider a set I and an object a. Then π1(I � {a}) is one-to-one.

(20) Let us consider signatures Σ1, Σ2, E1, E2. Suppose the many sorted
signature of Σ1 = the many sorted signature of Σ2 and the many sorted
signature of E1 = the many sorted signature of E2 and E1 is an extension
of Σ1. Then E2 is an extension of Σ2.

Let I be a set and a be an object. Observe that π1(I � {a}) is one-to-one.
Let a, b, c be non empty sets, g be a function from a into b, and f be a

function from b into c. Note that the functor f · g yields a function from a into
c. Now we state the propositions:

(21) Let us consider a one-to-one function f . If X misses Y, then f◦X misses
f◦Y.

(22) Let us consider a non empty, natural number n, a set X , and a non
empty signature Ω. Then there exists a non empty, non void, PC correct
w.r.t. n, QC correct QC language signature Q over X such that
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(i) the carrier of Q misses the carrier of Ω, and

(ii) the carrier’ of Q misses the carrier’ of Ω.

Proof: Set Q = the non empty, non void, PC correct w.r.t. n, QC
correct QC language signature over X . Reconsider α = (the carrier of
Q)×{the carrier of Ω} as a non empty set. Reconsider β = (the carrier’ of
Q)×{the carrier’ of Ω} as a non empty set. Reconsider f = π1((the carrier
of Q)� {the carrier of Ω}) as a function from α into the carrier of Q. Re-
consider g = π1((the carrier’ of Q) � {the carrier’ of Ω}) as a function
from β into the carrier’ of Q. Reconsider f1 = f−1 as a function from the
carrier of Q into α. Reconsider g1 = g−1 as a function from the carrier’
of Q into β. Define F(object) = f1 · $1(∈ (the carrier of Q)∗). Consider
f2 being a function such that dom f2 = (the carrier of Q)∗ and for eve-
ry object p such that p ∈ (the carrier of Q)∗ holds f2(p) = F(p) from
[17, Sch. 3]. rng f2 ⊆ α∗. Reconsider A6 = f2 · (the arity of Q) · g as a
function from β into α∗. Reconsider r3 = f1 · (the result sort of Q) · g
as a function from β into α. Reconsider f3 = f1((the formula sort of
Q)) as an element of α. Reconsider c2 = g1 · (the connectives of Q) as
a finite sequence of elements of β. Reconsider q5 = g1 · (the quantifiers
of Q) as a function from (the quantifier sort of Q) × X into β. Set Q3 =
〈〈(α qua non empty set), (β qua non empty set), A6, r3, f3, c2, (the quantifier
sort of Q qua set), q5〉〉. Q3 is PC correct w.r.t. n by [35, (27), (83)], [8,
(12), (13)]. Q3 is QC correct by [28, (52)], (21), [21, (87)], [18, (5)]. The
carrier of Q3 misses the carrier of Ω. The carrier’ of Q3 misses the carrier’
of Ω. �

Let Ω be a non empty signature. Let us note that there exists a non empty,
non void signature which is Ω-extension.

Let X be a set. Observe that there exists a non empty, non void QC language
signature over X which is Ω-extension.

Let n be a non empty, natural number. Observe that there exists a non
empty, non void, PC correct w.r.t. n, QC correct QC language signature over
X which is Ω-extension.

Let Ω be a non empty, non void signature, T be a non-empty algebra over
Ω, X be a non empty yielding generator set of T, Σ be an Ω-extension, non
empty, non void QC language signature over

⋃
X , and Y be an X -tolerating

many sorted set indexed by the carrier of Σ. We consider language structures
over T, Y and Σ which extend free variable algebras over Σ and algebras over
Σ, Y with substitution and are systems

〈〈sorts, a characteristics, free variables, a substitution operation,

an equality〉〉
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where the sorts constitute a many sorted set indexed by the carrier of Σ, the
characteristics is a many sorted function from (the sorts)# · (the arity of Σ) into
(the sorts)·(the result sort of Σ), the free variables constitute a double many sor-
ted set of the sorts and the sorts, the substitution operation is a sort-preserving
function from

⋃
(the sorts) ×

⋃
[[Y, the sorts]] into

⋃
(the sorts), the equality is

a function from
⋃

[[the sorts of T, the sorts of T]] into (the sorts)((the formula
sort of Σ)).

Let Σ be a non empty PC language signature and L be an algebra over Σ.
We say that L is a language if and only if

(Def. 20) (the sorts of L)((the formula sort of Σ)) is not empty.

One can check that every algebra over Σ which is non-empty is also a lan-
guage and there exists an algebra over Σ which is a language.

Now we state the proposition:

(23) Let us consider a non void signature Ω, an Ω-extension, non void signatu-
re Σ, and algebras A1, A2 over Σ. Suppose the algebra of A1 = the algebra
of A2. Then A1�Ω = A2�Ω.

Let Ω be a non empty, non void signature, T be a non-empty algebra over
Ω, X be a non empty yielding generator set of T, and Σ be an Ω-extension, non
empty, non void QC language signature over

⋃
X . Observe that there exists

a non empty yielding many sorted set indexed by the carrier of Σ which is
X -tolerating.

Let Y be an X -tolerating, non empty yielding many sorted set indexed by
the carrier of Σ. Let us observe that there exists a language structure over T, Y
and Σ which is non-empty, language, and T-extension.

Let L be a non-empty language structure over T, Y and Σ. We say that L
is substitution correct (3) if and only if

(Def. 21) for every sort symbols σ, σ1 of Σ and for every element τ of L from σ

and for every element τ1 of L from σ1 and for every element y of
⋃
Y such

that y ∈ Y (σ) holds y 6∈ (vf τ1)(σ) and if y 6∈ (vf τ1)(σ), then τ1(y←τ) = τ1

and if τ1 = y ∈ Y (σ1), then τ1(y←τ) = τ and for every element x of
⋃
Y

such that x ∈ Y (σ) holds τ1(x←y)(y←x) = τ1.

Let Ω be a non empty signature, Σ be an Ω-extension, non empty signature,
X be a non empty yielding many sorted set indexed by the carrier of Ω, and
Y be a set. Let us note that X extended by(Y, (the carrier of Σ)) is non empty
yielding.

Let Ω be a non empty, non void signature, T be a non-empty algebra over
Ω, X be a non empty yielding generator set of T, and Σ be an Ω-extension, non
empty, non void QC language signature over

⋃
X . Let us observe that there

exists a language structure over T, X extended by(∅, (the carrier of Σ)) and Σ



Algebraic approach to algorithmic logic 237

which is (X extended by(∅, (the carrier of Σ)))-vf-yielding, non-empty, language,
and T-extension.

Let X be a set, Σ be a non empty QC language signature over X , and L be
language algebra over Σ. Note that (the sorts of L)((the formula sort of Σ)) is
non empty.

Let Ω be a non empty, non void signature, T be a non-empty algebra over
Ω, X be a non empty yielding generator set of T, Σ be an Ω-extension, non
empty, non void QC language signature over

⋃
X , and Y be an X -tolerating,

non empty yielding many sorted set indexed by the carrier of Σ.
A language over Y and Σ is language, T-extension language structure over

T, Y and Σ. Let Σ be a non empty PC language signature and L be language
algebra over Σ.

A formula of L is an element of (the sorts of L)((the formula sort of Σ)).
Let n be a non empty, natural number and Σ be a non void, non empty, PC
correct w.r.t. n PC language signature. The functor trueL yielding a formula of
L is defined by the term

(Def. 22) (Den((the connectives of Σ)(n+ 5)(∈ (the carrier’ of Σ)), L))(∅).
Let α be a formula of L. The functor ¬α yielding a formula of L is defined by
the term

(Def. 23) (Den((the connectives of Σ)(n)(∈ (the carrier’ of Σ)), L))(〈α〉).
Let β be a formula of L. The functors: α∧β, α∨β, α⇒ β, and α⇔ β yielding
formulae of L are defined by terms,

(Def. 24) (Den((the connectives of Σ)(n+ 1)(∈ (the carrier’ of Σ)), L))(〈α, β〉),
(Def. 25) (Den((the connectives of Σ)(n+ 2)(∈ (the carrier’ of Σ)), L))(〈α, β〉),
(Def. 26) (Den((the connectives of Σ)(n+ 3)(∈ (the carrier’ of Σ)), L))(〈α, β〉),
(Def. 27) (Den((the connectives of Σ)(n+ 4)(∈ (the carrier’ of Σ)), L))(〈α, β〉),

respectively. Let Ω be a non empty, non void signature and T be a non-empty
algebra over Ω. Let us note that there exists a variable set in T which is non
empty.

Let n be a non empty, natural number, X be a non empty yielding generator
set of T, Σ be an Ω-extension, non void, non empty, PC correct w.r.t. n, QC
correct QC language signature over

⋃
X , Y be an X -tolerating, non empty

yielding many sorted set indexed by the carrier of Σ, L be a language over Y
and Σ, α be a formula of L, and x be an element of

⋃
X . The functors: ∀x α

and ∃x α yielding formulae of L are defined by terms,

(Def. 28) (Den((the quantifiers of Σ)(1, x)(∈ (the carrier’ of Σ)), L))(〈α〉),
(Def. 29) (Den((the quantifiers of Σ)(2, x)(∈ (the carrier’ of Σ)), L))(〈α〉),
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respectively. Let x, y be elements of
⋃
X . The functors: ∀x,y α and ∃x,y α yielding

formulae of L are defined by terms,

(Def. 30) ∀x(∀y α),

(Def. 31) ∃x(∃y α),

respectively. Let x, y, z be elements of
⋃
X . The functors: ∀x,y,z α and ∃x,y,z α

yielding formulae of L are defined by terms,

(Def. 32) ∀x,y(∀z α),

(Def. 33) ∃x,y(∃z α),

respectively. Let τ1, τ2 be objects. Given sort symbol a of Ω such that τ1, τ2 ∈
(the sorts of T)(a). The functor τ1=Lτ2 yielding a formula of L is defined by the
term

(Def. 34) (the equality of L)(τ1, τ2).

Let L be a non-empty language over Y and Σ. We say that L is vf-QC-correct
if and only if

(Def. 35) for every formulae α, β of L, vf ¬α = vf α and vf(α ∧ β) = vf α ∪ vf β
and vf(α ∨ β) = vf α ∪ vf β and vf(α ⇒ β) = vf α ∪ vf β and vf(α ⇔
β) = vf α ∪ vf β and vf trueL = 0.(the carrier of Σ) and for every element
x of

⋃
X and for every sort symbol a of Σ such that x ∈ X (a) holds

vf ∀x α = vf α \ a -singletonx and vf ∃x α = vf α \ a -singletonx.

Let L be a non-empty, T-extension language over Y and Σ. We say that L
is vf finite if and only if

(Def. 36) for every sort symbol σ of Σ and for every element τ of L from σ, vf τ
is finite-yielding.

We say that L is substitution for ∀ and ∃ if and only if

(Def. 37) for every formula α of L and for every element x of
⋃
X and for every

sort symbols σ, σ1 of Σ and for every element τ of L from σ such that
x ∈ X (σ1) for every element y of

⋃
Y such that y ∈ Y (σ) holds if x =

y, then (∀x α)(y←τ) = ∀x α and (∃x α)(y←τ) = ∃x α and if x 6= y and
x ∈ (vf τ)(σ1), then there exists an element z of

⋃
X and there exist

elements x0, z0 of
⋃
Y such that x = x0 and z0 = z = the element of

(X (σ1) \ (vf τ)(σ1)) \ (vf α)(σ1) and (∀x α)(y←τ) = ∀z(α(x0←z0)(y←τ)) and
(∃x α)(y←τ) = ∃z(α(x0←z0)(y←τ)) and if x 6= y and x 6∈ (vf τ)(σ), then
(∀x α)(y←τ) = ∀x(α(y←τ)) and (∃x α)(y←τ) = ∃x(α(y←τ)).

Now we state the propositions:

(24) Let us consider a non void signature Ω, an algebra T over Ω, a many
sorted subset X of the sorts of T, an Ω-extension, non void signature Σ, and
a T-extension algebra Q over Σ. Then X extended by(∅, (the carrier of Σ))
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is a many sorted subset of the sorts of Q. The theorem is a consequence
of (16).

(25) Let us consider a non void signature Ω, an algebra T over Ω, a many
sorted subset X of the sorts of T, and an Ω-extension, non void signature
Σ. Then

⋃
(X extended by(∅, (the carrier of Σ))) =

⋃
X .

(26) Let us consider a non empty, natural number n, a non empty set X ,
a non empty, non void, PC correct w.r.t. n, QC correct QC language
signature Σ over X , and language algebra Q over Σ. Then

(i) ∅ ∈ Args((the connectives of Σ)(n+5)(∈ (the carrier’ of Σ)), Q), and

(ii) for every formula α of Q, 〈α〉 ∈ Args((the connectives of Σ)(n)(∈
(the carrier’ of Σ)), Q) and for every formula β ofQ, 〈α, β〉 ∈ Args((the
connectives of Σ)(n + 1)(∈ (the carrier’ of Σ)), Q) and ... and 〈α,
β〉 ∈ Args((the connectives of Σ)(n+4)(∈ (the carrier’ of Σ)), Q) and
for every element x of X , 〈α〉 ∈ Args((the quantifiers of Σ)(1, x)(∈
(the carrier’ of Σ)), Q) and 〈α〉 ∈ Args((the quantifiers of Σ)(2, x)(∈
(the carrier’ of Σ)), Q).

The theorem is a consequence of (4), (5), and (6).

(27) Let us consider a non empty, natural number n, a non empty, non void
signature Ω, a non-empty algebra T over Ω, a non empty yielding generator
set X of T, an Ω-extension, non void, non empty, PC correct w.r.t.
n, QC correct QC language signature Σ over

⋃
X , an X -tolerating, non

empty yielding many sorted set Y indexed by the carrier of Σ, a non-empty
language L over Y and Σ, an element x of

⋃
Y, an element τ of

⋃
(the sorts

of L), and a sort symbol σ of Σ. Suppose x ∈ Y (σ) and τ ∈ (the sorts of
L)(σ). Then

(i) for every element a of Args((the connectives of Σ)(n+5)(∈ (the carrier’
of Σ)), L) such that a = ∅ holds a(x←τ) = ∅, and

(ii) for every formula α of L, for every element a of Args((the connectives
of Σ)(n)(∈ (the carrier’ of Σ)), L) such that 〈α〉 = a holds a(x←τ) =
〈α(x←τ)〉 and for every formula β of L, for every element a of Args((the
connectives of Σ)(n+1)(∈ (the carrier’ of Σ)), L) such that 〈α, β〉 = a

holds a(x←τ) = 〈α(x←τ), β(x←τ)〉 and ... and for every element a of
Args((the connectives of Σ)(n+4)(∈ (the carrier’ of Σ)), L) such that
〈α, β〉 = a holds a(x←τ) = 〈α(x←τ), β(x←τ)〉 and for every element
z of

⋃
X , for every element a of Args((the quantifiers of Σ)(1, z)(∈

(the carrier’ of Σ)), L) such that 〈α〉 = a holds a(x←τ) = 〈α(x←τ)〉 and
for every element a of Args((the quantifiers of Σ)(2, z)(∈ (the carrier’
of Σ)), L) such that 〈α〉 = a holds a(x←τ) = 〈α(x←τ)〉.
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Proof: for every element a of Args((the connectives of Σ)(n+1)(∈ (the car-
rier’ of Σ)), L) such that 〈α, β〉 = a holds a(x←τ) = 〈α(x←τ), β(x←τ)〉
and ... and for every element a of Args((the connectives of Σ)(n + 4)(∈
(the carrier’ of Σ)), L) such that 〈α, β〉 = a holds a(x←τ) = 〈α(x←τ),

β(x←τ)〉 by [7, (2)], [12, (44), (89), (1)]. Set o = (the quantifiers of
Σ)(2, z)(∈ (the carrier’ of Σ)). Consider j being a sort symbol of Σ such
that j = Arity(o)(1) and there exists an element α of L from j such that
α = a(1) and a(x←τ)(1) = α(x←τ). �

(28) Let us consider a non empty, natural number n, a non empty, non void
signature Ω, a non-empty algebra T over Ω, a non empty yielding generator
set X of T, an Ω-extension, non empty, non void, PC correct w.r.t. n, QC
correct QC language signature Σ over

⋃
X , an X -tolerating, non empty

yielding many sorted set Y indexed by the carrier of Σ, and a non-empty
language L over Y and Σ. Suppose L is substitution correct (1) and Y is a
many sorted subset of the sorts of L. Let us consider elements x, y of

⋃
Y

and a sort symbol a of Σ. Suppose x, y ∈ Y (a). Let us consider a formula
α of L. Then

(i) (¬α)(x←y) = ¬(α(x←y)), and

(ii) for every formula β of L, (α ∧ β)(x←y) = α(x←y) ∧ β(x←y) and (α ∨
β)(x←y) = α(x←y)∨β(x←y) and (α⇒ β)(x←y) = α(x←y) ⇒ β(x←y) and
(α⇔ β)(x←y) = α(x←y) ⇔ β(x←y) and (trueL)(x←y) = trueL.

The theorem is a consequence of (26), (27), and (14).

3. Algorithmic Theory

Let Ω be a non empty, non void signature, T be a non-empty algebra over Ω,
X be a non empty yielding generator set of T, Σ be an Ω-extension, non void,
non empty QC language signature over

⋃
X , and Y be an X -tolerating many

sorted set indexed by the carrier of Σ. We consider bialgebra structures over
Σ, Y which extend language structures over T, Y and Σ and program algebra
structures of Ω, T, and X and are systems

〈〈sorts, a characteristics, free variables, a substitution operation,

an equality, a carrier, a characteristic, assignments〉〉

where the sorts constitute a many sorted set indexed by the carrier of Σ, the
characteristics is a many sorted function from (the sorts)# · (the arity of Σ) into
(the sorts)·(the result sort of Σ), the free variables constitute a double many sor-
ted set of the sorts and the sorts, the substitution operation is a sort-preserving
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function from
⋃

(the sorts) ×
⋃

[[Y, the sorts]] into
⋃

(the sorts), the equality is
a function from

⋃
[[the sorts of T, the sorts of T]] into (the sorts)((the formula

sort of Σ)), the carrier is a set, the characteristic is a finite sequence of ope-
rational functions of the carrier, the assignments constitute a function from⋃

[[X , the sorts of T]] into the carrier.
Let us note that there exists a non void, non empty algorithmic language

signature of
⋃
X which is Ω-extension.

Let Σ be an Ω-extension, non void, non empty algorithmic language signa-
ture of

⋃
X , Y be an X -tolerating many sorted set indexed by the carrier of Σ,

and L be a bialgebra structure over Σ, Y. We say that L is AL correct if and
only if

(Def. 38) the carrier of L = (the sorts of L)((the program sort of Σ)).

Let Σ be a 1-sorted structure. We introduce Σ is 1s-empty as a synonym of
Σ is empty.

Let Σ be a universal algebra structure. We introduce Σ is ua-non-empty as
a synonym of Σ is non-empty.

Let Ω be a non empty, non void signature, T be a non-empty algebra over Ω,
X be a non empty yielding generator set of T, Σ be an Ω-extension, non void,
non empty algorithmic language signature of

⋃
X , and Y be an X -tolerating

many sorted set indexed by the carrier of Σ. Let us observe that there exists a
strict bialgebra structure over Σ, Y which is non 1s-empty.

Let n be a non empty natural number and Σ be an essential, Ω-extension, PC
correct w.r.t. n, non void, non empty, feasible algorithmic language signature of⋃
X . One can check that there exists a non 1s-empty, strict bialgebra structure

over Σ, Y which is non-empty, language, AL correct, quasi total, partial, ua-non-
empty, and T-extension and has empty-instruction, catenation, if-instruction,
and while-instruction.

Let us consider pre-if-while algebras U1, U2.
Let us assume that the universal algebra structure of U1 = the universal

algebra structure of U2. Now we state the propositions:

(29) (i) EmptyInsU1 = EmptyInsU2 , and

(ii) for every elements I1, J1 of U1 and for every elements I2, J2 of U2 such
that I1 = I2 and J1 = J2 holds I1; J1 = I2; J2 and while I1 do J1 =
while I2 do J2 and for every element C1 of U1 and for every element C2

of U2 such that C1 = C2 holds if C1thenI1elseJ1 = if C2thenI2elseJ2.

(30) ElementaryInstructionsU1 = ElementaryInstructionsU2 .

Now we state the propositions:

(31) Let us consider universal algebras U1, U2. Suppose the universal algebra
structure of U1 = the universal algebra structure of U2. Let us consider a
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subset Σ1 of U1 and a subset Σ2 of U2. Suppose Σ1 = Σ2. Let us consider
an operation o1 of U1 and an operation o2 of U2. Suppose o1 = o2. If Σ1 is
closed on o1, then Σ2 is closed on o2.

(32) Let us consider universal algebras U1, U2. Suppose the universal algebra
structure of U1 = the universal algebra structure of U2. Let us consider
a subset Σ1 of U1 and a subset Σ2 of U2. Suppose Σ1 = Σ2. If Σ1 is
operations closed, then Σ2 is operations closed.

Let us consider universal algebras U1, U2.
Let us assume that the universal algebra structure of U1 = the universal

algebra structure of U2. Now we state the propositions:

(33) Every generator set of U1 is a generator set of U2. The theorem is a
consequence of (32).

(34) signature U1 = signature U2.

Let n be a non empty, natural number, Ω be a non empty, non void signature,
T be a non-empty algebra over Ω, X be a non empty yielding generator set of
T, and Σ be an essential, Ω-extension, non void, non empty, PC correct w.r.t.
n, QC correct algorithmic language signature of

⋃
X . Let us observe that there

exists a non-empty, quasi total, partial, ua-non-empty, a language, non 1s-
empty, T-extension bialgebra structure over Σ, X extended by(∅, (the carrier
of Σ)) with empty-instruction, catenation, if-instruction, and while-instruction
which is AL correct, vf-QC-correct, vf-correct, vf finite, substitution correct (1),
substitution for ∀ and ∃, non degenerated, well founded, and E.C.I.W.-strict.

Let Σ be an essential, Ω-extension, non empty, non void, PC correct w.r.t.
n, QC correct, AL correct w.r.t. n algorithmic language signature of

⋃
X .

An if-while algebra of X over Σ is an AL correct, vf-QC-correct, vf-correct,
substitution correct (1), substitution for ∀ and ∃, non degenerated, well foun-
ded, E.C.I.W.-strict, non-empty, quasi total, partial, ua-non-empty, a langu-
age, non 1s-empty, T-extension bialgebra structure over Σ, X extended by(∅, (the
carrier of Σ)) with empty-instruction, catenation, if-instruction, and while-instru-
ction. Let n be a non empty natural number, L be an if-while algebra of X over
Σ, K be a formula of L, and P be an algorithm of L. The functors: P · K,
d(P,K), and e(P,K) yielding formulae of L are defined by terms,

(Def. 39) (Den((the connectives of Σ)(n+ 6)(∈ (the carrier’ of Σ)), L))(〈P,K〉),
(Def. 40) (Den((the connectives of Σ)(n+ 7)(∈ (the carrier’ of Σ)), L))(〈P,K〉),
(Def. 41) (Den((the connectives of Σ)(n+ 8)(∈ (the carrier’ of Σ)), L))(〈P,K〉),

respectively. Let Σ be a non empty, non void, PC correct w.r.t. n PC language
signature, L be language algebra over Σ, and F be a subset of (the sorts of
L)((the formula sort of Σ)). We say that F is PC-closed if and only if
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(Def. 42) for every formulae α, β, γ of L, α⇒ (β ⇒ α), (α⇒ (β ⇒ γ))⇒ ((α⇒
β) ⇒ (α ⇒ γ)), (¬α ⇒ ¬β) ⇒ (β ⇒ α), α ⇒ (α ∨ β), α ⇒ (β ∨ α),
(α ⇒ γ) ⇒ ((β ⇒ γ) ⇒ ((α ∨ β) ⇒ γ)), (α ∧ β) ⇒ α, (α ∧ β) ⇒ β,
α⇒ (β ⇒ (α∧β)), (α∧¬α)⇒ β, (α⇒ β)⇒ ((α⇒ ¬β)⇒ ¬α), α∨¬α,
(α⇔ β)⇒ (α⇒ β), (α⇔ β)⇒ (β ⇒ α), ((α⇒ β) ∧ (β ⇒ α))⇒ (α⇔
β), trueL, (trueL ∧α)⇔ α, (trueL ∨α)⇔ trueL ∈ F and if α, α⇒ β ∈ F ,
then β ∈ F .

Let Ω be a non empty, non void signature, T be a non-empty algebra over Ω,
X be a non empty yielding generator set of T, Σ be an Ω-extension, non empty,
non void, PC correct w.r.t. n, QC correct QC language signature over

⋃
X ,

and L be a non-empty language over X extended by(∅, (the carrier of Σ)) and
Σ. We say that F is QC closed if and only if

(Def. 43) for every elements α, β of (the sorts of L)((the formula sort of Σ)) and
for every element x of

⋃
X , for every sort symbol a of Ω, for every element τ

of
⋃

(the sorts of L) such that x ∈ (X extended by(∅, (the carrier of Σ)))(a)
and τ ∈ (the sorts of L)(a) for every element y of

⋃
(X extended by(∅, (the

carrier of Σ))) such that x = y holds ∀x α⇒ α(y←τ) ∈ F and if x ∈ X (a)
and x 6∈ (vf α)(a), then ∀x(α ⇒ β) ⇒ (α ⇒ ∀x β) ∈ F and ¬∃x α ⇔
∀x(¬α), ∃x(¬α)⇔ ¬∀x α ∈ F and if α ∈ F , then ∀x α ∈ F .

Let L be a non-empty, T-extension language over X extended by(∅, (the carrier
of Σ)) and Σ. We say that L is substitution eq-correct if and only if

(Def. 44) for every element x0 of
⋃

(X extended by(∅, (the carrier of Σ))) and for
every sort symbols σ, σ1 of Σ such that x0 ∈ X (σ) for every element τ
of L from σ for every elements τ1, τ2 of L from σ1, (τ1=Lτ2)(x0←τ) =
τ1(x0←τ)=Lτ2(x0←τ).

We say that L is vf-eq-correct if and only if

(Def. 45) for every sort symbol σ of Σ, for every elements τ1, τ2 of L from σ,
vf(τ1=Lτ2) = vf τ1 ∪ vf τ2 and for every sort symbol σ of Σ and for every
element τ of L from σ such that τ ∈ X (σ) holds vf τ = σ -singleton τ .

We say that F has equality if and only if

(Def. 46) for every element τ of T, τ=Lτ ∈ F and for every sort symbol b of
Σ and for every elements τ1, τ2 of L from b and for every element x of⋃

(X extended by(∅, (the carrier of Σ))) such that x ∈ X (b) holds for every
sort symbol c of Σ such that c ∈ the carrier of Ω for every element τ of L
from c, (τ1=Lτ2)⇒ (τ(x←τ1)=Lτ(x←τ2)) ∈ F and for every formula α of L,
(τ1=Lτ2)⇒ (α(x←τ1) ⇒ α(x←τ2)) ∈ F .

Let n be a non empty, natural number, T be a non-empty free variable
algebra over Ω, X be a non-empty generator set of T, Σ be an essential, Ω-
extension, non empty, non void, PC correct w.r.t. n, QC correct, AL correct
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w.r.t. n algorithmic language signature of
⋃
X , L be a non 1s-empty if-while

algebra of X over Σ, and ϕ be a formula of L. We say that F is AL closed w.r.t
ϕ if and only if

(Def. 47) for every formulae α, β of L, for every algorithm M of L, M · (α∧ β)⇔
(M · α ∧ (M · β)), M · (α ∨ β) ⇔ (M · α ∨ (M · β)), d(M,α) ⇔ (α ∨
d(M,M · α)), e(M,α) ⇔ (α ∧ e(M,M · α)) ∈ F and if α ⇒ β ∈ F ,
then d(M,α) ⇒ d(M,β), e(M,α) ⇒ e(M,β) ∈ F and for every sort
symbol a of Ω and for every element x of X (a) and for every element x0 of⋃

(X extended by(∅, (the carrier of Σ))) such that x = x0 for every element
τ of (the sorts of T)(a) for every element τ1 of

⋃
(the sorts of L) such that

τ1 = τ holds x:=Lτ ·α⇔ α(x0←τ1) ∈ F and for every element y of X (a) such
that y 6∈ (vf τ)(a) for every element y0 of

⋃
(X extended by(∅, (the carrier

of Σ))) such that y = y0 holds x:=Lτ · ∃x α ⇔ ∃y(x:=Lτ · (y:=L(@x) ·
α(x0←y0))) ∈ F and x:=Lτ · α ⇒ ∃x α ∈ F and for every algorithms M ,
M1, M2 of L, (M ;M1) · α ⇔ (M · (M1 · α)), if M then M1 else M2 · α ⇔
((M ·ϕ∧ (M · (M1 ·α)))∨ (M · ¬ϕ∧ (M · (M2 ·α)))), whileM doM1 ·α⇔
((M · ¬ϕ ∧ α) ∨ (M · ϕ ∧ (M · (M1 · (whileM doM1 · α))))) ∈ F .

Let n be a non empty natural number, Σ be a non empty, non void, PC
correct w.r.t. n PC language signature, and L be language algebra over Σ. One
can check that Ω(the sorts of L)((the formula sort of Σ)) is PC-closed and every subset
of (the sorts of L)((the formula sort of Σ)) which is PC-closed is also non empty
and there exists a subset of (the sorts of L)((the formula sort of Σ)) which is
PC-closed.

Let Ω be a non empty, non void signature, T be a non-empty algebra over
Ω, X be a non empty yielding generator set of T, Σ be an Ω-extension, non
empty, non void, PC correct w.r.t. n, QC correct QC language signature over⋃
X , and L be a non-empty language over X extended by(∅, (the carrier of Σ))

and Σ. Let us observe that Ω(the sorts of L)((the formula sort of Σ)) is QC closed and
there exists a subset of (the sorts of L)((the formula sort of Σ)) which is QC
closed and PC-closed.

Let L be a non-empty, T-extension language over X extended by(∅, (the carrier
of Σ)) and Σ. Observe that Ω(the sorts of L)((the formula sort of Σ)) has equality and
there exists a subset of (the sorts of L)((the formula sort of Σ)) which is QC
closed and PC-closed and has equality.

Let Σ be a non empty, non void, PC correct w.r.t. n PC language signature
and L be language algebra over Σ.

A PC theory of L is a PC-closed subset of (the sorts of L)((the formula sort
of Σ)). Let Ω be a non empty, non void signature, T be a non-empty algebra
over Ω, X be a non empty yielding generator set of T, Σ be an Ω-extension, non
empty, non void, PC correct w.r.t. n, QC correct QC language signature over
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⋃
X , and L be a non-empty language over X extended by(∅, (the carrier of Σ))

and Σ.
A QC theory of L is a QC closed, PC-closed subset of (the sorts of L)((the

formula sort of Σ)). Let L be a non-empty, T-extension language over X extended
by (∅, (the carrier of Σ)) and Σ.

A QC theory of L with equality is a QC closed, PC-closed subset of (the sorts
of L)((the formula sort of Σ)) with equality. Let n be a non empty, natural
number, T be a non-empty free variable algebra over Ω, X be a non-empty
generator set of T, Σ be an essential, Ω-extension, non empty, non void, PC
correct w.r.t. n, QC correct, AL correct w.r.t. n algorithmic language signature
of
⋃
X , L be a non 1s-empty if-while algebra of X over Σ, and ϕ be a formula

of L. Observe that there exists a PC-closed, QC closed subset of (the sorts of
L)((the formula sort of Σ)) with equality which is AL closed w.r.t ϕ.

An AL theory of ϕ and L is a PC-closed, QC closed, AL closed w.r.t ϕ
subset of (the sorts of L)((the formula sort of Σ)) with equality.

4. Propositional Calculus

In the sequel n denotes a non empty natural number, Σ denotes a non empty,
non void, PC correct w.r.t. n PC language signature, L denotes language algebra
over Σ, F denotes a PC theory of L, and α, β, γ, δ denote formulae of L.

Now we state the propositions:

(35) α⇒ α ∈ F .

(36) α ∧ β ∈ F if and only if α, β ∈ F .

(37) (α ∨ β)⇒ (β ∨ α) ∈ F .

(38) (β ⇒ γ)⇒ ((α⇒ β)⇒ (α⇒ γ)) ∈ F .

(39) If α ⇒ (β ⇒ γ) ∈ F , then β ⇒ (α ⇒ γ) ∈ F . The theorem is a
consequence of (38).

(40) (α⇒ β)⇒ ((β ⇒ γ)⇒ (α⇒ γ)) ∈ F . The theorem is a consequence of
(38) and (39).

(41) α⇒ (β ⇒ (α⇒ β)) ∈ F .

(42) (α⇒ (β ⇒ γ))⇒ (β ⇒ (α⇒ γ)) ∈ F . The theorem is a consequence of
(39) and (38).

(43) β ⇒ ((β ⇒ α) ⇒ α) ∈ F . The theorem is a consequence of (42) and
(35).

(44) α ⇔ β ∈ F if and only if α ⇒ β, β ⇒ α ∈ F . The theorem is a
consequence of (36).

(45) If β ∈ F , then α⇒ β ∈ F .
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(46) If α ⇒ β, β ⇒ γ ∈ F , then α ⇒ γ ∈ F . The theorem is a consequence
of (40).

(47) If γ ⇒ (β ⇒ α), β ∈ F , then γ ⇒ α ∈ F . The theorem is a consequence
of (42).

(48) ((α ∧ β)⇒ γ)⇒ (α ⇒ (β ⇒ γ)) ∈ F . The theorem is a consequence of
(45), (40), and (42).

(49) (α ⇒ (β ⇒ γ))⇒ ((α ∧ β)⇒ γ) ∈ F . The theorem is a consequence of
(40), (45), (42), (46), and (47).

(50) (γ ⇒ α) ⇒ ((γ ⇒ β) ⇒ (γ ⇒ (α ∧ β))) ∈ F . The theorem is a
consequence of (45) and (46).

(51) (α ∧ β)⇒ (β ∧ α) ∈ F . The theorem is a consequence of (50).

(52) (α ⇔ β) ⇒ (β ⇔ α) ∈ F . The theorem is a consequence of (51), (40),
and (50).

(53) (α ∨ α)⇒ α ∈ F . The theorem is a consequence of (35).

(54) α⇒ (α ∧ α) ∈ F . The theorem is a consequence of (50) and (35).

(55) If α ⇒ β, α ⇒ γ ∈ F , then α ⇒ (β ∧ γ) ∈ F . The theorem is a
consequence of (50).

(56) ((α ∧ β) ∨ (α ∧ γ)) ⇒ (α ∧ (β ∨ γ)) ∈ F . The theorem is a consequence
of (46) and (50).

(57) (α ∨ (β ∧ γ)) ⇒ ((α ∨ β) ∧ (α ∨ γ)) ∈ F . The theorem is a consequence
of (50) and (46).

(58) α⇒ (¬α⇒ β) ∈ F . The theorem is a consequence of (48).

(59) (α ⇒ β) ⇒ (¬β ⇒ ¬α) ∈ F . The theorem is a consequence of (39) and
(46).

(60) α ⇒ β ∈ F if and only if ¬β ⇒ ¬α ∈ F . The theorem is a consequence
of (59).

(61) If α ⇒ β, γ ⇒ δ ∈ F , then (α ∨ γ) ⇒ (β ∨ δ) ∈ F . The theorem is a
consequence of (46).

(62) (α ⇒ β) ⇒ ((γ ∨ α) ⇒ (γ ∨ β)) ∈ F . The theorem is a consequence of
(35), (49), (46), and (48).

(63) If α ⇒ β, γ ⇒ δ, ¬β ∨ ¬δ ∈ F , then ¬α ∨ ¬γ ∈ F . The theorem is a
consequence of (59) and (61).

(64) (α ∨ β)⇒ (¬α⇒ β) ∈ F . The theorem is a consequence of (58).

(65) (α ∨ β) ⇒ (¬β ⇒ α) ∈ F . The theorem is a consequence of (37), (64),
and (46).

(66) α⇒ ¬¬α ∈ F . The theorem is a consequence of (35) and (45).

(67) ¬¬α⇒ α ∈ F . The theorem is a consequence of (66).
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(68) α⇔ ¬¬α ∈ F . The theorem is a consequence of (66), (67), and (36).

(69) α ⇒ ¬β ∈ F if and only if β ⇒ ¬α ∈ F . The theorem is a consequence
of (60), (66), and (46).

(70) ¬α ⇒ β ∈ F if and only if ¬β ⇒ α ∈ F . The theorem is a consequence
of (60), (67), and (46).

(71) If α ⇒ (β ⇒ γ), γ ⇒ δ ∈ F , then α ⇒ (β ⇒ δ) ∈ F . The theorem is a
consequence of (49), (46), and (48).

(72) ¬(α ∧ β)⇒ (¬α ∨¬β) ∈ F . The theorem is a consequence of (60), (67),
(46), and (50).

(73) ¬(α ∨ β) ⇒ (¬α ∧ ¬β) ∈ F . The theorem is a consequence of (60) and
(50).

(74) If α ⇒ β, γ ⇒ δ ∈ F , then (α ∧ γ) ⇒ (β ∧ δ) ∈ F . The theorem is a
consequence of (50) and (46).

(75) (¬α ∨ ¬β)⇒ ¬(α ∧ β) ∈ F . The theorem is a consequence of (60).

(76) (¬α ∧¬β)⇒ ¬(α ∨ β) ∈ F . The theorem is a consequence of (75), (66),
(61), (46), and (60).

(77) (α∨ (β ∨ γ))⇒ ((α∨β)∨ γ) ∈ F . The theorem is a consequence of (46),
(35), and (61).

(78) ((α∨β)∨ γ)⇔ (α∨ (β ∨ γ)) ∈ F . The theorem is a consequence of (35),
(61), (46), (47), and (44).

(79) (α∧ (β ∧ γ))⇒ ((α∧β)∧ γ) ∈ F . The theorem is a consequence of (50),
(35), (74), and (46).

(80) ((α∧β)∧ γ)⇔ (α∧ (β ∧ γ)) ∈ F . The theorem is a consequence of (50),
(46), (35), (74), and (44).

(81) (γ ∨ (α⇒ β))⇒ ((γ ∨α)⇒ (γ ∨β)) ∈ F . The theorem is a consequence
of (45), (42), and (62).

(82) ((α ∨ β) ∧ (α ∨ γ)) ⇒ (α ∨ (β ∧ γ)) ∈ F . The theorem is a consequence
of (35), (61), (81), (46), and (49).

(83) (α ∧ (β ∨ γ)) ⇒ ((α ∧ β) ∨ (α ∧ γ)) ∈ F . The theorem is a consequence
of (82), (72), (74), (73), (46), (35), (76), (75), (61), and (60).

(84) (α ⇒ β) ⇒ (¬α ∨ β) ∈ F . The theorem is a consequence of (35), (49),
(61), (82), (46), (51), (48), and (37).

(85) (α⇒ β)⇒ ¬(α ∧ ¬β) ∈ F . The theorem is a consequence of (84), (66),
(35), (61), (46), and (75).

(86) (β ∨ (¬γ ∧ γ)) ⇒ β ∈ F . The theorem is a consequence of (51), (35),
(46), (61), and (53).
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(87) (β ∨ (γ ∧ ¬γ)) ⇒ β ∈ F . The theorem is a consequence of (35), (61),
(53), and (46).

(88) (α⇔ β)⇒ ((α∧ β)∨ (¬α∧¬β)) ∈ F . The theorem is a consequence of
(84), (46), (50), (83), (51), (86), (37), (87), (61), and (35).

(89) (α⇔ β)⇒ ((α∨¬β)∧ (¬α∨ β)) ∈ F . The theorem is a consequence of
(51), (56), (61), (46), (35), (37), and (88).

(90) ¬(α ∧ ¬α) ∈ F . The theorem is a consequence of (35), (66), (76), (74),
(46), (60), and (51).

(91) α⇔ α ∈ F . The theorem is a consequence of (35) and (36).

(92) If α⇔ β ∈ F , then β ⇔ α ∈ F . The theorem is a consequence of (36).

(93) If α ⇔ β, β ⇔ γ ∈ F , then α ⇔ γ ∈ F . The theorem is a consequence
of (46) and (36).

(94) If α ⇔ β, β ⇒ γ ∈ F , then α ⇒ γ ∈ F . The theorem is a consequence
of (46).

(95) If α ⇒ β, β ⇔ γ ∈ F , then α ⇒ γ ∈ F . The theorem is a consequence
of (46).

(96) α ⇔ β ∈ F if and only if ¬α ⇔ ¬β ∈ F . The theorem is a consequence
of (59) and (36).

(97) α ⇔ β ∈ F if and only if ¬¬α ⇔ β ∈ F . The theorem is a consequence
of (66), (67), (36), (92), and (93).

(98) If α ⇒ (β ⇒ γ), δ ⇒ β ∈ F , then α ⇒ (δ ⇒ γ) ∈ F . The theorem is a
consequence of (42) and (46).

(99) If α ⇔ (β ∧ γ), γ ⇔ δ ∈ F , then α ⇔ (β ∧ δ) ∈ F . The theorem is a
consequence of (92), (44), (35), (74), (94), and (95).

(100) If α ⇔ (β ∧ γ), β ⇔ δ ∈ F , then α ⇔ (δ ∧ γ) ∈ F . The theorem is a
consequence of (92), (44), (35), (74), (94), and (95).

(101) If α ⇔ (β ∨ γ), γ ⇔ δ ∈ F , then α ⇔ (β ∨ δ) ∈ F . The theorem is a
consequence of (92), (44), (35), (61), (94), and (95).

(102) If α ⇔ (β ∨ γ), β ⇔ δ ∈ F , then α ⇔ (δ ∨ γ) ∈ F . The theorem is a
consequence of (92), (44), (35), (61), (94), and (95).

Let us assume that α⇒ β ∈ F . Now we state the propositions:

(103) (β ⇒ γ)⇒ (α⇒ γ) ∈ F . The theorem is a consequence of (40).

(104) (γ ⇒ α) ⇒ (γ ⇒ β) ∈ F . The theorem is a consequence of (40) and
(39).

Now we state the proposition:

(105) If α ⇒ β, γ ⇒ δ ∈ F , then (β ⇒ γ) ⇒ (α ⇒ δ) ∈ F . The theorem is a
consequence of (103), (104), and (46).
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5. Quantifier Calculus

From now on Ω denotes a non empty, non void signature, T denotes a non-
empty algebra over Ω, X denotes a non empty yielding generator set of T,
Σ1 denotes an Ω-extension, non empty, non void, PC correct w.r.t. n, QC
correct QC language signature over

⋃
X , L denotes a non-empty language over

X extended by(∅, (the carrier of Σ1)) and Σ1, G denotes a QC theory of L, α, β,
γ, δ denote formulae of L, x, y, z denote elements of

⋃
X , and x0, y0, z0 denote

elements of
⋃

(X extended by(∅, (the carrier of Σ1))).
Now we state the propositions:

(106) If L is substitution correct (1), then ∀x α ⇒ α ∈ G. The theorem is a
consequence of (1), (16), (24), and (14).

(107) ∃x α⇔ ¬∀x(¬α) ∈ G. The theorem is a consequence of (96) and (97).

(108) ∀x α ⇔ ¬∃x(¬α) ∈ G. The theorem is a consequence of (92), (96), and
(97).

(109) If L is substitution correct (1), then ∀x(α⇒ β)⇒ (∀x α⇒ β) ∈ G. The
theorem is a consequence of (1), (13), (24), (25), (16), (14), and (98).

(110) Let us consider a sort symbol a of Ω. Suppose x ∈ X (a) and x 6∈ (vf α)(a)
and ∀x(α⇒ β) ∈ G. Then α⇒ ∀x β ∈ G.

(111) Suppose L is substitution correct (1) and vf-QC-correct. Then ∀x(α ⇒
β) ⇒ (∀x α ⇒ ∀x β) ∈ G. The theorem is a consequence of (109), (110),
and (46).

(112) Suppose L is substitution correct (1). Let us consider a sort symbol a of
Ω. Suppose x, y ∈ X (a) and x0 = x and y0 = y. Then α(x0←y0) ⇒ ∃x α ∈
G. The theorem is a consequence of (16), (8), (2), (24), (14), (60), (28),
(66), (107), and (46).

(113) If L is substitution correct (1) and vf-QC-correct,
then ∃x,y α ⇔ ¬∀x,y(¬α) ∈ G. The theorem is a consequence of (107),
(68), (92), (96), (93), (44), and (111).

(114) If L is substitution correct (1), then α ⇒ ∃x α ∈ G. The theorem is a
consequence of (8), (2), and (112).

Let us consider a sort symbol a of Σ1.
Let us assume that L is vf-QC-correct. Now we state the propositions:

(115) If x ∈ X (a), then x 6∈ (vf ∀x α)(a).

(116) If x ∈ X (a), then x 6∈ (vf ∃x α)(a).

Now we state the proposition:

(117) If L is substitution correct (1) and vf-QC-correct and α⇒ β ∈ G, then
∀x α⇒ ∀x β ∈ G. The theorem is a consequence of (111).
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Let us assume that L is substitution correct (1) and vf-QC-correct. Now we
state the propositions:

(118) ∀x(¬α ⇒ ¬β) ⇒ (∀x β ⇒ ∀x α) ∈ G. The theorem is a consequence of
(117), (111), and (46).

(119) ∀x(α ⇒ β) ⇒ (∀x(¬β) ⇒ ∀x(¬α)) ∈ G. The theorem is a consequence
of (59), (117), (111), and (46).

Now we state the propositions:

(120) If L is substitution correct (1) and vf-QC-correct and α⇔ β ∈ G, then
∀x α⇔ ∀x β ∈ G. The theorem is a consequence of (117), (111), (46), and
(50).

(121) ∃x(¬α)⇔ ¬∀x α ∈ G.

Let us assume that L is substitution correct (1) and vf-QC-correct. Now we
state the propositions:

(122) Let us consider a sort symbol a of Ω. Suppose x ∈ X (a) and x 6∈ (vf β)(a).
Then ∀x(α ⇒ β) ⇒ (∃x α ⇒ β) ∈ G. The theorem is a consequence of
(59), (117), (46), and (71).

(123) ∀x(α ⇒ β) ⇒ (∃x α ⇒ ∃x β) ∈ G. The theorem is a consequence of
(119), (59), (46), (44), (66), (60), (67), and (105).

(124) ∀x(¬α)⇔ ¬∃x α ∈ G. The theorem is a consequence of (66), (123), (67),
(44), (93), (92), (96), and (97).

(125) ∀x,y α ⇔ ¬∃x,y(¬α) ∈ G. The theorem is a consequence of (108), (68),
(92), (96), (93), (44), and (123).

(126) ∀x α⇔ ∀x(¬¬α) ∈ G. The theorem is a consequence of (67), (66), (117),
and (36).

(127) ∀x(α ∧ β) ⇒ (∀x α ∧ ∀x β) ∈ G. The theorem is a consequence of (117)
and (50).

Now we state the propositions:

(128) If L is vf-QC-correct and substitution correct (1), then (∀x α ∧ ∀x β)⇒
∀x(α ∧ β) ∈ G. The theorem is a consequence of (106), (74), (115), and
(110).

(129) If L is substitution correct (1) and vf-QC-correct, then (∀x α ∨ ∀x β)⇒
∀x(α ∨ β) ∈ G. The theorem is a consequence of (106), (61), (115), and
(110).

(130) If L is substitution correct (1) and vf-QC-correct and α⇒ β ∈ G, then
∃x α⇒ ∃x β ∈ G. The theorem is a consequence of (59), (117), (107), (94),
(92), and (95).

(131) If L is substitution correct (1) and vf-QC-correct and α⇔ β ∈ G, then
∃x α⇔ ∃x β ∈ G. The theorem is a consequence of (130) and (36).
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Let us assume that L is substitution correct (1) and vf-QC-correct. Now we
state the propositions:

(132) ∃x α⇔ ∃x(¬¬α) ∈ G. The theorem is a consequence of (68) and (131).

(133) (∃x α ∨ ∃x β) ⇔ ∃x(α ∨ β) ∈ G. The theorem is a consequence of (127),
(60), (75), (46), (73), (117), (107), (92), (95), (44), (61), (76), (72), and
(128).

Now we state the proposition:

(134) Suppose L is substitution correct (1). Let us consider a sort symbol a
of Ω. Suppose x ∈ X (a) and x 6∈ (vf α)(a). Then α ⇔ ∀x α ∈ G. The
theorem is a consequence of (109), (35), (110), and (44).

In the sequel a denotes a sort symbol of Ω.
Let us assume that L is substitution correct (1) and vf-QC-correct and x ∈

X (a) and x 6∈ (vf α)(a). Now we state the propositions:

(135) ∀x(α∨β)⇒ (α∨∀x β) ∈ G. The theorem is a consequence of (64), (117),
(46), (35), (67), (61), and (84).

(136) ∃x(α ∧ β) ⇒ (α ∧ ∃x β) ∈ G. The theorem is a consequence of (129),
(60), (75), (117), (107), (44), (46), (74), (73), (35), and (122).

(137) ∃x(α∧β)⇔ (α∧∃x β) ∈ G. The theorem is a consequence of (135), (60),
(124), (35), (44), (61), (75), (69), (46), (72), (107), (111), (70), and (136).

(138) ∃x(α ⇒ β) ⇒ (α ⇒ ∃x β) ∈ G. The theorem is a consequence of (35),
(110), (74), (128), (46), (60), (66), (61), (75), (84), (117), (107), (94), (44),
(72), (64), and (105).

Now we state the proposition:

(139) If L is vf-QC-correct, then ∀x α ⇒ ∀x,x α ∈ G. The theorem is a conse-
quence of (8), (115), (35), and (110).

Let us assume that L is vf-QC-correct and substitution correct (1). Now we
state the propositions:

(140) ∀x,y α⇒ ∀y,x α ∈ G. The theorem is a consequence of (106), (111), (115),
and (110).

(141) ∃x,y α⇒ ∃y,x α ∈ G. The theorem is a consequence of (140), (60), (113),
(92), (94), and (95).

(142) ∃x(∀y α)⇒ ∀y(∃x α) ∈ G. The theorem is a consequence of (114), (111),
(116), and (122).

Let us assume that L is substitution correct (1) and vf-QC-correct. Now we
state the propositions:

(143) ∀x(α∧α)⇔ ∀x α ∈ G. The theorem is a consequence of (54), (111), and
(44).
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(144) ∀x(α∨α)⇔ ∀x α ∈ G. The theorem is a consequence of (53), (111), and
(44).

(145) ∃x(α ∨ α)⇔ ∃x α ∈ G. The theorem is a consequence of (53), (44), and
(131).

From now on L denotes a non-empty, T-extension language over X extended
by (∅, (the carrier of Σ1)) and Σ1, G1 denotes a QC theory of L with equality,
α, β, γ, δ denote formulae of L, σ, σ1 denote sort symbols of Σ1, τ denotes
elements of L from σ, and τ1, τ2, τ3 denote elements of L from σ1.

Now we state the proposition:

(146) Suppose L is substitution eq-correct and x0 ∈ X (σ) and τ1=Lτ2 ∈ G1.
Then τ1(x0←τ)=Lτ2(x0←τ) ∈ G1. The theorem is a consequence of (1).

Let us assume that L is substitution eq-correct, vf finite, substitution correct
(2), and substitution correct (3) and σ1 ∈ the carrier of Ω and X (σ1) is infinite.
Now we state the propositions:

(147) (τ1=Lτ2) ⇒ (τ2=Lτ1) ∈ G1. The theorem is a consequence of (1), (25),
(16), and (47).

(148) ((τ1=Lτ2) ∧ (τ2=Lτ3))⇒ (τ1=Lτ3) ∈ G1. The theorem is a consequence
of (1), (25), (16), (147), (46), and (49).

Let us assume that L is substitution correct (3), vf finite, substitution correct
(2), substitution correct (1), substitution eq-correct, vf-QC-correct, and vf-eq-
correct and x = x0 ∈ X (σ) and y = y0 ∈ X (σ) and x 6= y 6∈ (vf α)(σ) and X (σ)
is infinite. Now we state the propositions:

(149) ∀x(α ⇔ ∃y((x=Ly) ∧ α(x0←y0))) ∈ G1. The theorem is a consequence of
(16), (147), (46), (1), (24), (14), (49), (122), (112), (28), (35), (45), (55),
and (44).

(150) ∀x(α ⇔ ∀y((x=Ly) ⇒ α(x0←y0))) ∈ G1. The theorem is a consequence
of (16), (1), (24), (14), (39), (110), (112), (28), (35), (45), (55), (46), (70),
(66), (75), (61), (84), (69), (130), (60), (108), (94), and (44).

Now we state the proposition:

(151) Suppose L is substitution correct (1), substitution eq-correct, substitu-
tion correct (3), and vf-eq-correct and x, y ∈ X (σ) and x 6= y. Then
∀x(∃y(x=Ly)) ∈ G1. The theorem is a consequence of (16), (25), (1), (24),
(112), and (14).

Let us assume that L is substitution correct (1) and x = x0 ∈ X (σ) and
y = y0 ∈ X (σ). Now we state the propositions:

(152) (α ∧ (x=Ly)) ⇒ α(x0←y0) ∈ G1. The theorem is a consequence of (16),
(1), (24), (14), (39), and (49).
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(153) (α ∧ ¬(α(x0←y0))) ⇒ ¬(x=Ly) ∈ G1. The theorem is a consequence of
(16), (152), (48), (59), (46), and (49).

6. Algorithmic Logic

From now on n denotes a non empty, natural number, Ω denotes a non
empty, non void signature, T denotes a non-empty free variable algebra over Ω,
X denotes a non-empty generator set of T, Σ denotes an essential, Ω-extension,
non empty, non void, PC correct w.r.t. n, QC correct, AL correct w.r.t. n
algorithmic language signature of

⋃
X , L denotes a non empty if-while algebra

of X over Σ, M , M1, M2 denote algorithms of L, α, β, γ, ϕ denote formulae
of L, H denotes an AL theory of ϕ and L, a denotes a sort symbol of Ω, x, y
denote elements of X (a), and τ denotes an element of T from a.

Now we state the propositions:

(154) M · ((α ∧ β)∧ γ)⇔ ((M · α ∧ (M · β))∧ (M · γ)) ∈ H. The theorem is a
consequence of (100).

(155) M · ((α ∨ β)∨ γ)⇔ ((M · α ∨ (M · β))∨ (M · γ)) ∈ H. The theorem is a
consequence of (102).

Let us assume that α⇔ β ∈ H. Now we state the propositions:

(156) d(M,α)⇔ d(M,β) ∈ H. The theorem is a consequence of (44).

(157) e(M,α)⇔ e(M,β) ∈ H. The theorem is a consequence of (44).

Now we state the propositions:

(158) d(M,α) ⇔ ((α ∨ (M · α)) ∨ d(M, (M ;M) · α)) ∈ H. The theorem is a
consequence of (101), (78), (92), (93), and (156).

(159) e(M,α) ⇔ ((α ∧ (M · α)) ∧ e(M, (M ;M) · α)) ∈ H. The theorem is a
consequence of (99), (80), (92), (93), and (157).

(160) Let us consider elements x0, y0 of
⋃

(X extended by(∅, (the carrier of
Σ))). Suppose x = x0 and y = y0. Then x:=L(@y) · α ⇔ α(x0←y0) ∈ H.
The theorem is a consequence of (8), (16), (24), and (14).

(161) Suppose M · ϕ, M · (M1 · α) ∈ H or M · ¬ϕ, M · (M2 · α) ∈ H. Then
if M then M1 else M2 · α ∈ H. The theorem is a consequence of (36) and
(44).

(162) Suppose M · ¬ϕ, α ∈ H or M · ϕ, M · (M1 · (whileM doM1 · α)) ∈ H.
Then whileM doM1 · α ∈ H. The theorem is a consequence of (36) and
(44).
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