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Summary. In this article, we formalize some basic facts of Z-module. In
the first section, we discuss the rank of submodule of Z-module and its proper-
ties. Especially, we formally prove that the rank of any Z-module is equal to
or more than that of its submodules, and vice versa, and that there exists a
submodule with any given rank that satisfies the above condition. In the next
section, we mention basic facts of linear transformations between two Z-modules.
In this section, we define homomorphism between two Z-modules and deal with
kernel and image of homomorphism. In the last section, we formally prove some
basic facts about linearly independent subsets and linear combinations. These
formalizations are based on [9](p.191-242), [23](p.117-172) and [2](p.17-35).
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1. Rank of Submodule of Z-module

From now on V , W denote Z-modules.
Let V be a Z-module and A be a finite subset of V . One can verify that

Lin(A) is finitely-generated.
Now we state the proposition:

(1) Let us consider a finite rank, free Z-module V . Then rankV = 0 if and
only if ΩV = 0V .

Let V be a finite rank, free Z-module. One can verify that there exists a
basis of V which is finite and every basis of V is finite.

Now we state the propositions:

(2) Let us consider a finite rank, free Z-module V and a submodule W of
V . Then rankW ¬ rankV .

(3) Let us consider a Z-module V and a finite, linearly independent subset
A of V . Then A = rank Lin(A).

Let us consider a finite rank, free Z-module V . Now we state the propositions:

(4) rankV = rank ΩV . The theorem is a consequence of (3).

(5) rankV = 1 if and only if there exists a vector v of V such that v 6= 0V
and ΩV = Lin({v}).

(6) rankV = 2 if and only if there exist vectors u, v of V such that u 6= v
and {u, v} is linearly independent and ΩV = Lin({u, v}).

Now we state the proposition:

(7) Let us consider a finite rank, free Z-module V , a submodule W of V ,
and a natural number n. Then n ¬ rankV if and only if there exists a
strict, free submodule W of V such that rankW = n.

Let V be a finite rank, free Z-module and n be a natural number. The set
of n-submodules of V yielding a set is defined by

(Def. 1) for every object x, x ∈ it iff there exists a strict, free submodule W of
V such that W = x and rankW = n.

Let us consider a finite rank, free Z-module V and a natural number n. Now
we state the propositions:

(8) If n ¬ rankV , then the set of n-submodules of V is not empty.

(9) If rankV < n, then the set of n-submodules of V = ∅. The theorem is a
consequence of (2).

Now we state the propositions:

(10) Let us consider a finite rank, free Z-module V , a submodule W of V ,
and a natural number n. Then the set of n-submodules of W ⊆ the set
of n-submodules of V .
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(11) Let us consider finite sequences F , G of elements of Z and an integer v.
Suppose lenF = lenG + 1 and G = F � domG and v = F (lenF ). Then∑
F =

∑
G+ v.

(12) Let us consider finite sequences F , G of elements of Z. Suppose rngF =
rngG and F is one-to-one and G is one-to-one. Then

∑
F =

∑
G.

Let T be a finite subset of the carrier of ZR. The functor
∑
T yielding an

element of ZR is defined by

(Def. 2) there exists a finite sequence F of elements of Z such that rngF = T
and F is one-to-one and it =

∑
F .

The propositions (13)-(15) has been removed.
The definition (Def. 3) has been removed.

Let V , W be Z-modules. Note that there exists a function from V into W
which is additive and homogeneous.

Now we state the propositions:

(16) Let us consider Z-modules V1, V2, a function f from V1 into V2, and a
finite sequence p of elements of V1. If f is additive and homogeneous, then
f(
∑
p) =

∑
(f · p).

Proof: Define P[finite sequence of elements of V1] ≡ f(
∑

$1) =
∑

(f ·$1).
For every finite sequence p of elements of V1 and for every element w of
V1 such that P[p] holds P[p a 〈w〉] by [29, (41), (44)], [10, (8)]. For every
finite sequence p of elements of V1, P[p] from [11, Sch. 2]. �

(17) Let us consider a free Z-module V . If ΩV is finite, then ΩV = 0V .

2. Basic Facts of Linear Transformations

Let V , W be Z-modules.
A linear transformation from V to W is an additive, homogeneous function

from V into W . In the sequel T denotes a linear transformation from V to W .
Now we state the propositions:

(18) Let us consider elements x, y of V . Then T (x)− T (y) = T (x− y).
(19) T (0V ) = 0W .

Let V , W be Z-modules and T be a linear transformation from V to W .
The functor kerT yielding a strict submodule of V is defined by

(Def. 4) Ωit = {u, where u is an element of V : T (u) = 0W }.
Now we state the proposition:

(20) Let us consider an element x of V . Then x ∈ kerT if and only if T (x) =
0W .
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Let V , W be Z-modules and T be a linear transformation from V to W .
The functor imT yielding a strict submodule of W is defined by

(Def. 5) Ωit = T ◦(ΩV ).

Now we state the propositions:

(21) 0V ∈ kerT . The theorem is a consequence of (20).

(22) Let us consider a subset X of V . Then T ◦X is a subset of imT .

(23) Let us consider an element y of W . Then y ∈ imT if and only if there
exists an element x of V such that y = T (x).

(24) Let us consider an element x of kerT . Then T (x) = 0W . The theorem is
a consequence of (20).

(25) If T is one-to-one, then kerT = 0V .
Proof: Reconsider Z = 0V as a submodule of kerT . For every element v
of kerT , v ∈ Z by [1, (7)], (19), [19, (25)], (20). �

(26) Let us consider a finite rank, free Z-module V . Then rank0V = 0. The
theorem is a consequence of (1).

(27) Let us consider elements x, y of V . If T (x) = T (y), then x− y ∈ kerT .
The theorem is a consequence of (18) and (20).

(28) Let us consider a subset A of V and elements x, y of V . If x−y ∈ Lin(A),
then x ∈ Lin(A ∪ {y}).

3. Some Basic Facts about Linearly Independent Subsets and
Linear Combinations

Now we state the propositions:

(29) Let us consider a subset X of V . If V is a submodule of W , then X is a
subset of W .

(30) Every subset of V is a subset of Lin(A).
Proof: For every object x such that x ∈ A holds x ∈ the carrier of Lin(A)
by [20, (65)]. �

(31) Let us consider a Z-module V . Then every linearly independent subset
of V is a basis of Lin(A). The theorem is a consequence of (30).

(32) Let us consider a finite rank, free Z-module V , a subset A of V , and an
element x of V . Suppose x ∈ Lin(A) and x /∈ A. Then A ∪ {x} is linearly
dependent. The theorem is a consequence of (31).

Let V be a finite rank, free Z-module, W be a Z-module, and T be a linear
transformation from V to W . Let us note that kerT is finite rank and free.

From now on T denotes a linear transformation from V to W .
Now we state the propositions:
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(33) Let us consider a finite rank, free Z-module V , a subset A of V , a basis
B of V , and a linear transformation T from V to W . Suppose A is a basis
of kerT and A ⊆ B. Then T �(B \ A) is one-to-one. The theorem is a
consequence of (27), (28), and (32).

(34) Let us consider a subset A of V , a linear combination l of A, an element
x of V , and an element a of ZR. Then l +· (x, a) is a linear combination
of A ∪ {x}.
Proof: Set m = l +· (x, a). rngm ⊆ the carrier of ZR by [13, (92)], [8,
(31)], [12, (3)], [8, (32)]. Set T = (the support of l)∪{x}. For every element
v of V such that v /∈ T holds m(v) = 0ZR by [8, (32)]. The support of
m ⊆ T by [8, (32)]. �

In the sequel l denotes a linear combination of V .
Let V be a Z-module. One can check that there exists a subset of V which

is linearly dependent.
Let l be a linear combination of V and A be a subset of V . The functor l[A]

yielding a linear combination of A is defined by the term

(Def. 6) l�A+·(Ac 7−→ 0ZR).

Now we state the proposition:

(35) l = l[the support of l].
Proof: Set f = l�(the support of l). Set g = (the support of l)c 7−→ 0ZR .
Set m = f+·g. For every object x such that x ∈ dom l holds l(x) = m(x)
by [12, (49)], [26, (7)]. �

Let us consider a subset A of V and an element v of V . Now we state the
propositions:

(36) If v ∈ A, then l[A](v) = l(v).

(37) If v /∈ A, then l[A](v) = 0ZR .

Now we state the proposition:

(38) Let us consider subsets A, B of V and a linear combination l of B. If
A ⊆ B, then l = l[A] + l[B \A]. The theorem is a consequence of (37) and
(36).

Let V be a Z-module, l be a linear combination of V , and X be a subset of
V . Let us note that l◦X is finite.

Now we state the proposition:

(39) Let us consider a subset X of V . Suppose X misses the support of l.
Then l◦X ⊆ {0ZR}.

Let V , W be Z-modules, l be a linear combination of V , T be a linear trans-
formation from V to W , and w be an element of W . The functor CFS(l, T, w)
yielding a (the carrier of ZR)-valued finite sequence is defined by the term
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(Def. 7) l · CFS(T−1({w}) ∩ (the support of l)).

From now on V , W denote Z-modules, l denotes a linear combination of V ,
and T denotes a linear transformation from V to W .

Now we state the proposition:

(40) Let us consider non empty sets V ,W , a finite sequence f , and a function
l from V into W . Suppose rng f ⊆ V . Then l · f is W -valued and finite
sequence-like.

Let V , W be non empty sets, f be a V -valued finite sequence, and l be
a function from V into W . One can check that l · f is W -valued and finite
sequence-like.

Let A be a finite subset of V . Let us note that l · CFS(A) is W -valued and
finite sequence-like.

Let V be a Z-module and l be a linear combination of V . One can check
that l · CFS(A) is (the carrier of ZR)-valued and finite sequence-like.

Now we state the propositions:

(41) Let us consider non empty sets V , W , V -valued finite sequences f , g,
and a function l from V into W . Then l · (f a g) = l · f a (l · g).

(42) Let us consider a Z-module V , finite subsets A, B of V , a linear com-
bination l of V , and finite sequences l0, l1, l2 of elements of ZR. Suppose
A∩B = ∅ and l0 = l ·CFS(A∪B) and l1 = l ·CFS(A) and l2 = l ·CFS(B).
Then

∑
l0 =
∑
l1 +
∑
l2. The theorem is a consequence of (43).

(43) Let us consider a Z-module V , a finite subset A of V , and linear com-
binations l, l0 of V . Suppose l�(the support of l0) = l0�(the support of l0)
and the support of l0 ⊆ the support of l and A ⊆ the support of l0. Then∑

(l · CFS(A)) =
∑

(l0 · CFS(A)).

Let V , W be Z-modules, l be a linear combination of V , and T be a linear
transformation from V to W . The functor T ⊕ l yielding a linear combination
of W is defined by

(Def. 8) the support of it ⊆ T ◦(the support of l) and for every element w of W ,
it(w) =

∑
CFS(l, T, w).

Now we state the propositions:

(44) T ⊕ l is a linear combination of T ◦(the support of l).

(45) Let us consider Z-modules V , W , a linear transformation T from V to
W , a vector s of W , a subset A of V , and a linear combination l of A.
Suppose for every vector v of V such that v ∈ the support of l holds
T (v) = s. Then T (

∑
l) =
∑

CFS(l, T, s) · s.
Proof: Define P[natural number] ≡ for every subset A of V for every
linear combination l of A such that the support of l = $1 and for every
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vector v of V such that v ∈ the support of l holds T (v) = s holds T (
∑
l) =∑

CFS(l, T, s) · s. P[0] by [20, (23)], [19, (1)], [29, (43)]. For every natural
number n such that P[n] holds P[n + 1] by [4, (44)], [17, (31)], [4, (42)],
[13, (8)]. For every natural number n, P[n] from [5, Sch. 2]. �

(46) Let us consider Z-modules V , W , a linear transformation T from V to
W , a subset A of V , a linear combination l of A, and a linear combination
T1 of T ◦(the support of l). If T1 = T ⊕ l, then T (

∑
l) =
∑
T1.

Proof: Define P[natural number] ≡ for every subset A of V for every li-
near combination l of A for every linear combination T1 of T ◦(the support

of l) such that T1 = T ⊕ l and T ◦(the support of l) = $1 holds T (
∑
l) =∑

T1. P[0] by [20, (23)], [19, (1)]. For every natural number n such that
P[n] holds P[n + 1] by [4, (44)], [17, (31)], [4, (42)], [13, (8)]. For every
natural number n, P[n] from [5, Sch. 2]. �

Let us consider linear combinations l, m of V .
Let us assume that the support of l misses the support of m. Now we state

the propositions:

(47) The support of l +m = (the support of l) ∪ (the support of m).
Proof: (The support of l) ∪ (the support of m) ⊆ the support of l +m
by [30, (22)], [20, (8)]. �

(48) The support of l − m = (the support of l) ∪ (the support of m). The
theorem is a consequence of (47).

Now we state the propositions:

(49) Let us consider a Z-module V , a subset A of V , and linear combinations
l1, l2 of A. Suppose the support of l1 misses the support of l2. Then
the support of l1 − l2 = (the support of l1) ∪ (the support of l2). The
theorem is a consequence of (47).

(50) Let us consider a free Z-module V and subsets A, B of V . Suppose
A ⊆ B and B is a basis of V . Then V is the direct sum of Lin(A) and
Lin(B \A).
Proof: Lin(A)∩Lin(B \A) = 0V by [19, (54), (94)], [20, (64)], [22, (19)].
ΩV = Lin(A) + Lin(B \A) by [21, (14)], [20, (64)], (38), [20, (52)]. �

(51) Let us consider a subset A of V , a linear combination l of A, and an
element v of V . Suppose T �A is one-to-one and v ∈ A. Then there exists
a subset X of V such that

(i) X misses A, and

(ii) T−1({T (v)}) = {v} ∪X.

Proof: Set X = T−1({T (v)})\{v}. X misses A by [1, (7)], [32, (62)], [12,
(49)]. {v} ⊆ T−1({T (v)}) by [1, (7)]. �
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(52) Let us consider a subset X of V . Suppose X misses the support of l and
X 6= ∅. Then l◦X = {0ZR}. The theorem is a consequence of (39).

(53) Let us consider an element w of W . Suppose w ∈ the support of T ⊕ l.
Then T−1({w}) meets the support of l.

(54) Let us consider an element v of V . Suppose T �(the support of l) is one-
to-one and v ∈ the support of l. Then (T ⊕ l)(T (v)) = l(v).
Proof: For every object x, x ∈ T−1({T (v)})∩(the support of l) iff x ∈ {v}
by [13, (38)], [12, (49)], [32, (57)]. �

(55) Let us consider a finite sequence G of elements of V . Suppose rngG =
the support of l and T �(the support of l) is one-to-one. Then T · (l ·G) =
(T ⊕ l) · (T ·G).
Proof: Reconsider R = (T ⊕ l) · (T · G) as a finite sequence of elements
of W . Reconsider L = T · (l ·G) as a finite sequence of elements of W . For
every natural number k such that 1 ¬ k ¬ lenL holds L(k) = R(k) by
[12, (13), (3)], (54), [1, (7)]. �

(56) Suppose T �(the support of l) is one-to-one. Then T ◦(the support of
l) = the support of T ⊕ l.
Proof: T ◦(the support of l) ⊆ the support of T ⊕ l by (54), [20, (8)]. �

(57) Let us consider a finite rank, free Z-module V , a subset A of V , a basis B
of V , a linear transformation T from V toW , and a linear combination l of
B \A. Suppose A is a basis of kerT and A ⊆ B. Then T (

∑
l) =
∑

(T ⊕ l).
The theorem is a consequence of (33), (56), (55), and (16).

(58) Let us consider a subset X of V . Suppose X is linearly dependent. Then
there exists a linear combination l of X such that

(i) the support of l 6= ∅, and

(ii)
∑
l = 0V .

Let V , W be Z-modules, X be a subset of V , T be a linear transformation
from V toW , and l be a linear combination of T ◦X. Assume T �X is one-to-one.
The functor T#l yielding a linear combination of X is defined by the term

(Def. 9) l · T+·(Xc 7−→ 0ZR).

Now we state the propositions:

(59) Let us consider a subset X of V , a linear combination l of T ◦X, and an
element v of V . If v ∈ X and T �X is one-to-one, then (T#l)(v) = l(T (v)).

(60) Let us consider a subset X of V and a linear combination l of T ◦X. If
T �X is one-to-one, then T ⊕ T#l = l. The theorem is a consequence of
(53), (54), and (59).
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