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Summary. Two construction functors: simple term with a variable and
compound term with an operation and argument terms and schemes of term
induction are introduced. The degree of construction as a number of used opera-
tion symbols is defined. Next, the term context is investigated. An x-context is
a term which includes a variable x once only. The compound term is x-context
iff the argument terms include an x-context once only. The context induction is
shown and used many times. As a key concept, the context substitution is in-
troduced. Finally, the translations and endomorphisms are expressed by context
substitution.
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1. Preliminaries

Let Σ be a non empty non void many sorted signature, A be a non-empty
algebra over Σ, and σ be a sort symbol of Σ.

An element of A from σ is an element of (the sorts of A)(σ). From now on
a, b denote objects, I, J denote sets, f denotes a function, R denotes a binary
relation, i, j, n denote natural numbers, m denotes an element of N, Σ denotes
a non empty non void many sorted signature, σ, σ1, σ2 denote sort symbols of
Σ, o denotes an operation symbol of Σ, X denotes a non-empty many sorted set
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indexed by the carrier of Σ, x, x1, x2 denote elements of X(σ), x11 denotes an
element of X(σ1), T denotes a free in itself including Σ-terms over X algebra
over Σ with all variables and inheriting operations, g denotes a translation in
FΣ(X) from σ1 into σ2, and h denotes an endomorphism of FΣ(X).

Let us consider Σ and X. Let T be an including Σ-terms over X algebra
over Σ with all variables and ρ be an element of T . The functor @ρ yielding an
element of FΣ(X) is defined by the term

(Def. 1) ρ.

Let us consider T . Observe that every element of T is finite and every set
which is natural-membered is also ⊆-linear.

In the sequel ρ, ρ1, ρ2 denote elements of T and τ , τ1, τ2 denote elements of
FΣ(X).

Let us consider Σ. Let A be an algebra over Σ. Let us consider a. We say
that a ∈ A if and only if

(Def. 2) a ∈
⋃

(the sorts of A).

Let us consider b. We say that b is a-different if and only if

(Def. 3) b 6= a.

Let I be a non trivial set. Note that there exists an element of I which is
a-different.

Now we state the proposition:

(1) Let us consider trees τ , τ1 and finite sequences p, q of elements of N.
Suppose

(i) p ∈ τ , and

(ii) q ∈ τ with-replacement(p, τ1).

Then

(iii) if p � q, then q ∈ τ , and

(iv) for every finite sequence ρ of elements of N such that q = p a ρ holds
ρ ∈ τ1.

Proof: If p � q, then q ∈ τ by [17, (1)]. �

LetR be a finite binary relation. Let us consider a. Let us note that Coim(R, a)
is finite.

Let us consider finite sequences p, q, ρ. Now we state the propositions:

(2) If p a q � ρ, then p � ρ.

(3) If p a q � p a ρ, then q � ρ.

Now we state the propositions:

(4) Let us consider finite sequences p, q. Suppose i ¬ len p. Then (p a

q)� Seg i = p� Seg i.

(5) Let us consider finite sequences p, q, ρ. If q � pa ρ, then q � p or p � q.
The theorem is a consequence of (4).
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Let us consider Σ. We say that Σ is sufficiently rich if and only if

(Def. 4) There exists o such that σ ∈ rng Arity(o).

We say that Σ is growable if and only if

(Def. 5) There exists τ such that height dom τ = n.

Let us consider n. We say that Σ is n-ary operation including if and only if

(Def. 6) There exists o such that len Arity(o) = n.

Let us note that there exists a non empty non void many sorted signature
which is n-ary operation including and there exists a non empty non void many
sorted signature which is sufficiently rich.

Let us consider R. We say that R is nontrivial if and only if

(Def. 7) If I ∈ rngR, then I is not trivial.

We say that R is infinite-yielding if and only if

(Def. 8) If I ∈ rngR, then I is infinite.

Let us observe that every binary relation which is nontrivial is also non-
empty and every binary relation which is infinite-yielding is also nontrivial.

Let I be a set. Observe that there exists a many sorted set indexed by I which
is infinite-yielding and there exists a finite sequence which is infinite-yielding.

Let I be a non empty set, f be a nontrivial many sorted set indexed by I,
and a be an element of I. Let us note that f(a) is non trivial.

Let f be an infinite-yielding many sorted set indexed by I. Note that f(a)
is infinite.

Let us consider Σ,X, and o. Let us note that every element of Args(o,FΣ(X))
is decorated tree yielding.

In the sequel Y denotes an infinite-yielding many sorted set indexed by the
carrier of Σ, y, y1 denote elements of Y (σ), y11 denotes an element of Y (σ1),
Q denotes a free in itself including Σ-terms over Y algebra over Σ with all
variables and inheriting operations, q, q1 denote elements of Args(o,FΣ(Y )), u,
u1, u2 denote elements of Q, v, v1, v2 denote elements of FΣ(Y ), Z denotes a
nontrivial many sorted set indexed by the carrier of Σ, z, z1 denote elements of
Z(σ), l, l1 denote elements of FΣ(Z), R denotes a free in itself including Σ-terms
over Z algebra over Σ with all variables and inheriting operations, and k, k1
denote elements of Args(o,FΣ(Z)).

Let p be a finite sequence. Note that p a ∅ reduces to p and ∅ a p reduces
to p.

Let I be a finite sequence-membered set. The functor p_ I yielding a set is
defined by the term

(Def. 9) {p a q, where q is an element of I : q ∈ I}.

Let us observe that p_ I is finite sequence-membered.
Let f be a finite sequence and E be an empty set. One can verify that f _E

reduces to E.
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Let p be a decorated tree yielding finite sequence. Let us consider a. Let
us note that p(a) is relation-like and every set which is tree-like is also finite
sequence-membered.

Let p be a decorated tree yielding finite sequence. Let us consider a. One
can check that dom(p(a)) is finite sequence-membered.

Let τ , τ1 be trees. One can check that τ1 with-replacement(εN, τ) reduces
to τ .

Let d, d1 be decorated trees. One can check that d1 with-replacement(εN, d)
reduces to d.

Now we state the proposition:

(6) Let us consider finite sequences ξ, w of elements of N, tree yielding finite
sequences p, q, and trees d, τ . Suppose

(i) i < len p, and

(ii) ξ = 〈i〉 a w, and

(iii) d = p(i+ 1), and

(iv) q = p+· (i+ 1, dwith-replacement(w, τ)), and

(v) ξ ∈
︷︸︸︷
p .

Then
︷︸︸︷
p with-replacement(ξ, τ) =

︷︸︸︷
q . The theorem is a consequence of

(2).

Let F be a function yielding function and f be a function. Let us consider
a. Note that F +· (a, f) is function yielding.

Now we state the propositions:

(7) Let us consider a function yielding function F and a function f . Then
domκ(F +· (a, f))(κ) = domκ F (κ) +· (a,dom f).

(8) Let us consider finite sequences ξ, w of elements of N, decorated tree
yielding finite sequences p, q, and decorated trees d, τ . Suppose

(i) i < len p, and

(ii) ξ = 〈i〉 a w, and

(iii) d = p(i+ 1), and

(iv) q = p+· (i+ 1, dwith-replacement(w, τ)), and

(v) ξ ∈
︷ ︸︸ ︷
dom
κ

p(κ).

Then (a-tree(p)) with-replacement(ξ, τ) = a-tree(q). The theorem is a con-
sequence of (7), (6), (2), and (3).

(9) Let us consider a set a and a decorated tree yielding finite sequence w.
Then dom(a-tree(w)) = {∅}∪

⋃
{〈i〉_ dom(w(i+ 1)) : i < lenw}. Proof:

Set A = {〈i〉_ dom(w(i+ 1)) : i < lenw}. dom(a-tree(w)) ⊆ {∅}∪
⋃

A by
[20, (11)]. �
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Let p be a decorated tree yielding finite sequence. Let us consider a and I.
Note that p(a)−1(I) is finite sequence-membered.

Now we state the proposition:

(10) Let us consider a finite sequence-membered set I and a finite sequence
p. Then p_ I = I . Proof: Define F(element of I) = p a $1. Consider f
such that dom f = I and for every element q of I such that q ∈ I holds
f(q) = F(q) from [7, Sch. 2]. rng f = p_ I. f is one-to-one by [22, (33)].
�

Let I be a finite finite sequence-membered set and p be a finite sequence.
Note that p_ I is finite.

Now we state the proposition:

(11) Let us consider finite sequence-membered sets I, J and finite sequences
p, q. Suppose

(i) len p = len q, and

(ii) p 6= q.

Then p_ I misses q _ J .

Let us consider i. Let us note that i reduces to i. Let us consider j. We
identify i+ j with i+ j.

The scheme CardUnion deals with a unary functor I yielding a set and a
finite sequence f of elements of N and states that

(Sch. 1)
⋃
{I(i) : i < len f} =

∑
f

provided

• for every i and j such that i < len f and j < len f and i 6= j holds I(i)
misses I(j) and

• for every i such that i < len f holds I(i) = f(i+ 1).

Let f be a finite sequence. Note that {f} is finite sequence-membered.
Now we state the propositions:

(12) Let us consider finite sequences f , g. Then f _ {g} = {f a g}.
(13) Let us consider finite sequence-membered sets I, J and a finite sequence

f . Then I ⊆ J if and only if f _ I ⊆ f _ J .

In the sequel c, c1, c2 denote sets and d, d1 denote decorated trees.
Now we state the proposition:

(14) Leaves(the elementary tree of 0) = {∅}.
Let us note that sethood property holds for trees.
Now we state the propositions:

(15) Let us consider a non empty tree yielding finite sequence p.
Then Leaves(

︷︸︸︷
p ) = {〈i〉 a q, where q is a finite sequence of elements

of N, d is a tree : q ∈ Leaves(d) and i + 1 ∈ dom p and d = p(i + 1)}.
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Proof: Set i0 = the element of dom p. Leaves(
︷︸︸︷
p ) ⊆ {〈i〉 a q, where

q is a finite sequence of elements of N, d is a tree : q ∈ Leaves(d) and
i+ 1 ∈ dom p and d = p(i+ 1)} by [13, (11), (13)], [52, (25)], [17, (1)].�

(16) Leaves(the root tree of c) = {c}.
(17) dom d ⊆ dom dc←d1 .

Let us consider c and d. Observe that (the root tree of c)c←d reduces to d.
Now we state the proposition:

(18) Suppose c1 6= c2. Then (the root tree of c1)c2←d = the root tree of c1.
Proof: dom(the root tree of c1)c2←d = dom(the root tree of c1) by [20,
(3)], [17, (29)], [40, (15)]. �

Let f be a non empty function yielding function. Note that domκ f(κ) is
non empty and rngκ f(κ) is non empty.

Now we state the proposition:

(19) Let us consider non empty decorated tree yielding finite sequences p, q.
Suppose

(i) dom q = dom p, and

(ii) for every i and d1 such that i ∈ dom p and d1 = p(i) holds q(i) =
d1c←d.

Then (b-tree(p))c←d = b-tree(q).Proof: Leaves(
︷ ︸︸ ︷
dom
κ

p(κ)) = {〈i〉aq, where

q is a finite sequence of elements of N, d is a tree : q ∈ Leaves(d) and
i+1 ∈ dom(domκ p(κ)) and d = (domκ p(κ))(i+1)}. dom(b-tree(p))c←d =
dom(b-tree(q)) by [17, (22)], [13, (11), (13)], [52, (25)]. �

Let us consider Σ and σ. Let A be a non empty algebra over Σ and a be an
element of A. We say that a is σ-sort if and only if

(Def. 10) a ∈ (the sorts of A)(σ).

Let A be a non-empty algebra over Σ. One can verify that there exists an
element of A which is σ-sort and every element of (the sorts of A)(σ) is σ-sort.

Let A be a non empty algebra over Σ. Assume A is disjoint valued. Let a be
an element of A. The functor the sort of a yielding a sort symbol of Σ is defined
by

(Def. 11) a ∈ (the sorts of A)(it).

Now we state the propositions:

(20) Let us consider a disjoint valued non-empty algebra A over Σ and a
σ-sort element a of A. Then the sort of a = σ.

(21) Let us consider a disjoint valued non empty algebra A over Σ. Then
every element of A is (the sort of a)-sort.

(22) The sort of @ρ = the sort of ρ.
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(23) Let us consider an element ρ of (the sorts of T )(σ). Then the sort of
ρ = σ.

(24) Let us consider a term u of Σ over X. Suppose τ = u. Then the sort of
τ = the sort of u.

Let us consider Σ, X, o, and T . One can verify that every element of
Args(o, T ) is (

⋃
(the sorts of T ))-valued.

Now we state the proposition:

(25) Let us consider an element q of Args(o, T ). Suppose i ∈ dom q. Then
the sort of qi = Arity(o)i.

Let us consider Σ. Let A, B be non-empty algebras over Σ and f be a many
sorted function from A into B. Assume A is disjoint valued. Let a be an element
of A. The functor f(a) yielding an element of B is defined by the term

(Def. 12) f(the sort of a)(a).

Let us consider a disjoint valued non-empty algebra A over Σ, a non-empty
algebra B over Σ, a many sorted function f from A into B, and an element a of
(the sorts of A)(σ). Now we state the propositions:

(26) f(a) = f(σ)(a).

(27) f(a) is an element of (the sorts of B)(σ). The theorem is a consequence
of (26).

Now we state the propositions:

(28) Let us consider disjoint valued non-empty algebras A, B over Σ, a many
sorted function f from A into B, and an element a of A. Then the sort of
f(a) = the sort of a.

(29) Let us consider disjoint valued non-empty algebras A, B over Σ, a non-
empty algebra C over Σ, a many sorted function f from A into B, a many
sorted function g from B into C, and an element a of A. Then (g ◦ f)(a) =
g(f(a)). The theorem is a consequence of (28).

(30) Let us consider a disjoint valued non-empty algebra A over Σ, a non-
empty algebra B over Σ, and many sorted functions f1, f2 from A into B.
If for every element a of A, f1(a) = f2(a), then f1 = f2. The theorem is a
consequence of (26).

Let us consider Σ. Let A, B be algebras over Σ. Assume there exists a many
sorted function h from A into B such that h is a homomorphism of A into B.

A homomorphism from A to B is a many sorted function from A into B and
is defined by

(Def. 13) it is a homomorphism of A into B.

Now we state the proposition:

(31) Let us consider a many sorted function h from FΣ(X) into T . Then h is
a homomorphism from FΣ(X) to T if and only if h is a homomorphism of
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FΣ(X) into T .

Let us consider Σ, X, and T . Observe that the functor the canonical homo-
morphism of T yields a homomorphism from FΣ(X) to T . Let us consider ρ.
One can check that (the canonical homomorphism of T )(@ρ) reduces to ρ.

Now we state the proposition:

(32) Suppose τ2 = (the canonical homomorphism of T )(τ1).
Then (the canonical homomorphism of T )(τ1) = (the canonical homomor-
phism of T )(τ2). The theorem is a consequence of (22) and (28).

2. Constructing Terms

In the sequel w denotes an element of Args(o, T ) and p, p1 denote elements
of Args(o,FΣ(X)).

Let us consider Σ, X, σ, and x. The functor x -term yielding an element of
(the sorts of FΣ(X))(σ) is defined by the term

(Def. 14) The root tree of 〈〈x, σ〉〉.
Let us consider o and p. The functor o -term p yielding an element of FΣ(X)

from the result sort of o is defined by the term

(Def. 15) 〈〈o, the carrier of Σ〉〉-tree(p).

Now we state the propositions:

(33) The sort of x -term = σ.

(34) The sort of o -term p = the result sort of o. The theorem is a consequence
of (24).

(35) Let us consider an object i. Then i ∈ (FreeGenerator(T ))(σ) if and only
if there exists x such that i = x -term.

Let us consider Σ, X, σ, and x. Let us note that x -term is non compound.
Let us consider o and p. One can check that o -term p is compound and (the

result sort of o)-sort.
Now we state the propositions:

(36) (i) there exists σ and there exists x such that τ = x -term, or

(ii) there exists o and there exists p such that τ = o -term p.

(37) If τ is not compound, then there exists σ and there exists x such that
τ = x -term.

(38) If τ is compound, then there exists o and there exists p such that τ =
o -term p.

(39) x -term 6= o -term p.

Let us consider Σ. Let X be a non-empty many sorted set indexed by the
carrier of Σ. Note that there exists an element of FΣ(X) which is compound.
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Let us consider X. Let e be a compound element of FΣ(X). Let us note
that the functor main-constr e yields an operation symbol of Σ. One can check
that the functor args e yields an element of Args(main-constr e,FΣ(X)). Now we
state the propositions:

(40) args(x -term) = ∅.
(41) Let us consider a compound element τ of FΣ(X).

Then τ = main-constr τ -term args τ . The theorem is a consequence of
(38).

(42) x -term ∈ T .

Let us consider Σ, X, T , σ, and x. Note that (the canonical homomorphism
of T )(x -term) reduces to x -term.

The scheme TermInd deals with a unary predicate P and a non empty non
void many sorted signature Σ and a non-empty many sorted set X indexed by
the carrier of Σ and an element τ of FΣ(X ) and states that

(Sch. 2) P[τ ]

provided

• for every sort symbol σ of Σ and for every element x of X (σ), P[x -term]
and

• for every operation symbol o of Σ and for every element p of Args(o,FΣ(X ))
such that for every element τ of FΣ(X ) such that τ ∈ rng p holds P[τ ] holds
P[o -term p].

The scheme TermAlgebraInd deals with a unary predicate P and a non empty
non void many sorted signature Σ and a non-empty many sorted set X indexed
by the carrier of Σ and a free in itself including Σ-terms over X algebra A over
Σ with all variables and inheriting operations and an element τ of A and states
that

(Sch. 3) P[τ ]

provided

• for every sort symbol σ of Σ and for every element x of X (σ) and for every
element ρ of A such that ρ = x -term holds P[ρ] and

• for every operation symbol o of Σ and for every element p of Args(o,FΣ(X ))
and for every element ρ of A such that ρ = o -term p and for every element
τ of A such that τ ∈ rng p holds P[τ ] holds P[ρ].
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3. Construction Degree

Let us consider Σ, X, T , and ρ. The functors: the construction degree of ρ
and height ρ yielding natural numbers are defined by terms,

(Def. 16) ρ−1(α× {β}), where α is the carrier’ of Σ and β is the carrier of Σ,

(Def. 17) height dom ρ,

respectively. We introduce deg ρ as a synonym of the construction degree of ρ.
Now we state the propositions:

(43) deg @ρ = deg ρ.

(44) height @ρ = height ρ.

(45) height(x -term) = 0.

One can verify that every set which is natural-membered is also ordinal-
membered and finite-membered.

Let I be a finite natural-membered set. One can verify that
⋃
I is natural.

Let I be a non empty finite natural-membered set. We identify
⋃
I with

max I. Now we state the propositions:

(46) (i) {height τ1 : τ1 ∈ rng p} is natural-membered and finite, and

(ii)
⋃
{height τ : τ ∈ rng p} is a natural number.

Proof: Set I = {height τ : τ ∈ rng p}. I is natural-membered. Define
F(element of FΣ(X)) = height $1. {F(τ1) : τ1 ∈ rng p} is finite from [44,
Sch. 21]. �

(47) Suppose Arity(o) 6= ∅ and n =
⋃
{height τ1 : τ1 ∈ rng p}.

Then height(o -term p) = n + 1. Proof: Set I = {height τ1 : τ1 ∈ rng p}.
I is natural-membered. Define F(element of FΣ(X)) = height $1. {F(τ1)
: τ1 ∈ rng p} is finite from [44, Sch. 21]. �

(48) If Arity(o) = ∅, then height(o -term p) = 0.

(49) deg(x -term) = 0.

(50) deg τ 6= 0 if and only if there exists o and there exists p such that
τ = o -term p. Proof: Define P[element of FΣ(X)] ≡ deg $1 6= 0 iff there
exists o and there exists p such that $1 = o -term p. P[x -term]. P[τ ] from
TermInd. �

Let τ be a decorated tree. Let us consider I. Observe that τ−1(I) is finite
sequence-membered.

Let us consider a. Let J , K be sets. Let us observe that the functor IFIN(a, I,
J,K) yields a set. Now we state the propositions:

(51) Suppose J = 〈〈o, the carrier of Σ〉〉. Then (o -term p)−1(I) = IFIN(J, I, {∅},
∅)∪
⋃
{〈i〉_ p(i+1)−1(I) : i < len p}. Proof: Set X = {〈i〉_ p(i+1)−1(I)

: i < len p}. (o -term p)−1(I) ⊆ IFIN(J, I, {∅}, ∅) ∪
⋃
X by [20, (10)], [13,

(11), (13)], [52, (25)]. �



Term context 135

(52) Suppose there exists a finite sequence f of elements of N such that
i =
∑
f and dom f = dom Arity(o) and for every i and τ such that i ∈

dom Arity(o) and τ = p(i) holds f(i) = deg τ . Then deg(o -term p) = i+1.
Proof: Set τ = o -term p. Set I = (the carrier’ of Σ)×{the carrier of Σ}.
Set A = {〈i〉 _ p(i + 1)−1(I) : i < len p}. ∅ 6∈

⋃
A. τ−1(I) = {∅} ∪

⋃
A.

Define J (natural number) = 〈$1〉_ p($1 + 1)−1(I). For every i and j such
that i < len f and j < len f and i 6= j holds J (i) misses J (j) by [22, (40)],

(11). For every i such that i < len f holds J (i) = f(i + 1) by [13, (12),

(13)], [52, (25)], [12, (2)].
⋃
{J (i) : i < len f} =

∑
f from CardUnion. �

Let us consider Σ, X, T , and i. The functor T deg¬ i yielding a subset of T
is defined by the term

(Def. 18) {ρ : deg ρ ¬ i}.

The functor T height¬ i yielding a subset of T is defined by the term

(Def. 19) {τ : τ ∈ T and height τ ¬ i}.

Now we state the propositions:

(53) ρ ∈ T deg¬ i if and only if deg ρ ¬ i.
(54) T deg¬ 0 = the set of all x -term. Proof: T deg¬ 0 ⊆ the set of all x -te-

rm by [10, (39)], (36), (50). Consider σ, x such that a = x -term.
deg(x -term) = 0 ¬ 0 and x -term ∈ T . Reconsider ρ = x -term as an
element of T . deg ρ = deg @ρ = 0. �

(55) T height¬ 0 = the set of all x -term ∪ {o -term p : o -term p ∈ T and
Arity(o) = ∅}. The theorem is a consequence of (36), (46), (47), (42), and
(48).

(56) T deg¬ 0 =
⋃

FreeGenerator(T ).Proof: T deg¬ 0 = the set of all x -term.
T deg¬ 0 ⊆

⋃
FreeGenerator(T ) by [5, (2)]. Consider b such that b ∈

dom FreeGenerator(T ) and a ∈ (FreeGenerator(T ))(b). Consider y being
a set such that y ∈ X(b) and a = the root tree of 〈〈y, b〉〉. �

(57) ρ ∈ T height¬ i if and only if height ρ ¬ i.
Let us consider Σ, X, T , and i. One can check that T deg¬ i is non empty

and T height¬ i is non empty.
Let us assume that i ¬ j. Now we state the propositions:

(58) T deg¬ i ⊆ T deg¬ j.

(59) T height¬ i ⊆ T height¬ j.

Now we state the propositions:

(60) T deg¬(i+1) = (T deg¬ 0)∪{o -term p : there exists a finite sequence f
of elements of N such that i ­

∑
f and dom f = dom Arity(o) and for

every i and τ such that i ∈ dom Arity(o) and τ = p(i) holds f(i) =
deg τ} ∩

⋃
(the sorts of T ). Proof: Set I = {o -term p : there exists

a finite sequence f of elements of N such that i ­
∑
f and dom f =
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dom Arity(o) and for every i and τ such that i ∈ dom Arity(o) and τ =
p(i) holds f(i) = deg τ}. T deg¬(i+1) ⊆ (T deg¬ 0)∪I∩

⋃
(the sorts of T )

by [10, (39)], (36), (54), [36, (6)]. T deg¬ 0 ⊆ T deg¬(i+1). I∩
⋃

(the sorts
of T ) ⊆ T deg¬(i+ 1). �

(61) T height¬(i+ 1) = (T height¬ 0) ∪ {o -term p :
⋃
{height τ : τ ∈ rng p} ⊆

i} ∩
⋃

(the sorts of T ). Proof: Set I = {o -term p :
⋃
{height τ : τ ∈

rng p} ⊆ i}. T height¬(i + 1) ⊆ (T height¬ 0) ∪ I ∩
⋃

(the sorts of T ) by
(36), (55), (46), (47). T height¬ 0 ⊆ T height¬(i + 1). I ∩

⋃
(the sorts of

T ) ⊆ T height¬(i+ 1) by (46), (47), [13, (39)], (48). �

(62) deg τ ­ height τ . Proof: Define P[element of FΣ(X)] ≡ deg $1 ­
height $1. For every operation symbol o of Σ and for every element p of
Args(o,FΣ(X)) such that for every element τ of FΣ(X) such that τ ∈ rng p
holds P[τ ] holds P[o -term p] by (48), [36, (6)], (46), [42, (9)]. P[τ ] from
TermInd. �

(63)
⋃

(the sorts of T ) =
⋃
{T deg¬ i : not contradiction}.

(64)
⋃

(the sorts of T ) =
⋃
{T height¬ i : not contradiction}. The theorem is

a consequence of (57).

(65) T deg¬ i ⊆ FΣ(X) deg¬ i. Proof: Define P[natural number] ≡ T deg¬ $1

⊆ FΣ(X) deg¬ $1. T deg¬ 0 =
⋃

FreeGenerator(T ) and FΣ(X) deg¬ 0 =⋃
FreeGenerator(FΣ(X)). For every i, P[i] from [13, Sch. 2]. �

4. Context

Let us consider Σ, X, T , σ, x, and ρ. We say that ρ is x-context if and only if

(Def. 20) Coim(ρ, 〈〈x, σ〉〉) = 1.

We say that ρ is x-omitting if and only if

(Def. 21) Coim(ρ, 〈〈x, σ〉〉) = ∅.
The functor vf ρ yielding a set is defined by the term

(Def. 22) π1(rng ρ ∩ (
⋃
X × (the carrier of Σ))).

Now we state the propositions:

(66) vf ρ =
⋃

VarX ρ. Proof: vf ρ ⊆
⋃

VarX ρ by [32, (87)], [5, (2)], [10,
(44)], [23, (9)]. �

(67) vf(x -term) = {x}.
(68) vf(o -term p) =

⋃
{vf τ : τ ∈ rng p}. Proof: vf(o -term p) ⊆

⋃
{vf τ

: τ ∈ rng p} by (66), [5, (2)], [23, (13)], [55, (167)]. �

Let us consider Σ, X, T , and ρ. Note that vf ρ is finite.
Now we state the proposition:

(69) If x 6∈ vf ρ, then ρ is x-omitting.

Let us consider Σ, X, σ, and τ . We say that τ is σ-context if and only if
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(Def. 23) There exists x such that τ is x-context.

Let us consider x. Let us observe that every element of FΣ(X) which is
x-context is also σ-context.

One can verify that x -term is x-context.
One can check that there exists an element of FΣ(X) which is x-context

and non compound and every element of FΣ(X) which is x-omitting is also non
x-context.

Now we state the proposition:

(70) Let us consider sort symbols σ1, σ2 of Σ, an element x1 of X(σ1), and
an element x2 of X(σ2). Then σ1 6= σ2 or x1 6= x2 if and only if x1 -term
is x2-omitting.

Let us consider Σ, σ, σ1, Z, and z. Let z′ be a z-different element of Z(σ1).
One can check that z′ -term is z-omitting.

One can check that there exists an element of FΣ(Z) which is z-omitting.
Let us consider σ1. Let z1 be a z-different element of Z(σ1). Observe that

there exists an element of FΣ(Z) which is z-omitting and z1-context.
Let us consider X. Let us consider x.
A context of x is an x-context element of FΣ(X). Now we state the propo-

sition:

(71) Let us consider a sort symbol ρ of Σ and an element y of X(ρ). Then
x -term is a context of y if and only if ρ = σ and x = y.

Let us consider Σ, X, and σ.
A context of σ and X is a σ-context element of FΣ(X). In the sequel C

denotes a context of x, C1 denotes a context of y, C′ denotes a context of z, C11

denotes a context of x11, C12 denotes a context of y11, and D denotes a context
of σ and X.

Now we state the propositions:

(72) C is a context of σ and X.

(73) x ∈ vf C.
Let us consider Σ, o, σ, X, x, and p. We say that p is x-context including

once only if and only if

(Def. 24) There exists i such that

(i) i ∈ dom p, and

(ii) p(i) is a context of x, and

(iii) for every j and τ such that j ∈ dom p and j 6= i and τ = p(j) holds
τ is x-omitting.

Let us note that every element of Args(o,FΣ(X)) which is x-context inclu-
ding once only is also non empty.

Now we state the propositions:
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(74) p is x-context including once only if and only if o -term p is a context of
x. Proof: Set I = {〈〈x, σ〉〉}. Set k = p. (o -term k)−1(I) = ∅∪

⋃
{〈i〉_k(i+

1)−1(I) : i < len k}. If k is x-context including once only, then o -term k is
a context of x by [3, (42)], [52, (25)], [13, (10), (13), (11)]. �

(75) for every i such that i ∈ dom p holds pi is x-omitting if and only if
o -term p is x-omitting. The theorem is a consequence of (51) and (13).

(76) for every τ such that τ ∈ rng p holds τ is x-omitting if and only if
o -term p is x-omitting. The theorem is a consequence of (75).

Let us consider Σ, σ, and o. We say that o is σ-dependent if and only if

(Def. 25) σ ∈ rng Arity(o).

Let Σ be a sufficiently rich non void non empty many sorted signature and
σ be a sort symbol of Σ. Let us note that there exists an operation symbol of Σ
which is σ-dependent.

In the sequel Σ′ denotes a sufficiently rich non empty non void many sorted
signature, σ′ denotes a sort symbol of Σ′, o′ denotes a σ′-dependent operation
symbol of Σ′, X ′ denotes a nontrivial many sorted set indexed by the carrier of
Σ′, and x′ denotes an element of X ′(σ′).

Let us consider Σ′, σ′, o′, X ′, and x′. Let us observe that there exists an
element of Args(o′,FΣ′(X ′)) which is x′-context including once only.

Let p′ be an x′-context including once only element of Args(o′,FΣ′(X ′)). One
can check that o′ -term p′ is x′-context.

Let us consider Σ, o, σ, X, x, and p. Assume p is x-context including once
only. The functor the x-context position in p yielding a natural number is defined
by

(Def. 26) p(it) is a context of x.

The functor the x-context in p yielding a context of x is defined by

(Def. 27) it ∈ rng p.

Now we state the propositions:

(77) Suppose p is x-context including once only. Then

(i) the x-context position in p ∈ dom p, and

(ii) the x-context in p = p(the x-context position in p).

(78) Suppose p is x-context including once only and the x-context position
in p 6= i ∈ dom p. Then pi is x-omitting.

Let us assume that p is x-context including once only. Now we state the
propositions:

(79) p yields the x-context in p just once. The theorem is a consequence of
(77).

(80) p ← (the x-context in p) = the x-context position in p. The theorem is
a consequence of (79).
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Now we state the proposition:

(81) (i) C = x -term, or

(ii) there exists o and there exists p such that p is x-context including
once only and C = o -term p.

The theorem is a consequence of (36), (71), and (74).

Let us consider Σ′, X ′, σ′, and x′. One can verify that there exists an element
of FΣ′(X ′) which is x′-context and compound.

The scheme ContextInd deals with a unary predicate P and a non empty
non void many sorted signature Σ and a sort symbol σ of Σ and a non-empty
many sorted set X indexed by the carrier of Σ and an element x of X (σ) and a
context C of x and states that

(Sch. 4) P[C]
provided

• P[x -term] and

• for every operation symbol o of Σ and for every element w of Args(o,FΣ(X ))
such that w is x-context including once only holds if P[the x-context in
w], then for every context C of x such that C = o -termw holds P[C].

Now we state the propositions:

(82) If τ is x-omitting, then τ〈〈x, σ〉〉←τ1 = τ .

(83) Suppose the sort of τ1 = σ. Then τ〈〈x, σ〉〉←τ1 ∈ (the sorts of FΣ(X))(the

sort of τ). Proof: Define P[element of FΣ(X)] ≡ $1〈〈x, σ〉〉←τ1 ∈ (the sorts

of FΣ(X))(the sort of $1). For every σ1 and for every element y of X(σ1),
P[y -term]. For every o and p such that for every τ2 such that τ2 ∈ rng p
holds P[τ2] holds P[o -term p] by [20, (20)], (18), [52, (29)], [12, (2)]. P[τ ]
from TermInd. �

Let us consider Σ, X, σ, x, C, and τ . Assume the sort of τ = σ. The functor
C[τ ] yielding an element of (the sorts of FΣ(X))(the sort of C) is defined by the
term

(Def. 28) C〈〈x, σ〉〉←τ .

Now we state the proposition:

(84) If the sort of τ = σ, then x -term[τ ] = τ .

Let us consider Σ, X, σ, x, and C. Observe that C[x -term] reduces to C.
Now we state the propositions:

(85) Let us consider an element w of Args(o,FΣ(Z)) and an element τ of
FΣ(Z). Suppose

(i) w is z-context including once only, and

(ii) the sort of τ = Arity(o)(the z-context position in w).
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Then w +· (the z-context position in w, τ) ∈ Args(o,FΣ(Z)).

(86) Suppose the sort of C′ = σ1. Let us consider a z-different element z1 of
Z(σ1) and a z-omitting context C1 of z1. Then C1[C′] is a context of z. Pro-
of: Define P[element of FΣ(Z)] ≡ if $1 is z-omitting, then $1〈〈z1, σ1〉〉←C′ is
a context of z. For every o and k such that k is z1-context including once
only holds if P[the z1-context in k], then for every context C of z1 such
that C = o -term k holds P[C]. P[C1] from ContextInd. �

(87) Let us consider elements w, p of Args(o,FΣ(Z)) and an element τ of
FΣ(Z). Suppose

(i) w is z-context including once only, and

(ii) C′ = o -termw, and

(iii) p = w +· (the z-context position in w, (the z-context in w)[τ ]), and

(iv) the sort of τ = σ.

Then C′[τ ] = o -term p. The theorem is a consequence of (77), (78), (82),
and (19).

(88) The sort of C[τ ] = the sort of C.
(89) If τ(a) = 〈〈x, σ〉〉, then a ∈ Leaves(dom τ). The theorem is a consequence

of (36).

(90) Let us consider a sort symbol σ0 of Σ and an element x0 of X(σ0).
Suppose

(i) the sort of τ = σ, and

(ii) C is x0-omitting, and

(iii) τ is x0-omitting.

Then C[τ ] is x0-omitting. The theorem is a consequence of (89).

(91) Suppose p is x-context including once only. Then the sort of the x-context
in p = Arity(o)(the x-context position in p). The theorem is a consequence
of (77).

(92) Let us consider a disjoint valued non-empty algebra A over Σ, a non-
empty algebra B over Σ, an operation symbol o of Σ, elements p, q of
Args(o,A), a many sorted function h from A into B, an element a of A,
and i. Suppose

(i) i ∈ dom p, and

(ii) q = p+· (i, a).

Then h#q = h#p+· (i, h(a)).

(93) Let us consider an element τ of FΣ(Z). Suppose the sort of τ = σ. Then
(the canonical homomorphism ofR)(C′[τ ]) = (the canonical homomorphism
of R)(C′[@((the canonical homomorphism of R)(τ))]). Proof: Set H =
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the canonical homomorphism of R. Define P[context of z] ≡ H($1[τ ]) =
H($1[@(H(τ))]). The sort of @(H(τ)) = the sort of H(τ). P[z -term] by
(84), [10, (48)], [28, (15)]. P[C′] from ContextInd. �

Let us consider Σ, X, T , σ, and x. Let h be a many sorted function from
FΣ(X) into T . We say that h is x-constant if and only if

(Def. 29) (i) h(x -term) = x -term, and

(ii) for every σ1 and for every element x1 of X(σ1) such that x1 6= x or
σ 6= σ1 holds h(x1 -term) is x-omitting.

Now we state the proposition:

(94) The canonical homomorphism of T is x-constant. The theorem is a con-
sequence of (70).

Let us consider Σ, X, T , σ, and x. Note that there exists a homomorphism
from FΣ(X) to T which is x-constant.

From now on h1 denotes an x-constant homomorphism from FΣ(X) to T

and h2 denotes a y-constant homomorphism from FΣ(Y ) to Q.
Let x, y be objects. The functor x↔ y yielding a function is defined by the

term

(Def. 30) {〈〈x, y〉〉, 〈〈y, x〉〉}.
Let us observe that the functor is commutative.

Now we state the proposition:

(95) (i) dom(a↔ b) = {a, b}, and

(ii) (a↔ b)(a) = b, and

(iii) (a↔ b)(b) = a, and

(iv) rng(a↔ b) = {a, b}.
Let A be a non empty set and a, b be elements of A. One can verify that

a↔ b is A-valued and A-defined.
Let A be a set, B be a non empty set, f be a function from A into B, and

g be a A-defined B-valued function. Let us note that the functor f+·g yields a
function from A into B. Let I be a non empty set, A, B be many sorted sets
indexed by I, f be a many sorted function from A into B, x be an element of
I, and g be a function from A(x) into B(x). One can verify that the functor
f +· (x, g) yields a many sorted function from A into B. Let us consider Σ, X,
T , σ, x1, and x2. The functor Hom(T, x1, x2) yielding an endomorphism of T is
defined by

(Def. 31) (i) it(σ)(x1 -term) = x2 -term, and

(ii) it(σ)(x2 -term) = x1 -term, and

(iii) for every σ1 and for every element y of X(σ1) such that σ1 6= σ or
y 6= x1 and y 6= x2 holds it(σ1)(y -term) = y -term.

Now we state the propositions:
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(96) Let us consider an endomorphism h of T . Suppose h(σ)(x -term) =
x -term. Then h = idα, where α is the sorts of T .Proof: h � FreeGenerator
(T ) = idα � FreeGenerator(T ), where α is the sorts of T by [27, (49), (18)].
�

(97) Hom(T, x, x) = idα, where α is the sorts of T . The theorem is a conse-
quence of (96).

(98) Hom(T, x1, x2) = Hom(T, x2, x1).

(99) Hom(T, x1, x2)◦Hom(T, x1, x2) = idα, where α is the sorts of T . Proof:
Set h = Hom(T, x1, x2). For every σ and x, (h ◦ h)(σ)(x -term) = x -term
by [28, (15)], [36, (2)]. �

(100) If ρ is x1-omitting and x2-omitting, then (Hom(T, x1, x2))(ρ) = ρ. Pro-
of: Define P[element of T ] ≡ if $1 is x1-omitting and x2-omitting, then
(Hom(T, x1, x2))(the sort of $1)($1) = $1. For every σ, x, and ρ such that
ρ = x -term holds P[ρ]. For every o, p, and ρ such that ρ = o -term p and
for every element τ of T such that τ ∈ rng p holds P[τ ] holds P[ρ] by (22),
(34), [10, (13)], [36, (6)]. P[ρ] from TermAlgebraInd. �

Let us consider Σ, X, T , σ, and x. Let us observe that (the canonical
homomorphism of T )(σ)(x -term) reduces to x -term.

Now we state the propositions:

(101) (The canonical homomorphism of T ) ◦Hom(FΣ(X), x, x1) = Hom(T, x,
x1)◦ (the canonical homomorphism of T ). Proof: Set H = the canonical
homomorphism of T . Set h = Hom(T, x, x1). Set g = Hom(FΣ(X), x, x1).
Define P[element of FΣ(X)] ≡ (H ◦ g)($1) = (h ◦H)($1). For every σ and
x, P[x -term] by [36, (2)], [28, (15)]. For every operation symbol o of Σ
and for every element p of Args(o,FΣ(X)) such that for every element τ
of FΣ(X) such that τ ∈ rng p holds P[τ ] holds P[o -term p] by [10, (13)],
(34), [36, (6)], [52, (29), (25)]. (H ◦ g)(σ) = (h ◦H)(σ). �

(102) Let us consider an element ρ of T from σ. Then (Hom(T, x1, x2))(σ)(ρ) =
((the canonical homomorphism of T ) ◦ Hom(FΣ(X), x1, x2))(σ)(ρ). The
theorem is a consequence of (101).

(103) If x1 6= x2 and τ is x2-omitting, then (Hom(FΣ(X), x1, x2))(τ) is x1-
omitting.Proof: Set T = FΣ(X). Set h = Hom(T, x1, x2). Define P[element
of T ] ≡ if $1 is x2-omitting, then h($1) is x1-omitting. For every σ and x,
P[x -term]. For every o and p such that for every element τ of T such that
τ ∈ rng p holds P[τ ] holds P[o -term p] by (34), [10, (13)], [36, (6)], [12,
(2)]. P[τ ] from TermInd. �

(104) Let us consider a finite subset A of
⋃

(the sorts of FΣ(Y )). Then there
exists y such that for every v such that v ∈ A holds v is y-omitting. Proof:
Define F(element of FΣ(Y )) = vf $1. {F(v) : v ∈ A} is finite from [44,
Sch. 21]. �
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Let us consider Σ, X, and T . We say that T is structure-invariant if and
only if

(Def. 32) Let us consider an element p of Args(o, T ). Suppose (Den(o, T ))(p) =
(Den(o,FΣ(X)))(p). (Den(o, T ))(Hom(T, x1, x2)#p) =
(Den(o,FΣ(X)))(Hom(T, x1, x2)#p).

Now we state the propositions:

(105) Suppose T is structure-invariant. Let us consider an element ρ of T from
σ. Then (Hom(T, x1, x2))(σ)(ρ) = (Hom(FΣ(X), x1, x2))(σ)(ρ). Proof:
Set h = Hom(T, x1, x2). Set g = Hom(FΣ(X), x1, x2). Define P[element
of T ] ≡ h(the sort of $1)($1) = g(the sort of $1)($1). For every σ, x,
and ρ such that ρ = x -term holds P[ρ]. For every o, p, and ρ such that
ρ = o -term p and for every element τ of T such that τ ∈ rng p holds
P[τ ] holds P[ρ] by [10, (13)], (22), [36, (6)], [52, (29), (25)]. P[ρ] from
TermAlgebraInd. �

(106) If T is structure-invariant and x1 6= x2 and ρ is x2-omitting, then
(Hom(T, x1, x2))(ρ) is x1-omitting. Proof: Set h = Hom(T, x1, x2). De-
fine P[element of T ] ≡ if $1 is x2-omitting, then h($1) is x1-omitting.
For every σ, x, and ρ such that ρ = x -term holds P[ρ]. For every o, p,
and ρ such that ρ = o -term p and for every element τ of T such that
τ ∈ rng p holds P[τ ] holds P[ρ] by (22), (34), [10, (13), (41)]. P[ρ] from
TermAlgebraInd. �

(107) SupposeQ is structure-invariant and v is y-omitting. Then (the canonical
homomorphism of Q)(v) is y-omitting. The theorem is a consequence of
(104), (29), (101), (100), (98), and (106).

(108) SupposeQ is structure-invariant. Let us consider an element p of Args(o,Q).
Suppose an element τ of Q. If τ ∈ rng p, then τ is y-omitting. Let us con-
sider an element τ of Q. If τ = (Den(o,Q))(p), then τ is y-omitting. The
theorem is a consequence of (76), (34), and (107).

(109) If Q is structure-invariant and v is y-omitting, then h2(v) is y-omitting.
Proof: Define P[element of FΣ(Y )] ≡ if $1 is y-omitting, then h2($1) is
y-omitting. For every σ and y, P[y -term]. For every o and q such that
for every v such that v ∈ rng q holds P[v] holds P[o -term q] by (34), [10,
(13)], [36, (6)], [12, (2)]. P[v] from TermInd. �

Let us consider a terminating invariant stable many sorted relation R in-
dexed by FΣ(X) with NF-variables and unique normal form property. Now we
state the propositions:

(110) (i) for every element τ of the algebra of normal forms ofR, (Hom(FΣ(X),

x1, x2))(the sort of τ)(τ) = (Hom(the algebra of normal forms of
R, x1, x2))(τ), and

(ii) Hom(FΣ(X), x1, x2) � NForms(R) = Hom(the algebra of normal
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forms of R, x1, x2).
Proof: Set F = FΣ(X). Set T = the algebra of normal forms of R. Set
H3 = Hom(F, x1, x2). Set H2 = Hom(T, x1, x2). Define P[element of T ] ≡
H3(the sort of $1)($1) = H2($1). For every sort symbol σ of Σ and for
every element x of X(σ) and for every element ρ of T such that ρ = x -term
holds P[ρ]. For every operation symbol o of Σ and for every element p of
Args(o,FΣ(X)) and for every element ρ of T such that ρ = o -term p and
for every element τ of T such that τ ∈ rng p holds P[τ ] holds P[ρ] by
(22), (34), [10, (13)], [16, (54)]. (Hom(FΣ(X), x1, x2) � NForms(R))(σ) =
(Hom(the algebra of normal forms of R, x1, x2))(σ) by [27, (49)]. �

(111) Suppose i ∈ dom p and R(Arity(o)i) reduces τ1 to τ2. Then R(the result
sort of o) reduces (Den(o,FΣ(X)))(p +· (i, τ1)) to (Den(o,FΣ(X)))(p +·
(i, τ2)). Proof: Consider ρ being a reduction sequence w.r.t. R(Arity(o)i)
such that ρ(1) = τ1 and ρ(len ρ) = τ2. Define P[natural number] ≡ if
$1 ¬ len ρ, then R(the result sort of o) reduces (Den(o,FΣ(X)))(p+·(i, τ1))
to (Den(o,FΣ(X)))(p +· (i, ρ($1))). For every i such that 1 ¬ i and P[i]
holds P[i+ 1] by [13, (13)], [52, (25)], [32, (87)], [12, (7), (2)]. For every i
such that i ­ 1 holds P[i] from [13, Sch. 8]. �

Now we state the propositions:

(112) Let us consider a terminating invariant stable many sorted relation R

indexed by FΣ(X) with NF-variables and unique normal form property
and τ . Then R(the sort of τ) reduces τ to (the canonical homomorphism
of the algebra of normal forms of R)(τ). Proof: Set T = the algebra of
normal forms of R. Set H = the canonical homomorphism of T . Define
P[element of FΣ(X)] ≡ R(the sort of $1) reduces $1 to H($1). For every o
and p such that for every τ such that τ ∈ rng p holds P[τ ] holds P[o -term p]
by [10, (13)], (34), [16, (54)], [12, (2)]. P[τ ] from TermInd. �

(113) Let us consider a terminating invariant stable many sorted relation R

indexed by FΣ(X) with NF-variables and unique normal form property, o,
and p. ThenR(the result sort of o) reduces o -term p to (Den(o, the algebra
of normal forms of R))((the canonical homomorphism of the algebra of
normal forms of R)#p). The theorem is a consequence of (34) and (112).

(114) Let us consider a terminating invariant stable many sorted relation R

indexed by FΣ(X) with NF-variables and unique normal form property, o,
p, and an element q of Args(o, the algebra of normal forms of R). Suppose
p = q. ThenR(the result sort of o) reduces o -term p to (Den(o, the algebra
of normal forms of R))(q). The theorem is a consequence of (113).

Let us consider Σ and X. Let R be a terminating invariant stable many
sorted relation indexed by FΣ(X) with NF-variables and unique normal form
property. Observe that the algebra of normal forms of R is structure-invariant.

Let us note that there exists a free in itself including Σ-terms over X algebra
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over Σ with all variables and inheriting operations which is structure-invariant.

5. Context vs. Translations

Let us consider Σ, σ1, and σ2. We say that σ2 is σ1-reachable if and only if

(Def. 33) TranslRel(Σ) reduces σ1 to σ2.

One can verify that there exists a sort symbol of Σ which is σ1-reachable.
From now on σ2 denotes a σ1-reachable sort symbol of Σ and g1 denotes a

translation in FΣ(Y ) from σ1 into σ2.
Now we state the proposition:

(115) TranslRel(Σ) reduces σ to the sort of C′. Proof: Define P[element of
FΣ(Z)] ≡ TranslRel(Σ) reduces σ to the sort of $1. P[C′] from ContextInd.
�

Let us consider Σ, X, σ, x, and C. Observe that the sort of C is σ-reachable.
Let us consider σ1, σ2, and g. Let τ be an element of (the sorts of FΣ(X))(σ1).

One can check that the functor g(τ) yields an element of (the sorts of FΣ(X))(σ2).
Let us consider σ, x, and C. We say that C is basic if and only if

(Def. 34) There exists o and there exists p such that C = o -term p and the x-context
in p = x -term.

The functor transl C yielding a function from (the sorts of FΣ(X))(σ) into
(the sorts of FΣ(X))(the sort of C) is defined by

(Def. 35) If the sort of τ = σ, then it(τ) = C[τ ].

Now we state the propositions:

(116) If C = x -term, then transl C = idα(σ), where α is the sorts of FΣ(X).
The theorem is a consequence of (84).

(117) Suppose C′ = o -term k and the z-context in k = z -term and k1 =
k +· (the z-context position in k, l). Then C′[l] = o -term k1. The theorem
is a consequence of (74), (77), (84), and (87).

(118) If C′ is basic, then transl C′ is an elementary translation in FΣ(Z) from
σ into the sort of C′. The theorem is a consequence of (34), (74), (77), and
(117).

(119) Let us consider a finite set V . Suppose

(i) m ∈ dom q, and

(ii) Arity(o)m = σ.

Then there exists y and there exists C1 and there exists q1 such that y 6∈ V
and C1 = o -term q1 and q1 = q+·(m, y -term) and q1 is y-context including
once only and m = the y-context position in q1 and the y-context in q1 =
y -term. Proof: Set y = the element of Y (σ) \ (V ∪ π1(rng(o -term q))).
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Reconsider q1 = q +· (m, y -term) as an element of Args(o,FΣ(Y )). q1 is
y-context including once only by [25, (30), (31), (32)], [52, (25)]. �

(120) Let us consider sort symbols σ1, σ2 of Σ and a finite set V . Suppose

(i) m ∈ dom q, and

(ii) σ1 = Arity(o)m.

Then there exists an element y of Y (σ1) and there exists a context C of
y and there exists q1 such that y 6∈ V and q1 = q +· (m, y -term) and
q1 is y-context including once only and the y-context in q1 = y -term
and C = o -term q1 and m = the y-context position in q1 and transl C =
o
FΣ(Y )
m (q,−). The theorem is a consequence of (119) and (117).

Let us consider Σ, X, τ , and a. One can verify that Coim(τ, a) is finite
sequence-membered.

Now we state the propositions:

(121) Suppose X is nontrivial and the sort of τ = σ. Then Coim(τ, a) ⊆
Coim(C[τ ], a). Proof: Define P[context of x] ≡ for every C such that

C = $1 holds Coim(τ, a) ⊆ Coim(C[τ ], a). P[x -term]. For every o and p

such that p is x-context including once only holds if P[the x-context in p],
then for every context C of x such that C = o -term p holds P[C] by (77),
[36, (6)], [13, (10)], [52, (25)]. P[C] from ContextInd. �

(122) If p is x-context including once only and i ∈ dom p, then pi is not x-
omitting iff pi is x-context.

Let us assume that X is nontrivial and the sort of C = σ1. Now we state the
propositions:

(123) Let us consider an element x1 of X(σ1), a context C1 of x1, and a context
C2 of x. Suppose C2 = C1[C]. If the sort of τ = σ, then C2[τ ] = C1[C[τ ]].
Proof: Define P[context of x1] ≡ for every context C1 of x1 for every
context C2 of x such that C1 = $1 and C2 = C1[C] holds C2[τ ] = C1[C[τ ]].
P[x1 -term]. For every o and for every element w of Args(o,FΣ(X)) such
that w is x1-context including once only holds if P[the x1-context in w],
then for every context C of x1 such that C = o -termw holds P[C] by (77),
[36, (6)], [12, (2), (7)]. P[C1] from ContextInd. �

(124) Let us consider an element x1 of X(σ1), a context C1 of x1, and a context
C2 of x. Suppose C2 = C1[C]. Then transl C2 = transl C1 · transl C. Proof:
Reconsider f = transl C as a function from (the sorts of FΣ(X))(σ) into
(the sorts of FΣ(X))(σ1). transl C2 = transl C1 · f by [28, (15)], (123). �

Now we state the proposition:

(125) There exists y11 and there exists C12 such that the sort of C12 = σ2 and
g1 = transl C12. Proof: Define P[function, sort symbol of Σ, sort symbol
of Σ] ≡ for every finite set V , there exists an element x of Y ($2) and
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there exists a context C of x such that x 6∈ V and the sort of C = $3 and
$1 = transl C. For every σ, P[idα(σ), σ, σ], where α is the sorts of FΣ(Y ).
For every sort symbols σ1, σ2, σ3 of Σ such that TranslRel(Σ) reduces σ1 to
σ2 for every translation τ in FΣ(Y ) from σ1 into σ2 such that P[τ, σ1, σ2]
for every function f such that f is an elementary translation in FΣ(Y )
from σ2 into σ3 holds P[f · τ, σ1, σ3] by [12, (2)], (120), (73), (69). For
every sort symbols σ1, σ2 of Σ such that TranslRel(Σ) reduces σ1 to σ2 for
every translation τ in FΣ(Y ) from σ1 into σ2, P[τ, σ1, σ2] from [12, Sch. 1].
�

The scheme LambdaTerm deals with a non empty non void many sorted
signature Σ and a non-empty many sorted set X indexed by the carrier of
Σ and including Σ-terms over X algebras T1, T2 over Σ with all variables and
inheriting operations and a unary functor F yielding an element of T2 and states
that

(Sch. 5) There exists a many sorted function f from T1 into T2 such that for
every element τ of T1, f(τ) = F(τ)

provided

• for every element τ of T1, the sort of τ = the sort of F(τ).

Now we state the propositions:

(126) There exists an endomorphism g of T such that

(i) (the canonical homomorphism of T ) ◦ h =

g ◦ (the canonical homomorphism of T ), and

(ii) for every element τ of T , g(τ) = (the canonical homomorphism of
T )(h(@τ)).

The theorem is a consequence of (29).

(127) (The canonical homomorphism of T )(h(τ)) =
(the canonical homomorphism of T )(h(@((the canonical homomorphism
of T )(τ)))). The theorem is a consequence of (126) and (29).

6. Context vs. Endomorphism

Let us consider Σ. Let B be a non empty finite sequence of elements of the
carrier of Σ and i be an element of domB. Note that the functor B(i) yields a
sort symbol of Σ. Let us consider X. Let B be a finite sequence of elements of
the carrier of Σ and V be a finite sequence of elements of

⋃
X. We say that V

is B-sorting if and only if

(Def. 36) (i) domV = domB, and

(ii) for every i such that i ∈ domB holds V (i) ∈ X(B(i)).



148 grzegorz bancerek

Let us observe that there exists a finite sequence of elements of
⋃
X which

is B-sorting.
Let B be a non empty finite sequence of elements of the carrier of Σ. One

can check that every finite sequence of elements of
⋃
X which is B-sorting is

also non empty.
Let V be a B-sorting finite sequence of elements of

⋃
X and i be an element

of domB. Note that the functor V (i) yields an element of X(B(i)). Let B be
a finite sequence of elements of the carrier of Σ and D be a finite sequence of
elements of FΣ(X). We say that D is B-sorting if and only if

(Def. 37) (i) domD = domB, and

(ii) for every i such that i ∈ domB holdsD(i) ∈ (the sorts of FΣ(X))(B(i)).

Note that there exists a finite sequence of elements of FΣ(X) which is B-
sorting.

Let B be a non empty finite sequence of elements of the carrier of Σ. One
can verify that every finite sequence of elements of FΣ(X) which is B-sorting is
also non empty.

LetD be a B-sorting finite sequence of elements of FΣ(X) and i be an element
of domB. Let us note that the functor D(i) yields an element of (the sorts of
FΣ(X))(B(i)). Let V be a B-sorting finite sequence of elements of

⋃
X and F

be a finite sequence of elements of FΣ(X). We say that F is V -context sequence
if and only if

(Def. 38) (i) domF = domB, and

(ii) for every element i of domB, F (i) is a context of V (i).

Let us observe that every finite sequence of elements of FΣ(X) which is
V -context sequence is also non empty.

The scheme FinSeqLambda deals with a non empty finite sequence B and a
unary functor F yielding an object and states that

(Sch. 6) There exists a non empty finite sequence p such that dom p = domB
and for every element i of domB, p(i) = F(i).

The scheme FinSeqRecLambda deals with a non empty finite sequence B and
an object A and a binary functor F yielding a set and states that

(Sch. 7) There exists a non empty finite sequence p such that dom p = domB
and p(1) = A and for every elements i, j of domB such that j = i + 1
holds p(j) = F(i, p(i)).

The scheme FinSeqRec2Lambda deals with a non empty finite sequence B
and a decorated tree A and a binary functor F yielding a decorated tree and
states that

(Sch. 8) There exists a non empty decorated tree yielding finite sequence p such
that dom p = domB and p(1) = A and for every elements i, j of domB
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such that j = i + 1 for every decorated tree d such that d = p(i) holds
p(j) = F(i, d).

Let us consider Σ and X. Let B be a non empty finite sequence of elements
of the carrier of Σ and V be a B-sorting finite sequence of elements of

⋃
X.

One can check that there exists a finite sequence of elements of FΣ(X) which is
V -context sequence.

Let F be a V -context sequence finite sequence of elements of FΣ(X) and i

be an element of domB. One can verify that the functor F (i) yields a context of
V (i). Let V1, V2 be B-sorting finite sequences of elements of

⋃
X. We say that

V2 is V1-omitting if and only if

(Def. 39) rng V1 misses rng V2.

Let D be a B-sorting finite sequence of elements of FΣ(X) and F be a V2-
context sequence finite sequence of elements of FΣ(X). We say that F is (V1,
V2, D)-consequent context sequence if and only if

(Def. 40) Let us consider elements i, j of domB. If i+1 = j, then F (j)[V1(j) -term] =
F (i)[D(i)].

Let V be a B-sorting finite sequence of elements of
⋃
X. We say that V is

D-omitting if and only if

(Def. 41) If τ ∈ rngD, then vf τ misses rng V .

Now we state the proposition:

(128) Let us consider a non empty finite sequence B of elements of the carrier
of Σa B-sorting finite sequence D of elements of FΣ(X)a B-sorting finite
sequence V of elements of

⋃
X. Suppose V is D-omitting. Let us consider

elements b1, b2 of domB. Then D(b1) is (V (b2))-omitting. The theorem is
a consequence of (69).

Let us consider Σ and Y. Let B be a non empty finite sequence of elements of
the carrier of Σ, V be a B-sorting finite sequence of elements of

⋃
Y, and D be a

B-sorting finite sequence of elements of FΣ(Y ). Let us observe that there exists
a B-sorting finite sequence of elements of

⋃
Y which is one-to-one, V -omitting,

and D-omitting.
Let us consider X and τ .
A vf-sequence of τ is a finite sequence and is defined by

(Def. 42) There exists a one-to-one finite sequence f such that

(i) rng f = {ξ, where ξ is an element of dom τ : there exists σ and
there exists x such that τ(ξ) = 〈〈x, σ〉〉}, and

(ii) dom it = dom f , and

(iii) for every i such that i ∈ dom it holds it(i) = τ(f(i)).

Let f be a finite sequence. Let us observe that pr1(f) is finite sequence-like
and pr2(f) is finite sequence-like.

Now we state the propositions:
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(129) Let us consider a vf-sequence f of τ . Then pr2(f) is a finite sequence of
elements of the carrier of Σ.

(130) Let us consider a vf-sequence f of τ and a finite sequence B of elements
of the carrier of Σ. Suppose B = pr2(f). Then pr1(f) is a B-sorting finite
sequence of elements of

⋃
X.

Let f be a non empty finite sequence. One can verify that 1(∈ dom f) reduces
to 1 and (len f)(∈ dom f) reduces to len f .

Now we state the propositions:

(131) Let us consider an element ξ of dom τ . Suppose τ(ξ) = 〈〈x, σ〉〉. Suppose
the sort of τ1 = σ. Then τ with-replacement(ξ, τ1) is an element of FΣ(X)
from the sort of τ . Proof: Define P[element of FΣ(X)] ≡ for every ele-
ment ξ of dom $1 for every x1 and τ such that $1(ξ) = 〈〈x1, σ〉〉 and τ = $1

holds $1 with-replacement(ξ, τ1) is an element of FΣ(X) from the sort of τ .
P[x11 -term] by [20, (3)], [17, (29)]. For every o and p such that for every
τ such that τ ∈ rng p holds P[τ ] holds P[o -term p] by [20, (10)], [13, (12),
(13)], [52, (25)]. P[τ ] from TermInd. �

(132) Suppose X is nontrivial. Let us consider an element ξ of dom C. Suppose
C(ξ) = 〈〈x, σ〉〉. If the sort of τ = σ, then C[τ ] = C with-replacement(ξ, τ).
Proof: Define P[element of FΣ(X)] ≡ for every context C of x such
that C = $1 for every element ξ of dom C such that C(ξ) = 〈〈x, σ〉〉 holds
C[τ ] = C with-replacement(ξ, τ). P[x -term] by [17, (29)], [20, (3)], (84). For
every operation symbol o of Σ and for every element w of Args(o,FΣ(X))
such that w is x-context including once only holds if P[the x-context in
w], then for every context C of x such that C = o -termw holds P[C] by
[20, (10)], [19, (38)], [13, (12), (13)]. P[C] from ContextInd. �

(133) Let us consider finite sequences ξ1, ξ2. Suppose

(i) ξ1 6= ξ2, and

(ii) ξ1, ξ2 ∈ dom τ .

Let us consider sort symbols σ1, σ2 of Σ, an element x1 of X(σ1), and
an element x2 of X(σ2). Suppose τ(ξ1) = 〈〈x1, σ1〉〉. Then ξ1 � ξ2. The
theorem is a consequence of (36).

Let us consider τ , τ1, and an element ξ of dom τ . Now we state the propo-
sitions:

(134) If τ1 = τ with-replacement(ξ, x -term) and τ is x-omitting, then τ1 is a
context of x. Proof: Coim(τ1, 〈〈x, σ〉〉) = {ξ} by [17, (1), (29)], [20, (3)],
[22, (87)]. �

(135) If τ(ξ) = 〈〈x, σ〉〉, then dom τ ⊆ dom(τ with-replacement(ξ, τ1)). The the-
orem is a consequence of (89).

Now we state the propositions:
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(136) Let us consider an element ξ of dom τ . Suppose τ(ξ) = 〈〈x, σ〉〉. Then
dom τ = dom(τ with-replacement(ξ, x1 -term)). Proof: dom τ ⊆ dom
(τ with-replacement(ξ, x1 -term)). dom(τ with-replacement(ξ, x1 -term)) ⊆
dom τ by [17, (29)], [20, (3)]. �

(137) Let us consider trees τ , τ1 and an element ξ of τ .
Then (τ with-replacement(ξ, τ1))�ξ = τ1. The theorem is a consequence
of (1).

(138) Let us consider decorated trees τ , τ1 and a node ξ of τ .
Then (τ with-replacement(ξ, τ1))�ξ = τ1. The theorem is a consequence of
(137).

Let us consider a node ξ of τ . Now we state the propositions:

(139) If τ1 = τ�ξ, then h(τ)�ξ = h(τ1). Proof: Define P[element of FΣ(X)] ≡
for every node ξ of $1 for every τ1 such that τ1 = $1�ξ holds h($1)�ξ = h(τ1)
and ξ ∈ dom(h($1)). P[x -term] by [17, (29)], [20, (3)], [21, (1)], [17, (22)].
For every o and p such that for every τ such that τ ∈ rng p holds P[τ ]
holds P[o -term p] by [20, (11)], [21, (1)], [17, (22)], [21, (3)]. P[τ ] from
TermInd. �

(140) If τ(ξ) = 〈〈x, σ〉〉, then τ�ξ = x -term. The theorem is a consequence of
(36).

Now we state the propositions:

(141) Let us consider trees τ , τ1 and elements ξ, ν of τ . Suppose

(i) ξ 6⊆ ν, and

(ii) ν 6⊆ ξ.

Then (τ with-replacement(ξ, τ1))�ν = τ�ν. The theorem is a consequence
of (2) and (5).

(142) Let us consider decorated trees τ , τ1 and nodes ξ, ν of τ . Suppose

(i) ξ 6⊆ ν, and

(ii) ν 6⊆ ξ.

Then (τ with-replacement(ξ, τ1))�ν = τ�ν. The theorem is a consequence
of (141) and (5).

(143) If τ ⊆ τ1, then τ = τ1. Proof: Define P[element of FΣ(X)] ≡ for every
τ1 such that $1 ⊆ τ1 holds $1 = τ1. P[x -term] by [17, (22)], [30, (2)], [20,
(3)], (36). For every o and p such that for every τ such that τ ∈ rng p
holds P[τ ] holds P[o -term p] by [17, (22)], [30, (2)], (36), [20, (3)]. P[τ ]
from TermInd. �

(144) Let us consider an endomorphism h of FΣ(X). Then

(i) dom τ ⊆ dom(h(τ)), and
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(ii) for every I such that I = {ξ, where ξ is an element of dom τ : there
exists σ and there exists x such that τ(ξ) = 〈〈x, σ〉〉} holds τ�(dom τ\
I) = h(τ)�(dom τ \ I).

Proof: Define P[element of FΣ(X)] ≡ dom $1 ⊆ dom(h($1)) and for
every I such that I = {ξ, where ξ is an element of dom $1 : there exists
σ and there exists x such that $1(ξ) = 〈〈x, σ〉〉} holds $1�(dom $1 \ I) =
h($1)�(dom $1 \I). P[x -term] by [17, (22)], [20, (3)], [17, (29)]. For every o
and p such that for every τ such that τ ∈ rng p holds P[τ ] holds P[o -term p]
by (34), [10, (13)], [20, (11)], [17, (22)]. P[τ ] from TermInd. �

(145) Suppose I = {ξ, where ξ is an element of dom τ : there exists σ and
there exists x such that τ(ξ) = 〈〈x, σ〉〉}. Let us consider a node ξ of h(τ).

Then

(i) ξ ∈ dom τ \ I, or

(ii) there exists an element ν of dom τ such that ν ∈ I and there exists
a node µ of h(τ)�ν such that ξ = ν a µ.

Proof: Define P[element of FΣ(X)] ≡ for every I such that I = {ξ, where
ξ is an element of dom $1 : there exists σ and there exists x such that
$1(ξ) = 〈〈x, σ〉〉} for every node ξ of h($1), ξ ∈ dom $1 \ I or there exi-
sts an element ν of dom $1 such that ν ∈ I and there exists a node µ of
h($1)�ν such that ξ = νaµ. P[x -term] by [17, (22)], [20, (3)], [21, (1)]. For
every o and p such that for every τ such that τ ∈ rng p holds P[τ ] holds
P[o -term p] by (34), [10, (13)], [20, (11)], [17, (22)]. P[τ ] from TermInd.
�

(146) Let us consider an endomorphism h of FΣ(Y )a one-to-one finite sequence
g of elements of dom v. Suppose

(i) rng g = {ξ, where ξ is an element of dom v : there exists σ and
there exists y such that v(ξ) = 〈〈y, σ〉〉}, and

(ii) dom v ⊆ dom v1, and

(iii) v�(dom v \ rng g) = v1�(dom v \ rng g), and

(iv) for every i such that i ∈ dom g holds h(v)�(gi qua node of v) =
v1�(gi qua node of v).

Then h(v) = v1. Proof: h(v)�(dom v \ rng g) = v1�(dom v \ rng g). h(v) ⊆
v1 by [27, (1)], (145), [27, (49)], (144). �

(147) Let us consider an endomorphism h of FΣ(Y ) and a vf-sequence f of
v. Suppose f 6= ∅. Then there exists a non empty finite sequence B of
elements of the carrier of Σ and there exists a B-sorting finite sequence
V1 of elements of

⋃
Y such that domB = dom f and B = pr2(f) and

V1 = pr1(f) and there exists a B-sorting finite sequence D of elements
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of FΣ(Y ) and there exists a V1-omitting D-omitting B-sorting finite se-
quence V2 of elements of

⋃
Y such that for every element i of domB,

D(i) = h(V1(i) -term) and there exists a V2-context sequence finite se-
quence F of elements of FΣ(Y ) such that F is (V1, V2, D)-consequent
context sequence and F (1(∈ domB))[V1(1(∈ domB)) -term] = v and
h(v) = F ((lenB)(∈ domB))[D((lenB)(∈ domB))]. Proof: Reconsider
B = pr2(f) as a non empty finite sequence of elements of the carrier of Σ.
Consider g being a one-to-one finite sequence such that rng g = {ξ, where
ξ is an element of dom v : there exists σ and there exists y such that
v(ξ) = 〈〈y, σ〉〉} and dom f = dom g and for every i such that i ∈ dom f

holds f(i) = v(g(i)). rng g ⊆ dom v. Reconsider V1 = pr1(f) as a B-
sorting finite sequence of elements of

⋃
Y. Define F(element of domB) =

h(V1($1) -term). Consider D being a non empty finite sequence such that
domD = domB and for every element i of domB, D(i) = F(i) from Fin-
SeqLambda. D is a finite sequence of elements of FΣ(Y ). D is B-sorting. Set
V2 = the one-to-one V1-omitting D-omitting B-sorting finite sequence of
elements of

⋃
Y. Define H(element of domB, decorated tree) = ($2 with-

replacement(((g$1 qua element of dom v) qua finite sequence of elements
of N), D($1))) with-replacement(((g$1+1 qua element of dom v) qua finite
sequence of elements of N), the root tree of 〈〈V2($1 + 1), B($1 + 1)〉〉). Con-
sider F being a non empty decorated tree yielding finite sequence such
that domF = domB and F (1) = vwith-replacement(((g1 qua element
of dom v) qua finite sequence of elements of N), the root tree of 〈〈V2(1),
B(1)〉〉) and for every elements i, j of domB such that j = i+ 1 for every
decorated tree d such that d = F (i) holds F (j) = H(i, d) from FinSe-
qRec2Lambda. rngF ⊆

⋃
(the sorts of FΣ(Y )) by (131), [22, (87)], [20,

(3)], (133). Define Q[natural number] ≡ for every element b of domB such
that $1 = b holds F (b) is a context of V2(b) and dom v ⊆ dom(F (b))
and F (b)(gb) = 〈〈V2(b), B(b)〉〉 and for every element b1 of domB such that
b1 > b holds Fb is (V2(b1))-omitting and F (b)(gb1) = 〈〈V1(b1), B(b1)〉〉. Q[1]
by [27, (102)], (134), (135), [22, (87)]. For every i such that 1 ¬ i and Q[i]
holds Q[i+ 1] by [52, (25)], [13, (13)], [27, (102)], (132). For every i such
that i ­ 1 holds Q[i] from [13, Sch. 8]. F is V2-context sequence by [52,
(25)]. F is (V1, V2, D)-consequent context sequence by [52, (25)], [13, (12),
(13)], (132). Set b = 1(∈ domB). Reconsider ν = gb, ξ = glenB as a node
of v. Consider µ being a node of v such that ν = µ and there exists σ and
there exists y such that v(µ) = 〈〈y, σ〉〉. dom(F (b)) = dom v. Reconsider
τ = V1(b) -term as an element of FΣ(Y ). Consider µ being a finite sequ-
ence of elements of N such that µ ∈ dom(V2(b) -term) and ν = ν a µ and
F (b)(ν) = V2(b) -term(µ). F (b)[τ ] = F (b) with-replacement(ν, τ). Define
Σ[natural number] ≡ for every elements b, b1 of domB such that $1 = b

and b1 ¬ b holds (F (b)[D(b)])�(gb1 qua node of v) = h(v)�(gb1 qua node of
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v) and (F (b)[D(b)])�(dom v \ rng g) = v�(dom v \ rng g). Σ[1] by [52, (25)],
(132), (138), (140). For every i such that i ­ 1 and Σ[i] holds Σ[i + 1]
by [52, (25)], [13, (13)], (132), (135). Set b = (lenB)(∈ domB). Set v1 =
F (b)[D(b)]. For every i such that i ­ 1 holds Σ[i] from [13, Sch. 8]. v1 =
F (b) with-replacement((gb qua node of v), D(b)). dom(F (b)) ⊆ dom v1. �
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