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Summary. In this article we formalize the Bertrand’s Ballot Theorem
based on [17]. Suppose that in an election we have two candidates: A that receives
n votes and B that receives k votes, and additionally n ­ k. Then this theorem
states that the probability of the situation where A maintains more votes than
B throughout the counting of the ballots is equal to (n− k)/(n+ k).

This theorem is item #30 from the “Formalizing 100 Theorems” list mainta-
ined by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ .
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The notation and terminology used in this paper have been introduced in the
following articles: [24], [1], [14], [15], [18], [4], [5], [10], [21], [6], [12], [3], [11],
[25], [26], [16], [8], [13], [23], and [9].

1. Preliminaries

From now on D, D1, D2 denote non empty sets, d, d1, d2 denote finite
0-sequences of D, and n, k, i, j denote natural numbers.

Now we state the propositions:

(1) XFS2FS(d�n) = XFS2FS(d)�n.

(2) rng d = rng XFS2FS(d).

(3) Let us consider a finite 0-sequence d1 of D1 and a finite 0-sequence d2 of
D2. If d1 = d2, then XFS2FS(d1) = XFS2FS(d2).
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(4) If XFS2FS(d1) = XFS2FS(d2), then d1 = d2. Proof: For every i such
that i < len d1 holds d1(i) = d2(i) by [2, (13), (11)]. �

(5) Let us consider a finite sequence d of elements of D.
Then XFS2FS(FS2XFS(d)) = d.

(6) Let us consider a finite sequence f and objects x, y. Suppose

(i) rng f ⊆ {x, y}, and

(ii) x 6= y.

Then f−1({x}) + f−1({y}) = len f .

(7) Let us consider functions f , g. Suppose f is one-to-one. Let us consider
an object x. If x ∈ dom f , then Coim(f · g, f(x)) = Coim(g, x). Proof:
Set f3 = f · g. Coim(f3, f(x)) ⊆ Coim(g, x) by [6, (11), (12)]. �

(8) Let us consider a real number r and a real-valued finite sequence f . Sup-

pose rng f ⊆ {0, r}. Then
∑
f = r · f−1({r}). Proof: Define P[natural

number] ≡ for every real-valued finite sequence f such that len f = $1 and

rng f ⊆ {0, r} holds
∑
f = r · f−1({r}). P[0] by [8, (72)]. For every n

such that P[n] holds P[n + 1] by [22, (55)], [8, (74)], [25, (70)], [2, (11)].
For every n, P[n] from [2, Sch. 2]. �

2. Properties of Elections

In the sequel A, B denote objects, v denotes an element of {A,B}n+k, and
f , g denote finite sequences.

Let us consider A, n, B, and k. The functor Election(A,n,B, k) yielding a
subset of {A,B}n+k is defined by

(Def. 1) v ∈ it if and only if v−1({A}) = n.

Let us note that Election(A,n,B, k) is finite. Now we state the propositions:

(9) Election(A,n,A, 0) = {n 7→ A}. Proof: Election(A,n,A, 0) ⊆ {n 7→ A}
by [19, (29)], [9, (33)], [21, (9)]. �

(10) If k > 0, then Election(A,n,A, k) is empty.

Let us consider A and n. Let k be a non empty natural number. Let us
observe that Election(A,n,A, k) is empty. Now we state the proposition:

(11) Election(A,n,B, k) = Choose(Seg(n+k), n,A,B).Proof: Election(A,n,
B, k) ⊆ Choose(Seg(n+ k), n,A,B) by [7, (2)]. �

Let us assume that A 6= B. Now we state the propositions:

(12) v ∈ Election(A,n,B, k) if and only if v−1({B}) = k. The theorem is a
consequence of (6).

(13) Election(A,n,B, k) =
(n+k
n

)
. The theorem is a consequence of (11).
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3. Properties of Dominated Elections

Let us consider A, n, B, and k. Let v be a finite sequence. We say that v is
an (A, n, B, k)-dominated-election if and only if

(Def. 2) (i) v ∈ Election(A,n,B, k), and

(ii) for every i such that i > 0 holds (v�i)−1({A}) > (v�i)−1({B}).

Let us assume that f is an (A, n, B, k)-dominated-election. Now we state
the propositions:

(14) A 6= B.

(15) n > k. The theorem is a consequence of (14) and (12).

Now we state the propositions:

(16) If A 6= B and n > 0, then n 7→ A is an (A, n, B, 0)-dominated-election.

(17) If f is an (A, n, B, k)-dominated-election and i < n−k, then f a (i 7→ B)
is an (A, n, B, (k+ i))-dominated-election. The theorem is a consequence
of (14) and (12).

(18) Suppose f is an (A, n, B, k)-dominated-election and g is an (A, i, B,
j)-dominated-election. Then f a g is an (A, (n+ i), B, (k+j))-dominated-
election. The theorem is a consequence of (14), (12), and (15).

Let us consider A, n, B, and k. The functor DominatedElection(A,n,B, k)
yielding a subset of Election(A,n,B, k) is defined by

(Def. 3) f ∈ it if and only if f is an (A, n, B, k)-dominated-election.

(19) If A = B or n ¬ k, then DominatedElection(A,n,B, k) is empty. The
theorem is a consequence of (14) and (15).

(20) If n > k andA 6= B, then n 7→ Aa(k 7→ B) ∈ DominatedElection(A,n,B,
k). The theorem is a consequence of (17) and (16).

(21) If A 6= B, then DominatedElection(A,n,B, k) =

DominatedElection(0, n, 1, k). Proof: Set T = [A 7−→ 0, B 7−→ 1]. De-
fine P[object, object] ≡ for every f such that f = $1 holds T · f = $2.
For every object x such that x ∈ DominatedElection(A,n,B, k) the-
re exists an object y such that y ∈ DominatedElection(0, n, 1, k) and
P[x, y] by [25, (27), (26)], [5, (92)], (7). Consider C being a function from
DominatedElection(A,n,B, k) into DominatedElection(0, n, 1, k) such that
for every object x such that x ∈ DominatedElection(A,n,B, k) holds
P[x,C(x)] from [7, Sch. 1]. DominatedElection(0, n, 1, k) ⊆ rngC by [25,
(27), (26)], [5, (92)], (7). �

(22) Let us consider a finite sequence p of elements of N. Then p is a (0, n, 1,
k)-dominated-election if and only if p is an (n+k)-tuple of {0, 1} and n > 0
and

∑
p = k and for every i such that i > 0 holds 2 ·

∑
(p�i) < i. Proof:

If p is a (0, n, 1, k)-dominated-election, then p is an (n+k)-tuple of {0, 1}



122 karol pąk

and n > 0 and
∑
p = k and for every i such that i > 0 holds 2 ·

∑
(p�i) < i

by (8), (12), (15), [25, (70)]. 1· p−1({1}) = k. p−1({1}) + p−1({0}) = len p.

1 · (p�i)−1({1}) =
∑

(p�i). (p�i)−1({1}) + (p�i)−1({0}) = len(p�i). �

(23) If f is an (A, n, B, k)-dominated-election, then f(1) = A. The theorem
is a consequence of (15).

(24) Let us consider a finite 0-sequence d of N. Then d ∈ Domin0(n+ k, k) if
and only if 〈0〉 a XFS2FS(d) ∈ DominatedElection(0, n+ 1, 1, k). Proof:
SetX1 = XFS2FS(d). Set Z = 〈0〉. Set Z1 = ZaX1. ReconsiderD = d as a
finite 0-sequence of R. XFS2FS(d) = XFS2FS(D). If d ∈ Domin0(n+k, k),
then Z1 ∈ DominatedElection(0, n + 1, 1, k) by [15, (20)], (2), [4, (31),
(22)]. Z1 is an (n+ 1 + k)-tuple of {0, 1}. For every k such that k ¬ dom d
holds 2 ·

∑
(d�k) ¬ k by [20, (14)], [8, (76)], (1), (3). d is dominated by 0.∑

d = k. �

(25) Domin0(n+ k, k) = DominatedElection(0, n+ 1, 1, k). Proof: SetD =
Domin0(n+ k, k). Set B = DominatedElection(0, n+ 1, 1, k). Set Z = 〈0〉.
Define F [object, object] ≡ for every finite 0-sequence d of N such that
d = $1 holds $2 = Z a XFS2FS(d). For every object x such that x ∈ D
there exists an object y such that y ∈ B and F [x, y]. Consider f being
a function from D into B such that for every object x such that x ∈ D
holds F [x, f(x)] from [7, Sch. 1]. �

(26) Domin0(n+ k, k) = DominatedElection(0, n+ 1, 1, k). Proof: SetD =
Domin0(n+ k, k). Set B = DominatedElection(0, n+ 1, 1, k). Set Z = 〈0〉.
Define F [object, object] ≡ for every finite 0-sequence d of N such that
d = $1 holds $2 = Z a XFS2FS(d). For every object x such that x ∈ D
there exists an object y such that y ∈ B and F [x, y]. Consider f being
a function from D into B such that for every object x such that x ∈ D
holds F [x, f(x)] from [7, Sch. 1]. �

(27) If A 6= B and n > k, then DominatedElection(A,n,B, k) = n−k
n+k ·

(n+k
k

)
.

The theorem is a consequence of (21) and (26).

4. Main Theorem

(28) Bertrand’s Ballot Theorem:
If A 6= B and n ­ k, then P(DominatedElection(A,n,B, k)) = n−k

n+k . The
theorem is a consequence of (13), (19), and (27).
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