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Summary. In this article we introduce Proth numbers and prove two the-
orems on such numbers being prime [3]. We also give revised versions of Pockling-
ton’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and
that the fifth Fermat number is not prime.
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1. Preliminaries

Let n be a positive natural number. Let us note that n− 1 is natural.
Let n be a non trivial natural number. Observe that n− 1 is positive.
Let x be an integer number and n be a natural number. Let us observe that

xn is integer.
Let us observe that 1n reduces to 1.
Let n be an even natural number. Let us observe that (−1)n reduces to 1.
Let n be an odd natural number. One can verify that (−1)n reduces to −1.
Now we state the propositions:

(1) Let us consider a positive natural number a and natural numbers n, m.
If n ­ m, then an ­ am.

(2) Let us consider a non trivial natural number a and natural numbers n,
m. If n > m, then an > am. The theorem is a consequence of (1).
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(3) Let us consider a non zero natural number n. Then there exists a natural
number k and there exists an odd natural number l such that n = l · 2k.

(4) Let us consider an even natural number n. Then n div 2 = n
2 .

(5) Let us consider an odd natural number n. Then n div 2 = n−1
2 .

Let n be an even integer number. Let us observe that n2 is integer.
Let n be an even natural number. One can check that n2 is natural.

2. Some Properties of Congruences and Prime Numbers

Let us observe that every natural number which is prime is also non trivial.
Now we state the propositions:

(6) Let us consider a prime natural number p and an integer number a. Then
gcd(a, p) 6= 1 if and only if p | a.

(7) Let us consider integer numbers i, j and a prime natural number p. If
p | i · j, then p | i or p | j. The theorem is a consequence of (6).

(8) Let us consider prime natural numbers x, p and a non zero natural
number k. Then x | pk if and only if x = p.

(9) Let us consider integer numbers x, y, n. Then x ≡ y (modn) if and only
if there exists an integer k such that x = k · n+ y.

(10) Let us consider an integer number i and a non zero integer number j.
Then i ≡ i mod j (mod j).

(11) Let us consider integer numbers x, y and a positive integer number n.
Then x ≡ y (modn) if and only if x mod n = y mod n. The theorem is a
consequence of (9) and (10).

(12) Let us consider integer numbers i, j and a natural number n. If n < j
and i ≡ n (mod j), then i mod j = n.

(13) Let us consider a non zero natural number n and an integer number
x. Then x ≡ 0 (modn) or ... or x ≡ n − 1 (modn). The theorem is a
consequence of (10).

(14) Let us consider a non zero natural number n, an integer number x, and
natural numbers k, l. Suppose

(i) k < n, and

(ii) l < n, and

(iii) x ≡ k (modn), and

(iv) x ≡ l (modn).

Then k = l. The theorem is a consequence of (12).

(15) Let us consider an integer number x. Then

(i) x2 ≡ 0 (mod 3), or
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(ii) x2 ≡ 1 (mod 3).

The theorem is a consequence of (13).

(16) Let us consider a prime natural number p, elements x, y of Z/pZ∗, and
integer numbers i, j. If x = i and y = j, then x · y = i · j mod p.

(17) Let us consider a prime natural number p, an element x of Z/pZ∗, an
integer number i, and a natural number n. If x = i, then xn = in mod p.
Proof: Define P[natural number] ≡ x$1 = i$1 mod p. For every natural
number k, P[k] from [1, Sch. 2]. �

(18) Let us consider a prime natural number p and an integer number x.
Then x2 ≡ 1 (mod p) if and only if x ≡ 1 (mod p) or x ≡ −1 (mod p). The
theorem is a consequence of (7).

(19) Let us consider a natural number n. Then −1 ≡ 1 (modn) if and only
if n = 2 or n = 1.

(20) Let us consider an integer number i. Then −1 ≡ 1 (mod i) if and only if
i = 2 or i = 1 or i = −2 or i = −1. The theorem is a consequence of (19).

3. Some basic properties of relation “>”

Let n, x be natural numbers. We say that x is greater than n if and only if

(Def. 1) x > n.

Let n be a natural number. Observe that there exists a natural number which
is greater than n and odd and there exists a natural number which is greater
than n and even.

Let us observe that every natural number which is greater than n is also n
or greater.

One can check that every natural number which is (n+ 1) or greater is also
n or greater and every natural number which is greater than (n + 1) is also
greater than n and every natural number which is greater than n is also (n+ 1)
or greater.

Let m be a non trivial natural number. One can verify that every natural
number which is m or greater is also non trivial.

Let a be a positive natural number, m be a natural number, and n be an m
or greater natural number. Let us note that an is am or greater.

Let a be a non trivial natural number. Let n be a greater than m natural
number. Let us observe that an is greater than am and every natural number
which is 2 or greater is also non trivial and every natural number which is non
trivial is also 2 or greater and every natural number which is non trivial and
odd is also greater than 2.

Let n be a greater than 2 natural number. One can verify that n− 1 is non
trivial.
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Let n be a 2 or greater natural number. Let us observe that n−2 is natural.
Let m be a non zero natural number and n be an m or greater natural

number. One can check that n − 1 is natural and every prime natural number
which is greater than 2 is also odd.

Let n be a natural number. One can check that there exists a natural number
which is greater than n and prime.

4. Pocklington’s Theorem Revisited

Let n be a natural number.
A divisor of n is a natural number and is defined by

(Def. 2) it | n.
Let n be a non trivial natural number. One can check that there exists a

divisor of n which is non trivial.
Note that every divisor of n is non zero.
Let n be a positive natural number. One can verify that every divisor of n

is positive.
Let n be a non zero natural number. Observe that every divisor of n is n or

smaller.
Let us note that there exists a divisor of n which is prime.
Let n be a natural number and q be a divisor of n. Let us note that nq is

natural.
Let s be a divisor of n and q be a divisor of s. Let us note that nq is natural.
Now we state the proposition:

(21) Pocklington’s theorem:
Let us consider a greater than 2 natural number n and a non trivial divisor
s of n− 1. Suppose

(i) s >
√
n, and

(ii) there exists a natural number a such that an−1 ≡ 1 (modn) and for

every prime divisor q of s, gcd(a
n−1
q − 1, n) = 1.

Then n is prime.

5. Euler’s Criterion

Let a be an integer number and p be a natural number.
Now we state the propositions:

(22) Let us consider a positive natural number p and an integer number a.
Then a is quadratic residue modulo p if and only if there exists an integer
number x such that x2 ≡ a (mod p). Proof: If a is quadratic residue
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modulo p, then there exists an integer number x such that x2 ≡ a (mod p)
by [13, (59)], [8, (81)]. �

(23) 2 is quadratic non residue modulo 3. The theorem is a consequence of
(15), (14), and (22).

Let p be a natural number and a be an integer number. The Legendre
symbol(a,p) yielding an integer number is defined by the term

(Def. 3)


1, if gcd(a, p) = 1 and a is quadratic residue modulo p and p 6= 1,
0, if p | a,
−1, if gcd(a, p) = 1 and a is quadratic non residue modulo p and

p 6= 1.
Let p be a prime natural number. Note that the Legendre symbol(a,p) is

defined by the term

(Def. 4)


1, if gcd(a, p) = 1 and a is quadratic residue modulo p,
0, if p | a,
−1, if gcd(a, p) = 1 and a is quadratic non residue modulo p.

Let p be a natural number. We introduce (ap ) as a synonym of the Legendre
symbol(a,p).

Let us consider a prime natural number p and an integer number a. Now we
state the propositions:

(24) (i) (ap ) = 1, or

(ii) (ap ) = 0, or

(iii) (ap ) = −1.
Proof: gcd(a, p) = 1 by [9, (21)]. �

(25) (i) (ap ) = 1 iff gcd(a, p) = 1 and a is quadratic residue modulo p, and

(ii) (ap ) = 0 iff p | a, and

(iii) (ap ) = −1 iff gcd(a, p) = 1 and a is quadratic non residue modulo p.
The theorem is a consequence of (6).

Now we state the propositions:

(26) Let us consider a natural number p. Then (pp) = 0.

(27) Let us consider an integer number a. Then (a2 ) = a mod 2. The theorem
is a consequence of (22).

Let us consider a greater than 2 prime natural number p and integer numbers
a, b. Now we state the propositions:

(28) If gcd(a, p) = 1 and gcd(b, p) = 1 and a ≡ b (mod p), then (ap ) = ( bp).

(29) If gcd(a, p) = 1 and gcd(b, p) = 1, then (a·bp ) = (ap ) · (
b
p).

Now we state the proposition:

(30) Let us consider greater than 2 prime natural numbers p, q. Suppose

p 6= q. Then (pq ) · (
q
p) = (−1)

p−1
2 ·
q−1
2 . The theorem is a consequence of (4).
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Now we state the proposition:

(31) Euler’s criterion:
Let us consider a greater than 2 prime natural number p and an in-
teger number a. Suppose gcd(a, p) = 1. Then a

p−1
2 ≡ the Legendre

symbol(a,p) (mod p). The theorem is a consequence of (4).

6. Proth Numbers

Let p be a natural number. We say that p is Proth if and only if

(Def. 5) There exists an odd natural number k and there exists a positive natural
number n such that 2n > k and p = k · 2n + 1.

One can check that there exists a natural number which is Proth and prime
and there exists a natural number which is Proth and non prime and every
natural number which is Proth is also non trivial and odd.

Now we state the propositions:

(32) 3 is Proth.

(33) 5 is Proth.

(34) 9 is Proth.

(35) 13 is Proth.

(36) 17 is Proth.

(37) 641 is Proth.

(38) 11777 is Proth.

(39) 13313 is Proth.

Now we state the proposition:

(40) Proth’s theorem - version 1:
Let us consider a Proth natural number n. Then n is prime if and only
if there exists a natural number a such that a

n−1
2 ≡ −1 (modn). The

theorem is a consequence of (1), (8), (20), (21), (17), (10), (12), and (18).

Now we state the propositions:

(41) Proth’s theorem - version 2:
Let us consider a 2 or greater natural number l and a positive natural
number k. Suppose

(i) 3 - k, and

(ii) k ¬ 2l − 1.

Then k · 2l + 1 is prime if and only if 3k·2
l−1 ≡ −1 (mod k · 2l + 1). The

theorem is a consequence of (1), (8), (20), (21), (15), (6), (13), (30), (28),
(23), and (31).

(42) 641 is prime. The theorem is a consequence of (40) and (37).
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7. Fermat Numbers

Let l be a natural number. Note that Fermat l is Proth.
Now we state the propositions:

(43) Pepin’s theorem:
Let us consider a non zero natural number l. Then Fermat l is prime if
and only if 3

Fermat l−1
2 ≡ −1 (mod Fermat l). The theorem is a consequence

of (1), (4), and (41).

(44) Fermat 5 is not prime. The theorem is a consequence of (2).

8. Cullen Numbers

Let n be a natural number. The Cullen number of n yielding a natural
number is defined by the term

(Def. 6) n · 2n + 1.

Let n be a non zero natural number. Let us observe that the Cullen number
of n is Proth.
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