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Summary. In this article we focus on a special case of the Brouwer inva-
riance of domain theorem. Let us A, B be a subsets of £", and f : A — B be a
homeomorphic. We prove that, if A is closed then f transform the boundary of
A to the boundary of B; and if B is closed then f transform the interior of A
to the interior of B. These two cases are sufficient to prove the topological inva-
riance of dimension, which is used to prove basic properties of the n-dimensional
manifolds, and also to prove basic properties of the boundary and the interior
of manifolds, e.g. the boundary of an n-dimension manifold with boundary is an
(n — 1)-dimension manifold. This article is based on [I8]; [2I] and [20] can also
serve as reference books.
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1. PRELIMINARIES

From now on z, X denote sets, n, m, i denote natural numbers, p, ¢ denote
points of £F, A, B denote subsets of £F, and 7, s denote real numbers.

Let us consider X and n. One can verify that every function from X into &7
is finite sequence-yielding.
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Let us consider m. Let f be a function from X into £} and g be a function
from X into £F'. Let us observe that the functor f — g yields a function from X
into 5%'””. Let T be a topological space. Let f be a continuous function from
T into £} and g be a continuous function from 7" into £F'. Note that f — g is
continuous as a function from 7" into E77™.

Let f be areal-valued function. The functor |[f]| yielding a function is defined
by

(Def. 1) (i) dom it = dom f, and

(ii) for every object = such that x € dom it holds it(z) = |[f(z)]|.

One can verify that |[f]| is (the carrier of £L)-valued.

Let us consider X. Let Y be a non empty real-membered set and f be a
function from X into Y. One can verify that the functor |[f]| yields a function
from X into &}. Let T be a non empty topological space and f be a continuous
function from T into R. Note that |[f]| is continuous as a function from T
into 4.

Let f be a continuous real map of 7. Observe that |[f]| is continuous as a
function from 7 into &L

2. A DISTRIBUTION OF SPHERE

In the sequel N denotes a non zero natural number and u, t denote points
N+1

of E47.
Now we state the propositions:

(1) Let us consider an element F' of ((the carrier of RY)*)V. Suppose If
i € dom F, then F(i) = PROJ(N + 1,7). Then
(i) for every ¢, ([T* F)(t) = t|N, and

(ii) for every subsets S3, Sy of EN! such that S3 = {u : u(N +1) >
Oand |u| = 1} and Sy = {t : ¢{(N + 1) < Oand |t| = 1} holds
([TF F)° S5 = Ball(Ogév, 1) and (IT" F)°S2 = Ball(()gév, 1) and
([T* F)°(Ss N Sa) = Sphere(ngTv, 1) and for every function H from
ENTLIS; into Tdisk(Ogy, 1) such that H = [[* F|S; holds H is a
homeomorphism and for every function H from 5%7 +118, into
Tdisk(Og%v, 1) such that H = [[* F'[.S3 holds H is a homeomorphism,

where « is the carrier of SéVH. PROOF: Set No = N + 1. Set Ty9 = 8%/2.
Set Ty = S%V. Set N3 = N NormF. Set Ny = N3 - N3. Reconsider O =1
as an element of N. Set T3 = Tdisk(()gév, 1). Reconsider mg = —Ny4 as a
function from Ty into R'. Reconsider m; = 1 + mq as a function from
Ty into RY. Set Fy = [[* F. For every t, ([[*F)(t) = t[N by [2, (13)],
41, (25)], [ (1)]. Ball(0r,.1) C F1°Ss by [, (22)], B8 (11)], [6L (16)].
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[T1, (145)]. Ball(0r,,1) C F1°Se by [14, (22)], 28, (11)], [6, (16)], [T}
(145)]. Sphere(07,,1) C F1°(S2 N S3) by [14, (22)], [28, (12)], [6, (16),
(92)]. F1°S3 C Ball(0r,,1) by [14, (22)], [4, (59)], 24, (17)], [19, (10)].
F1°Sy C Ball(07,, 1) by [14, (22)], [4, (59)], [24, (17)], [19, (10)]. F1°(So N
S3) C Sphere(0r,, 1) by [14, (22)], [4, (59)], [24, (17)], [19, (10)]. For every
function H from E%V'H [S3 into Tdisk(Ogév, 1) such that H = []* F'|.S3 holds
H is a homeomorphism by [24, (17)], [I7, (17)], [2} (11)], [25, (13)]. For
every objects x1, zo such that x1, zo € dom H and H(z1) = H(x2) holds
w1 = o by [14, (22)], [19, (10)], [7, (47)], [39, (40)]. Set T3 = Tdisk(0r,, 1).
Set M = mq[T3. Reconsider My = M as a continuous function from T3
into R. Reconsider My = —+/M; as a function from T3 into R. For every
point p of Ty such that p € the carrier of T3 holds M;(p) =1 — |p| - |p| by
[7, (49)]. Reconsider S; = |[M>]| as a continuous function from T3 into Ex.
Reconsider I3 = idp, as a continuous function from 73 into 7. Reconsider
I, = I3 Sy as a continuous function from T3 into S%V +0 For every objects
y, x,y € rng H and = = I4(y) iff x € dom H and y = H(z) by [7, (17)],
[11L (145), (144), (55)]. For every subset P of T1¢[Sa2, P is open iff H°P is
open by [4, (1)], [2, (13)], 25, (57)]. O
(2) Let us consider subsets S3, Sp of £F. Suppose

(i) S3 ={s, where s is a point of &} : s(n) > 0 and |s| = 1}, and

(ii) Se = {t, where t is a point of £} : t(n) < 0 and |¢| = 1}.
Then

(iii) S3 is closed, and

(iv) S is closed.

(3) Let us consider a metrizable topological space To. Suppose T5 is finite-
ind and second-countable. Let us consider a closed subset F' of T5. Sup-
pose ind F° < n. Let us consider a continuous function f from T5[F
into TopUnitCircle(n + 1). Then there exists a continuous function g
from T, into TopUnitCircle(n + 1) such that g[F = f. PROOF: Defi-
ne P[natural number| = for every metrizable topological space T» such
that 75 is finite-ind and second-countable for every closed subset F' of
T5 such that ind F¢ < $; for every continuous function f from T5|F into
TopUnitCircle($;+1), there exists a function g from 75 into TopUnitCircle
($141) such that g is continuous and g[F = f. For every n such that P[n]
holds P[n + 1] by (2), [29, (9)], [42, (13)], [44] (121)]. P[(0 qua natural
number)] by [44] (143), (135)], [29, (9)], [14, (70)]. For every n, P[n| from
[2, Sch. 2]. O

(4) Suppose p ¢ A and r > 0. Then there exists a function h from Ef[A into
&L Sphere(p, r) such that

(i) h is continuous, and
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(ii) h[Sphere(p,r) = id snsphere(p,r)-
(5) If r+ |p— q| < s, then Ball(p,r) C Ball(q, s).
(6) If A is not boundary, then ind A = n.
Now we state the proposition:

(7) THE SMALL INDUCTIVE DIMENSION OF THE SPHERE:
If r > 0, then ind Sphere(p,r) = n — 1. PROOF: If ind A < 7 and ind B <14
and A is closed, then ind(A U B) < i by [33 (31)], [23, (93)], [35, (22)],
[36, (5)]. O

3. A CHARACTERIZATION OF OPEN SETS IN EUCLIDEAN SPACE IN TERMS
OF CONTINUOUS TRANSFORMATIONS

Now we state the propositions:

(8) Suppose n > 0 and p € A and for every r such that r > 0 there exists an
open subset U of EEJA such that p € U and U C Ball(p, ) and for every
function f from EX[(A\U) into TopUnitCircle n such that f is continuous
there exists a function h from EfJA into TopUnitCirclen such that h is
continuous and h[(A\ U) = f. Then p € Fr A. PROOF: Set T7 = E}. Set
c1 = the carrier of T5. Set S = Sphere(0z,,1). Set Ty = TopUnitCirclen.
Reconsider ¢ = ¢; \ {072} as a non empty open subset of 77. Set n3 =
nNormF. Set Ty = T7[c. Set G = transl(p, T7). Reconsider I = E as a
continuous function from Ty into T%. 0 ¢ rng(ns[Ts) by [44, (57)], [14,
(22)], 17, (47)], [14, (8), (70)]. Reconsider ny = n3[Tg as a non-empty
continuous function from Ty into RY. Reconsider b = I/ny as a function
from Ty into T7. Set By = £™. Set Ty = E144p,. Reconsider e = p as a point
of F1. Reconsider I = Int A as a subset of T5. Consider r being a real
number such that » > 0 and Ball(e,r) C I. Set 72 = 5. Consider U being
an open subset of 77| A such that p € U and U C Ball(p, r2) and for every
function f from T7[(A\U) into Ty such that f is continuous there exists a
function h from T7[A into Ty such that h is continuous and h[(A\U) = f.
Reconsider S; = Sphere(p,r2) as a non empty subset of T7. Consider a
being an object such that a € S;. Reconsider Cy = Ball(p,72) as a non
empty subset of T7. Reconsider ss = S4 as a non empty subset of T7[Cs.
Reconsider A; = A\ U as a non empty subset of T7. Set 77 = T7[A;.
Set t = transl(—p,T7). Set T = t[Ty. rngT C ¢ by [7, (47)], [42, (21)].
Reconsider 771 = T as a continuous function from 77 into Tg. For every
point p of T7 such that p € ¢ holds b(p) = ﬁ-p and |ﬁ-p| = 1by [22, (84)],
[7, (49)], |26l (72)], [12} (56)]. rngb C S by [42, (13)]. Reconsider B = b as
a function from Tg into Ty. Set m = ro @ T7. Set M = m[Ty. Reconsider
M = m]Ty as a continuous function from Ty into 7%. Reconsider co = Cy
as a subset of T7[A. Consider h being a function from T%[A into Ty such
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that h is continuous and h[(A\U) = B-Ti1. Reconsider Go = G- (M - h)
as a continuous function from 77[A into T7. rng Gy C Sy by [7, (12),
(11), (47)], [42, (28), (15)]. Reconsider go = G2 as a function from T7[A
into T7[S4. Reconsider g1 = g2[((T7]A)[c2) as a continuous function from
T71Cy into (T7]C3)[s2. For every point w of T7[Cs such that w € Sy holds
g1(w) = w by [T, (11), (12)], 44, (61)], [T, (47)]. O

(9) Suppose p € Fr A and A is closed. Suppose r > 0. Then there exists an
open subset U of Ef[A such that

(i) pe U, and
(ii) U C Ball(p,r), and
(iii) for every function f from EF[(A\U) into TopUnitCircle n such that f

is continuous there exists a function h from 3 A into TopUnitCircle n
such that h is continuous and h[(A\U) = f.

PRrROOF: n > 0 by [14, (77), (22)], [12} (33)]. Set r3 = 5. Set ro = 2-r3. Set
B = Ball(p, r3). Consider = being an object such that x € A° and = € B.
Set u = Ball(x, r2). u C Ball(p,r). O

4. BROUWER INVARIANCE OF DOMAIN THEOREM — SPECIAL CASE

Let us consider a function h from Ef[A into £1]B. Now we state the propo-
sitions:
(10) If A is closed and p € Fr A, then if h is a homeomorphism, then h(p) €
Fr B. The theorem is a consequence of (9) and (8).
(11) If B is closed and p € Int A, then if h is a homeomorphism, then h(p) €
Int B. The theorem is a consequence of (8) and (9).
(12) Suppose A is closed and B is closed. Then if A is a homeomorphism,
then h°(Int A) = Int B and h°(Fr A) = Fr B. PROOF: h°(Int A) = Int B
by (11), (10), [46, (39)]. O

5. TOPOLOGICAL INVARIANCE OF DIMENSION — AN INTRODUCTION TO
MANIFOLDS

Now we state the proposition:

(13) Suppose r > 0. Let us consider a subset U of Tdisk(p, ). Suppose U is
open and non empty. Let us consider a subset A of £F. If A = U, then
Int A is not empty.

Let us consider a non empty topological space T, subsets A, B of T', r, s, a
point py of £F, and a point py of £,
Let us assume that r > 0 and s > 0. Now we state the propositions:
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(14) Suppose T[A and Tdisk(py,r) are homeomorphic and
T'|B and Tdisk(pa, s) are homeomorphic and Int A meets Int B. Then n =
m. The theorem is a consequence of (13) and (6).

(15) Suppose T'[A and EF| Ball(py, ) are homeomorphic and
T'| B and Tdisk(p2, s) are homeomorphic and Int A meets Int B. Then n =
m. The theorem is a consequence of (13) and (6).
Now we state the propositions:
(16) (i) (transl(p,&}))°(Ball(g,r)) = Ball(q + p,r), and
(i) (transl(p, £1))°(Ball(g, 7)) = Ball(g + p,r), and
(iii) (transl(p,&F))°(Sphere(q,r)) = Sphere((q + p),r).
PROOF: Set T = L. Set T' = transl(p, T5). T°(Ball(g, r)) = Ball(¢ + p, )
by [28, (7)), [42, (27)]. T°(Ball(q, r)) — Ball(q+p,7) by B8, (8)), 2, (27)].
T°(Sphere(q,)) € Sphere((q + p),r) by [28, (9)]. O
(17) Suppose s > 0. Then
(i) (se&F)°(Ball(p,r)) = Ball(s - p,r - s), and
(i) (se&R)°(Ball(p,r)) = Ball(s - p,r - s), and
(iii) (s e &R)°(Sphere(p,r)) = Sphere((s - p), (r-s)).
PROOF: Set T5 = &EF. Set M = s o T5. M°(Ball(p,r)) = Ball(s - p,r - s)
by 12, (34)], [14, (11)], 28, (7)]. M°(Ball(p,)) = Ball(s - p,7 - 5) by [,
(34)], [14, (11)], [28, (8)]. M°(Sphere(p,r)) S Sphere((s - p), (r-s)) by [42,
(34)], [14, (11)], [28, (9)]. O
(18) Let us consider a rotation homogeneous additive function f from £ into
ET. Suppose f is onto. Then
(i) f°(Ball(p,r)) = Ball(f(p),r)
(i) f°(Ball(p,)) = Ball(f(p),7)
(iii) f°(Sphere(p,r)) = Sphere((f(p)), 7).
PROOF: f°(Ball(p,)) = Ball(f(p),r) by [28, (7)]. f°(Ball(p,7))

Ball(f(p), ) by [28. (8)]. f°(Sphere(p,r)) C Sphere((f(p)),r) by [28, (9)].
Consider = being an object such that z € dom f and f(z) =y. O

(19) Let us consider points p, q of S%H, r, and s. Suppose

, and

, and

(i) s<r<|p—gql, and
(i) s<[p—gq| <s+r.

Then there exists a function h from E2T![(Sphere(p,r) N Ball(q, s)) into
Tdisk(Ogn, 1) such that

(iii) A is a homeomorphism, and

(iv) h°(Sphere(p,r) N Sphere(q, s)) = Sphere(Ogr, 1).
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PROOF: Set n1 = n+ 1. Set Tg = EF'. Set y = %-(q—p). Set YV =
(0,...,0) +- (n1,]y|). There exists a homogeneous additive rotation func-
——

ni

tion R from Ty into Ty such that R is a homeomorphism and R(y) =Y by
[34, (40), (41)]. Consider R being a homogeneous additive rotation func-
tion from Tg into Ty such that R is a homeomorphism and R(y) = Y.
s>0.0
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