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Summary. In this article we focus on a special case of the Brouwer inva-
riance of domain theorem. Let us A, B be a subsets of En, and f : A → B be a
homeomorphic. We prove that, if A is closed then f transform the boundary of
A to the boundary of B; and if B is closed then f transform the interior of A
to the interior of B. These two cases are sufficient to prove the topological inva-
riance of dimension, which is used to prove basic properties of the n-dimensional
manifolds, and also to prove basic properties of the boundary and the interior
of manifolds, e.g. the boundary of an n-dimension manifold with boundary is an
(n − 1)-dimension manifold. This article is based on [18]; [21] and [20] can also
serve as reference books.
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The notation and terminology used in this paper have been introduced in the
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1. Preliminaries

From now on x, X denote sets, n, m, i denote natural numbers, p, q denote
points of EnT, A, B denote subsets of EnT, and r, s denote real numbers.

Let us consider X and n. One can verify that every function from X into EnT
is finite sequence-yielding.
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Let us consider m. Let f be a function from X into EnT and g be a function
from X into EmT . Let us observe that the functor f _ g yields a function from X

into En+mT . Let T be a topological space. Let f be a continuous function from
T into EnT and g be a continuous function from T into EmT . Note that f _ g is
continuous as a function from T into En+mT .

Let f be a real-valued function. The functor |[f ]| yielding a function is defined
by

(Def. 1) (i) dom it = dom f , and

(ii) for every object x such that x ∈ dom it holds it(x) = |[f(x)]|.
One can verify that |[f ]| is (the carrier of E1T)-valued.
Let us consider X. Let Y be a non empty real-membered set and f be a

function from X into Y. One can verify that the functor |[f ]| yields a function
from X into E1T. Let T be a non empty topological space and f be a continuous
function from T into R1. Note that |[f ]| is continuous as a function from T

into E1T.
Let f be a continuous real map of T . Observe that |[f ]| is continuous as a

function from T into E1T.

2. A Distribution of Sphere

In the sequel N denotes a non zero natural number and u, t denote points
of EN+1T .

Now we state the propositions:

(1) Let us consider an element F of ((the carrier of R1)α)N . Suppose If
i ∈ domF , then F (i) = PROJ(N + 1, i). Then

(i) for every t, (
∏∗ F )(t) = t�N , and

(ii) for every subsets S3, S2 of EN+1T such that S3 = {u : u(N + 1) ­
0 and |u| = 1} and S2 = {t : t(N + 1) ¬ 0 and |t| = 1} holds
(
∏∗ F )◦S3 = Ball(0ENT , 1) and (

∏∗ F )◦S2 = Ball(0ENT , 1) and

(
∏∗ F )◦(S3 ∩ S2) = Sphere(0ENT , 1) and for every function H from

EN+1T �S3 into Tdisk(0ENT , 1) such that H =
∏∗ F �S3 holds H is a

homeomorphism and for every function H from EN+1T �S2 into

Tdisk(0ENT , 1) such that H =
∏∗ F �S2 holds H is a homeomorphism,

where α is the carrier of EN+1T . Proof: Set N2 = N + 1. Set T10 = EN2T .
Set T4 = ENT . Set N3 = N NormF. Set N4 = N3 · N3. Reconsider O = 1
as an element of N. Set T3 = Tdisk(0ENT , 1). Reconsider m2 = −N4 as a

function from T4 into R1. Reconsider m1 = 1 + m2 as a function from
T4 into R1. Set F1 =

∏∗ F . For every t, (
∏∗ F )(t) = t�N by [2, (13)],

[41, (25)], [4, (1)]. Ball(0T4 , 1) ⊆ F1
◦S3 by [14, (22)], [28, (11)], [6, (16)],
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[11, (145)]. Ball(0T4 , 1) ⊆ F1
◦S2 by [14, (22)], [28, (11)], [6, (16)], [11,

(145)]. Sphere(0T4 , 1) ⊆ F1
◦(S2 ∩ S3) by [14, (22)], [28, (12)], [6, (16),

(92)]. F1◦S3 ⊆ Ball(0T4 , 1) by [14, (22)], [4, (59)], [24, (17)], [19, (10)].
F1
◦S2 ⊆ Ball(0T4 , 1) by [14, (22)], [4, (59)], [24, (17)], [19, (10)]. F1◦(S2 ∩

S3) ⊆ Sphere(0T4 , 1) by [14, (22)], [4, (59)], [24, (17)], [19, (10)]. For every
function H from EN+1T �S3 into Tdisk(0ENT , 1) such that H =

∏∗ F �S3 holds
H is a homeomorphism by [24, (17)], [17, (17)], [2, (11)], [25, (13)]. For
every objects x1, x2 such that x1, x2 ∈ domH and H(x1) = H(x2) holds
x1 = x2 by [14, (22)], [19, (10)], [7, (47)], [39, (40)]. Set T3 = Tdisk(0T4 , 1).
Set M = m1�T3. Reconsider M1 = M as a continuous function from T3
into R. Reconsider M2 = −

√
M1 as a function from T3 into R. For every

point p of T4 such that p ∈ the carrier of T3 holds M1(p) = 1− |p| · |p| by
[7, (49)]. Reconsider S1 = |[M2]| as a continuous function from T3 into E1T.
Reconsider I3 = idT3 as a continuous function from T3 into T4. Reconsider
I4 = I3

_S1 as a continuous function from T3 into EN+OT . For every objects
y, x, y ∈ rngH and x = I4(y) iff x ∈ domH and y = H(x) by [7, (17)],
[11, (145), (144), (55)]. For every subset P of T10�S2, P is open iff H◦P is
open by [4, (1)], [2, (13)], [25, (57)]. �

(2) Let us consider subsets S3, S2 of EnT. Suppose

(i) S3 = {s, where s is a point of EnT : s(n) ­ 0 and |s| = 1}, and

(ii) S2 = {t, where t is a point of EnT : t(n) ¬ 0 and |t| = 1}.
Then

(iii) S3 is closed, and

(iv) S2 is closed.

(3) Let us consider a metrizable topological space T2. Suppose T2 is finite-
ind and second-countable. Let us consider a closed subset F of T2. Sup-
pose indF c ¬ n. Let us consider a continuous function f from T2�F
into TopUnitCircle(n + 1). Then there exists a continuous function g

from T2 into TopUnitCircle(n + 1) such that g�F = f . Proof: Defi-
ne P[natural number] ≡ for every metrizable topological space T2 such
that T2 is finite-ind and second-countable for every closed subset F of
T2 such that indF c ¬ $1 for every continuous function f from T2�F into
TopUnitCircle($1+1), there exists a function g from T2 into TopUnitCircle
($1+1) such that g is continuous and g�F = f . For every n such that P[n]
holds P[n + 1] by (2), [29, (9)], [42, (13)], [44, (121)]. P[(0 qua natural
number)] by [44, (143), (135)], [29, (9)], [14, (70)]. For every n, P[n] from
[2, Sch. 2]. �

(4) Suppose p /∈ A and r > 0. Then there exists a function h from EnT�A into
EnT� Sphere(p, r) such that

(i) h is continuous, and
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(ii) h� Sphere(p, r) = idA∩Sphere(p,r).

(5) If r + |p− q| ¬ s, then Ball(p, r) ⊆ Ball(q, s).

(6) If A is not boundary, then indA = n.

Now we state the proposition:

(7) The Small Inductive Dimension of the Sphere:
If r > 0, then ind Sphere(p, r) = n− 1. Proof: If indA ¬ i and indB ¬ i
and A is closed, then ind(A ∪ B) ¬ i by [33, (31)], [23, (93)], [35, (22)],
[36, (5)]. �

3. A Characterization of Open Sets in Euclidean Space in Terms
of Continuous Transformations

Now we state the propositions:

(8) Suppose n > 0 and p ∈ A and for every r such that r > 0 there exists an
open subset U of EnT�A such that p ∈ U and U ⊆ Ball(p, r) and for every
function f from EnT�(A\U) into TopUnitCirclen such that f is continuous
there exists a function h from EnT�A into TopUnitCirclen such that h is
continuous and h�(A \ U) = f . Then p ∈ FrA. Proof: Set T7 = EnT. Set
c1 = the carrier of T7. Set S = Sphere(0T7 , 1). Set T9 = TopUnitCirclen.
Reconsider c = c1 \ {0T7} as a non empty open subset of T7. Set n3 =
nNormF. Set T8 = T7�c. Set G = transl(p, T7). Reconsider I = T8

↪→ as a
continuous function from T8 into T7. 0 /∈ rng(n3�T8) by [44, (57)], [14,
(22)], [7, (47)], [14, (8), (70)]. Reconsider n2 = n3�T8 as a non-empty
continuous function from T8 into R1. Reconsider b = I/n2 as a function
from T8 into T7. Set E1 = En. Set T2 = E1top. Reconsider e = p as a point
of E1. Reconsider I1 = IntA as a subset of T2. Consider r being a real
number such that r > 0 and Ball(e, r) ⊆ I1. Set r2 = r

2 . Consider U being
an open subset of T7�A such that p ∈ U and U ⊆ Ball(p, r2) and for every
function f from T7�(A\U) into T9 such that f is continuous there exists a
function h from T7�A into T9 such that h is continuous and h�(A\U) = f .
Reconsider S4 = Sphere(p, r2) as a non empty subset of T7. Consider a
being an object such that a ∈ S4. Reconsider C2 = Ball(p, r2) as a non
empty subset of T7. Reconsider s2 = S4 as a non empty subset of T7�C2.
Reconsider A1 = A \ U as a non empty subset of T7. Set T1 = T7�A1.
Set t = transl(−p, T7). Set T = t�T1. rng T ⊆ c by [7, (47)], [42, (21)].
Reconsider T11 = T as a continuous function from T1 into T8. For every
point p of T7 such that p ∈ c holds b(p) = 1

|p| ·p and | 1|p| ·p| = 1 by [22, (84)],
[7, (49)], [26, (72)], [12, (56)]. rng b ⊆ S by [42, (13)]. Reconsider B = b as
a function from T8 into T9. Set m = r2 • T7. Set M = m�T9. Reconsider
M = m�T9 as a continuous function from T9 into T7. Reconsider c2 = C2
as a subset of T7�A. Consider h being a function from T7�A into T9 such
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that h is continuous and h�(A \U) = B ·T11. Reconsider G2 = G · (M · h)
as a continuous function from T7�A into T7. rngG2 ⊆ S4 by [7, (12),
(11), (47)], [42, (28), (15)]. Reconsider g2 = G2 as a function from T7�A
into T7�S4. Reconsider g1 = g2�((T7�A)�c2) as a continuous function from
T7�C2 into (T7�C2)�s2. For every point w of T7�C2 such that w ∈ S4 holds
g1(w) = w by [7, (11), (12)], [44, (61)], [7, (47)]. �

(9) Suppose p ∈ FrA and A is closed. Suppose r > 0. Then there exists an
open subset U of EnT�A such that

(i) p ∈ U , and

(ii) U ⊆ Ball(p, r), and

(iii) for every function f from EnT�(A\U) into TopUnitCirclen such that f
is continuous there exists a function h from EnT�A into TopUnitCirclen
such that h is continuous and h�(A \ U) = f .

Proof: n > 0 by [14, (77), (22)], [12, (33)]. Set r3 = r
3 . Set r2 = 2 · r3. Set

B = Ball(p, r3). Consider x being an object such that x ∈ Ac and x ∈ B.
Set u = Ball(x, r2). u ⊆ Ball(p, r). �

4. Brouwer Invariance of Domain Theorem – Special Case

Let us consider a function h from EnT�A into EnT�B. Now we state the propo-
sitions:

(10) If A is closed and p ∈ FrA, then if h is a homeomorphism, then h(p) ∈
FrB. The theorem is a consequence of (9) and (8).

(11) If B is closed and p ∈ IntA, then if h is a homeomorphism, then h(p) ∈
IntB. The theorem is a consequence of (8) and (9).

(12) Suppose A is closed and B is closed. Then if h is a homeomorphism,
then h◦(IntA) = IntB and h◦(FrA) = FrB. Proof: h◦(IntA) = IntB
by (11), (10), [46, (39)]. �

5. Topological Invariance of Dimension – An Introduction to
Manifolds

Now we state the proposition:

(13) Suppose r > 0. Let us consider a subset U of Tdisk(p, r). Suppose U is
open and non empty. Let us consider a subset A of EnT. If A = U , then
IntA is not empty.

Let us consider a non empty topological space T , subsets A, B of T , r, s, a
point p1 of EnT, and a point p2 of EmT .

Let us assume that r > 0 and s > 0. Now we state the propositions:
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(14) Suppose T �A and Tdisk(p1, r) are homeomorphic and
T �B and Tdisk(p2, s) are homeomorphic and IntA meets IntB. Then n =
m. The theorem is a consequence of (13) and (6).

(15) Suppose T �A and EnT� Ball(p1, r) are homeomorphic and
T �B and Tdisk(p2, s) are homeomorphic and IntA meets IntB. Then n =
m. The theorem is a consequence of (13) and (6).

Now we state the propositions:

(16) (i) (transl(p, EnT))◦(Ball(q, r)) = Ball(q + p, r), and

(ii) (transl(p, EnT))◦(Ball(q, r)) = Ball(q + p, r), and

(iii) (transl(p, EnT))◦(Sphere(q, r)) = Sphere((q + p), r).
Proof: Set T5 = EnT. Set T = transl(p, T5). T ◦(Ball(q, r)) = Ball(q + p, r)
by [28, (7)], [42, (27)]. T ◦(Ball(q, r)) = Ball(q+p, r) by [28, (8)], [42, (27)].
T ◦(Sphere(q, r)) ⊆ Sphere((q + p), r) by [28, (9)]. �

(17) Suppose s > 0. Then

(i) (s • EnT)◦(Ball(p, r)) = Ball(s · p, r · s), and

(ii) (s • EnT)◦(Ball(p, r)) = Ball(s · p, r · s), and

(iii) (s • EnT)◦(Sphere(p, r)) = Sphere((s · p), (r · s)).

Proof: Set T5 = EnT. Set M = s • T5. M◦(Ball(p, r)) = Ball(s · p, r · s)
by [42, (34)], [14, (11)], [28, (7)]. M◦(Ball(p, r)) = Ball(s · p, r · s) by [42,
(34)], [14, (11)], [28, (8)]. M◦(Sphere(p, r)) ⊆ Sphere((s · p), (r · s)) by [42,
(34)], [14, (11)], [28, (9)]. �

(18) Let us consider a rotation homogeneous additive function f from EnT into
EnT. Suppose f is onto. Then

(i) f◦(Ball(p, r)) = Ball(f(p), r), and

(ii) f◦(Ball(p, r)) = Ball(f(p), r), and

(iii) f◦(Sphere(p, r)) = Sphere((f(p)), r).

Proof: f◦(Ball(p, r)) = Ball(f(p), r) by [28, (7)]. f◦(Ball(p, r)) =
Ball(f(p), r) by [28, (8)]. f◦(Sphere(p, r)) ⊆ Sphere((f(p)), r) by [28, (9)].
Consider x being an object such that x ∈ dom f and f(x) = y. �

(19) Let us consider points p, q of En+1T , r, and s. Suppose

(i) s ¬ r ¬ |p− q|, and

(ii) s < |p− q| < s+ r.

Then there exists a function h from En+1T �(Sphere(p, r) ∩ Ball(q, s)) into
Tdisk(0EnT , 1) such that

(iii) h is a homeomorphism, and

(iv) h◦(Sphere(p, r) ∩ Sphere(q, s)) = Sphere(0EnT , 1).
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Proof: Set n1 = n + 1. Set T6 = En1T . Set y = 1
r · (q − p). Set Y =

〈0, . . . , 0︸ ︷︷ ︸
n1

〉+· (n1, |y|). There exists a homogeneous additive rotation func-

tion R from T6 into T6 such that R is a homeomorphism and R(y) = Y by
[34, (40), (41)]. Consider R being a homogeneous additive rotation func-
tion from T6 into T6 such that R is a homeomorphism and R(y) = Y.

s > 0. �
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