

Tietze Extension Theorem for n-dimensional Spaces¹

Karol Pąk
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok
Poland

Summary. In this article we prove the Tietze extension theorem for an arbitrary convex compact subset of \mathcal{E}^n with a non-empty interior. This theorem states that, if T is a normal topological space, X is a closed subset of T, and T is a convex compact subset of T with a non-empty interior, then a continuous function T: T: Additionally we show that a subset T is replaceable by an arbitrary subset of a topological space that is homeomorphic with a convex compact subset of T with a non-empty interior. This article is based on [20]; [23] and [22] can also serve as reference books.

MSC: 54A05 03B35

Keywords: Tietze extension; hypercube

MML identifier: TIETZE_2, version: 8.1.02 5.22.1199

The notation and terminology used in this paper have been introduced in the following articles: [8], [36], [24], [30], [1], [15], [21], [16], [25], [6], [9], [17], [37], [10], [11], [3], [34], [5], [12], [26], [33], [35], [41], [42], [13], [40], [19], [31], [28], [43], [18], [44], [29], and [14].

1. Closed Hypercube

From now on n, m, i denote natural numbers, p, q denote points of $\mathcal{E}_{\mathrm{T}}^{n}$, r, s denote real numbers, and R denotes a real-valued finite sequence.

Note that every finite sequence which is empty is also non-negative yielding.

 $^{^{1}}$ The paper has been financed by the resources of the Polish National Science Centre granted by decision no DEC-2012/07/N/ST6/02147.

Let n be a non zero natural number, X be a set, and F be an element of $((\text{the carrier of }\mathbb{R}^1)^X)^n$. Let us note that the functor $\prod^* F$ yields a function from X into \mathcal{E}^n_T . Now we state the proposition:

- (1) Let us consider sets X, Y, a function yielding function F, and objects x, y. Suppose
 - (i) F is (Y^X) -valued, or
 - (ii) $y \in \text{dom } \prod^* F$.

Then $F(x)(y) = (\prod^* F)(y)(x)$.

Let us consider n, p, and r. The functor OpenHypercube(p,r) yielding an open subset of \mathcal{E}^n_T is defined by

- (Def. 1) There exists a point e of \mathcal{E}^n such that
 - (i) p = e, and
 - (ii) it = OpenHypercube(e, r).

Now we state the propositions:

- (2) If $q \in \text{OpenHypercube}(p,r)$ and $s \in]p(i) r, p(i) + r[$, then $q + (i,s) \in \text{OpenHypercube}(p,r)$. PROOF: Consider e being a point of \mathcal{E}^n such that p = e and OpenHypercube(p,r) = OpenHypercube(e,r). Set I = Intervals(e,r). Set I = Intervals(e,r). Set I = Intervals(e,r) such that I = Intervals(e,r) suc
- (3) If $i \in \text{Seg } n$, then $(PROJ(n, i))^{\circ}(\text{OpenHypercube}(p, r)) =]p(i) r, p(i) + r[$. The theorem is a consequence of (2).
- (4) $q \in \text{OpenHypercube}(p, r)$ if and only if for every i such that $i \in \text{Seg } n$ holds $q(i) \in]p(i) r, p(i) + r[$. The theorem is a consequence of (3).

Let us consider n, p, and R. The functor ClosedHypercube(p,R) yielding a subset of \mathcal{E}^n_T is defined by

(Def. 2) $q \in it$ if and only if for every i such that $i \in \text{Seg } n$ holds $q(i) \in [p(i) - R(i), p(i) + R(i)]$.

Now we state the propositions:

- (5) If there exists i such that $i \in \operatorname{Seg} n \cap \operatorname{dom} R$ and R(i) < 0, then $\operatorname{ClosedHypercube}(p, R)$ is empty.
- (6) If for every i such that $i \in \operatorname{Seg} n \cap \operatorname{dom} R$ holds $R(i) \geq 0$, then $p \in \operatorname{ClosedHypercube}(p, R)$.

Let us consider n and p. Let R be a non-negative yielding real-valued finite sequence. One can check that ClosedHypercube(p,R) is non empty.

Let us consider R. Let us observe that ClosedHypercube(p,R) is convex and compact.

Now we state the propositions:

- (7) If $i \in \text{Seg } n$ and $q \in \text{ClosedHypercube}(p, R)$ and $r \in [p(i) R(i), p(i) + R(i)]$, then $q + (i, r) \in \text{ClosedHypercube}(p, R)$. PROOF: Set $p_4 = q + (i, r)$. For every natural number j such that $j \in \text{Seg } n$ holds $p_4(j) \in [p(j) R(j), p(j) + R(j)]$ by [7, (32), (31)]. \square
- (8) Suppose $i \in \text{Seg } n$ and ClosedHypercube(p, R) is not empty. Then $(\text{PROJ}(n, i))^{\circ}(\text{ClosedHypercube}(p, R)) = [p(i) - R(i), p(i) + R(i)]$. The theorem is a consequence of (5), (7), and (6).
- (9) If $n \leq \text{len } R$ and $r \leq \text{inf rng } R$, then $\text{OpenHypercube}(p, r) \subseteq \text{ClosedHypercube}(p, R)$.
- (10) $q \in \text{Fr ClosedHypercube}(p, R)$ if and only if $q \in \text{ClosedHypercube}(p, R)$ and there exists i such that $i \in \text{Seg } n$ and q(i) = p(i) R(i) or q(i) = p(i) + R(i). PROOF: Set $T_4 = \mathcal{E}_T^n$. If $q \in \text{Fr ClosedHypercube}(p, R)$, then $q \in \text{ClosedHypercube}(p, R)$ and there exists i such that $i \in \text{Seg } n$ and q(i) = p(i) R(i) or q(i) = p(i) + R(i) by [16, (22)], [32, (105)], [14, (33)], [6, (3)]. For every subset S of T_4 such that S is open and $q \in S$ holds S ClosedHypercubeS meets S and S and S and S meets S by [16, (67)], [43, (23)], [38, (5)], [31, (13)]. S
- (11) If $r \ge 0$, then $p \in \text{ClosedHypercube}(p, n \mapsto r)$.
- (12) If r > 0, then Int ClosedHypercube $(p, n \mapsto r) = \text{OpenHypercube}(p, r)$. PROOF: Set O = OpenHypercube(p, r). Set $C = \text{ClosedHypercube}(p, n \mapsto r)$. Set $T_4 = \mathcal{E}_T^n$. Set $R = n \mapsto r$. Consider e being a point of \mathcal{E}^n such that p = e and OpenHypercube(p, r) = OpenHypercube(e, r). Int $C \subseteq O$ by [43, (39)], [9, (57)], (10), [39, (29)]. Reconsider q = x as a point of T_4 . For every i such that $i \in \text{Seg } n$ holds $q(i) \in [p(i) R(i), p(i) + R(i)]$ by [9, (57)], (3). Consider i such that $i \in \text{Seg } n$ and q(i) = p(i) R(i) or q(i) = p(i) + R(i). $(\text{PROJ}(n, i))^{\circ}O = [e(i) r, e(i) + r]$. \square
- (13) OpenHypercube $(p, r) \subseteq \text{ClosedHypercube}(p, n \mapsto r)$.
- (14) If r < s, then ClosedHypercube $(p, n \mapsto r) \subseteq \text{OpenHypercube}(p, s)$. The theorem is a consequence of (4).

Let us consider n and p. Let r be a positive real number. Let us note that ClosedHypercube $(p, n \mapsto r)$ is non boundary.

2. Properties of the Product of Closed Hypercube

From now on T_1 , T_2 , S_1 , S_2 denote non empty topological spaces, t_1 denotes a point of T_1 , t_2 denotes a point of T_2 , p_2 , q_2 denote points of $\mathcal{E}_{\mathrm{T}}^n$, and p_1 , q_1 denote points of $\mathcal{E}_{\mathrm{T}}^m$.

Now we state the propositions:

(15) Let us consider a function f from T_1 into T_2 and a function g from S_1 into S_2 . Suppose

- (i) f is a homeomorphism, and
- (ii) g is a homeomorphism.

Then $f \times g$ is a homeomorphism.

- (16) Suppose r > 0 and s > 0. Then there exists a function h from $(\mathcal{E}_{\mathrm{T}}^n \upharpoonright \operatorname{ClosedHypercube}(p_2, n \mapsto r)) \times (\mathcal{E}_{\mathrm{T}}^m \upharpoonright \operatorname{ClosedHypercube}(p_1, m \mapsto s))$ into $\mathcal{E}_{\mathrm{T}}^{n+m} \upharpoonright \operatorname{ClosedHypercube}(0_{\mathcal{E}_{\mathrm{T}}^{n+m}}, (n+m) \mapsto 1)$ such that
 - (i) h is a homeomorphism, and
 - (ii) $h^{\circ}(\text{OpenHypercube}(p_2, r) \times \text{OpenHypercube}(p_1, s)) = \text{OpenHypercube}(0_{\mathcal{E}_{T}^{n+m}}, 1).$

PROOF: Set $T_6 = \mathcal{E}_T^n$. Set $T_5 = \mathcal{E}_T^m$. Set $n_1 = n + m$. Set $T_7 = \mathcal{E}_T^{n_1}$. Set $R_2 = r$ ClosedHypercube $(0_{T_6}, n \mapsto 1)$. Set $R_4 = \text{ClosedHypercube}(p_2, n \mapsto r)$. Set $R_5 = \text{ClosedHypercube}(p_1, m \mapsto s). \text{ Set } R_1 = \text{ClosedHypercube}(0_{T_5}, m \mapsto s).$ 1). Set $R_3 = \text{ClosedHypercube}(0_{T_7}, n_1 \mapsto 1)$. Reconsider $R_{10} = R_5$, $R_6 =$ R_1 as a non empty subset of T_5 . Consider h_3 being a function from $T_5 \upharpoonright R_{10}$ into $T_5 \upharpoonright R_6$ such that h_3 is a homeomorphism and $h_3 \circ (\operatorname{Fr} R_{10}) = \operatorname{Fr} R_6$. Reconsider $R_9 = R_4$, $R_7 = R_2$ as a non empty subset of T_6 . Consider h_4 being a function from $T_6 \upharpoonright R_9$ into $T_6 \upharpoonright R_7$ such that h_4 is a homeomorphism and $h_4^{\circ}(\operatorname{Fr} R_9) = \operatorname{Fr} R_7$. Set $O_8 = \operatorname{OpenHypercube}(p_2, r)$. Set $O_9 =$ OpenHypercube (p_1, s) . Set $O_6 = \text{OpenHypercube}(0_{T_7}, 1)$. Int $R_{10} = O_9$. Set $O_5 = \text{OpenHypercube}(0_{T_6}, 1)$. Set $O_7 = \text{OpenHypercube}(0_{T_5}, 1)$. Reconsider $R_8 = R_3$ as a non empty subset of T_7 . Consider f being a function from $T_6 \times T_5$ into T_7 such that f is a homeomorphism and for every element f_5 of T_6 and for every element f_6 of T_5 , $f(f_5, f_6) = f_5 \cap f_6$. $f^{\circ}(R_7 \times$ $R_6 \subseteq R_8$ by [14, (87)], [9, (57)], [6, (25)]. $R_8 \subseteq f^{\circ}(R_7 \times R_6)$ by [9, (23)], [27, (17)], [4, (11)], [6, (5)]. Set $h_5 = h_4 \times h_3$. h_5 is a homeomorphism. Int $R_7 = O_5$. Reconsider $f_1 = f \upharpoonright (R_7 \times R_6)$ as a function from $(T_6 \upharpoonright R_7) \times (R_7 \times R_6)$ $(T_5 \upharpoonright R_6)$ into $T_7 \upharpoonright R_8$. Reconsider $h = f_1 \cdot h_5$ as a function from $(T_6 \upharpoonright R_4) \times$ $(T_5 \upharpoonright R_5)$ into $T_7 \upharpoonright R_3$. Int $R_6 = O_7$. Int $R_9 = O_8$. $h^{\circ}(O_8 \times O_9) \subseteq O_6$ by [14, (87)], [10, (12)], [43, (40)], [10, (49)]. Reconsider $p_3 = y$ as a point of T_7 . Consider p, q being finite sequences of elements of \mathbb{R} such that len p=nand len q = m and $p_3 = p \cap q$. $q \in O_7$. $q \in R_6$. Consider x_2 being an object such that $x_2 \in \text{dom } h_3$ and $h_3(x_2) = q$. $p \in O_5$. $p \in R_7$. Consider x_1 being an object such that $x_1 \in \text{dom } h_4$ and $h_4(x_1) = p$. \square

- (17) Suppose r > 0 and s > 0. Let us consider a function f from T_1 into $\mathcal{E}_T^n \upharpoonright \text{ClosedHypercube}(p_2, n \mapsto r)$ and a function g from T_2 into $\mathcal{E}_T^m \upharpoonright \text{ClosedHypercube}(p_1, m \mapsto s)$. Suppose
 - (i) f is a homeomorphism, and
 - (ii) g is a homeomorphism.

Then there exists a function h from $T_1 \times T_2$ into

 $\mathcal{E}_{\mathrm{T}}^{n+m}$ \[\text{ClosedHypercube}(0_{\mathcal{E}_{\mathrm{T}}^{n+m}}, (n+m) \mapsto 1) \] such that

- (iii) h is a homeomorphism, and
- (iv) for every t_1 and t_2 , $f(t_1) \in \text{OpenHypercube}(p_2, r)$ and $g(t_2) \in \text{OpenHypercube}(p_1, s)$ iff $h(t_1, t_2) \in \text{OpenHypercube}(0_{\mathcal{E}_n^{n+m}}, 1)$.

PROOF: Set $n_1 = n + m$. Set $T_6 = \mathcal{E}_{\mathbf{T}}^n$. Set $T_5 = \mathcal{E}_{\mathbf{T}}^m$. Set $T_7 = \mathcal{E}_{\mathbf{T}}^{n_1}$. Set $R_7 = n \mapsto r$. Set $R_6 = m \mapsto s$. Set $R_8 = n_1 \mapsto 1$. Set $R_4 = \text{ClosedHypercube}(p_2, R_7)$. Set $R_5 = \text{ClosedHypercube}(p_1, R_6)$. Set $C_2 = \text{ClosedHypercube}(0_{T_7}, R_8)$. Reconsider $R_{10} = R_5$ as a non empty subset of T_5 . Reconsider $R_9 = R_4$ as a non empty subset of T_6 . Set $O_8 = \text{OpenHypercube}(p_2, r)$. Set $O_9 = \text{OpenHypercube}(p_1, s)$. Set $O = \text{OpenHypercube}(0_{T_7}, 1)$. Consider h being a function from $(T_6 \upharpoonright R_9) \times (T_5 \upharpoonright R_{10})$ into $T_7 \upharpoonright C_2$ such that h is a homeomorphism and $h^\circ(O_8 \times O_9) = O$. Reconsider G = g as a function from T_2 into $T_5 \upharpoonright R_{10}$. Reconsider F = f as a function from T_1 into $T_6 \upharpoonright R_9$. Reconsider $f_4 = h \cdot (F \times G)$ as a function from $T_1 \times T_2$ into $T_7 \upharpoonright C_2$. $F \times G$ is a homeomorphism. $O_9 \subseteq R_{10}$. $O_8 \subseteq R_9$. If $f(t_1) \in O_8$ and $g(t_2) \in O_9$, then $f_4(t_1, t_2) \in O$ by [14, (87)], [10, (12)]. Consider x_3 being an object such that $x_3 \in \text{dom } h$ and $x_3 \in O_8 \times O_9$ and $h(x_3) = h(\langle f(t_1), g(t_2) \rangle)$. \square

Let us consider n. One can check that there exists a subset of $\mathcal{E}_{\mathrm{T}}^n$ which is non boundary, convex, and compact.

Now we state the propositions:

- (18) Let us consider a non boundary convex compact subset A of $\mathcal{E}_{\mathrm{T}}^{n}$, a non boundary convex compact subset B of $\mathcal{E}_{\mathrm{T}}^{m}$, a non boundary convex compact subset C of $\mathcal{E}_{\mathrm{T}}^{n+m}$, a function f from T_{1} into $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright A$, and a function g from T_{2} into $\mathcal{E}_{\mathrm{T}}^{m} \upharpoonright B$. Suppose
 - (i) f is a homeomorphism, and
 - (ii) g is a homeomorphism.

Then there exists a function h from $T_1 \times T_2$ into $\mathcal{E}_T^{n+m} \upharpoonright C$ such that

- (iii) h is a homeomorphism, and
- (iv) for every t_1 and t_2 , $f(t_1) \in \text{Int } A$ and $g(t_2) \in \text{Int } B$ iff $h(t_1, t_2) \in \text{Int } C$. PROOF: Set $T_6 = \mathcal{E}_T^n$. Set $T_5 = \mathcal{E}_T^m$. Set $n_1 = n + m$. Set $T_7 = \mathcal{E}_T^{n_1}$. Set $R_7 = \text{ClosedHypercube}(0_{T_6}, n \mapsto 1)$. Set $R_6 = \text{ClosedHypercube}(0_{T_5}, m \mapsto 1)$. Set $R_8 = \text{ClosedHypercube}(0_{T_7}, n_1 \mapsto 1)$. Consider g_1 being a function from $T_5 \upharpoonright B$ into $T_5 \upharpoonright R_6$ such that g_1 is a homeomorphism and $g_1^{\circ}(\text{Fr } B) = \text{Fr } R_6$. Reconsider $g_2 = g_1 \cdot g$ as a function from T_2 into $T_5 \upharpoonright R_6$. Consider f_7 being a function from $T_6 \upharpoonright A$ into $T_6 \upharpoonright R_7$ such that f_7 is a homeomorphism and $f_7^{\circ}(\text{Fr } A) = \text{Fr } R_7$. Reconsider $f_8 = f_7 \cdot f$ as a function from T_1 into $T_6 \upharpoonright R_7$. Set $O_3 = \text{OpenHypercube}(0_{T_6}, 1)$. Set $O_2 = \text{OpenHypercube}(0_{T_5}, 1)$. Set $O_4 = \text{OpenHypercube}(0_{T_7}, 1)$. Consider H

being a function from $T_7 \upharpoonright R_8$ into $T_7 \upharpoonright C$ such that H is a homeomorphism and $H^{\circ}(\operatorname{Fr} R_8) = \operatorname{Fr} C$. Int $R_6 = O_2$. Consider P being a function from $T_1 \times T_2$ into $T_7 \upharpoonright R_8$ such that P is a homeomorphism and for every t_1 and t_2 , $f_8(t_1) \in O_3$ and $g_2(t_2) \in O_2$ iff $P(t_1, t_2) \in O_4$. Reconsider $H_1 = H \cdot P$ as a function from $T_1 \times T_2$ into $T_7 \upharpoonright C$. Int $R_8 = O_4$. If $f(t_1) \in \operatorname{Int} A$ and $g(t_2) \in \operatorname{Int} B$, then $H_1(t_1, t_2) \in \operatorname{Int} C$ by [10, (11), (12)], (12). $P(\langle t_1, t_2 \rangle) \in \operatorname{Int} R_8$. $P(t_1, t_2) \in O_4$. Int $R_7 = O_3$. $f(t_1) \in \operatorname{Int} A$ by [43, (40)]. \square

- (19) Let us consider a point p_2 of \mathcal{E}_T^n , a point p_1 of \mathcal{E}_T^m , r, and s. Suppose
 - (i) r > 0, and
 - (ii) s > 0.

Then there exists a function h from $\mathrm{Tdisk}(p_2, r) \times \mathrm{Tdisk}(p_1, s)$ into $\mathrm{Tdisk}(0_{\mathcal{E}_{\infty}^{n+m}}, 1)$ such that

- (iii) h is a homeomorphism, and
- (iv) $h^{\circ}(\operatorname{Ball}(p_2, r) \times \operatorname{Ball}(p_1, s)) = \operatorname{Ball}(0_{\mathcal{E}_{T}^{n+m}}, 1).$

PROOF: Set $T_6 = \mathcal{E}_{\mathrm{T}}^n$. Set $T_5 = \mathcal{E}_{\mathrm{T}}^m$. Set $n_1 = n + m$. Set $T_7 = \mathcal{E}_{\mathrm{T}}^{n_1}$. Reconsider $C_4 = \overline{\mathrm{Ball}}(p_2, r)$ as a non empty subset of T_6 . Reconsider $C_3 = \overline{\mathrm{Ball}}(p_1, s)$ as a non empty subset of T_5 . Reconsider $C_5 = \overline{\mathrm{Ball}}(0_{T_7}, 1)$ as a non empty subset of T_7 . Set $R_7 = \mathrm{ClosedHypercube}(0_{T_6}, n \mapsto 1)$. Set $R_6 = \mathrm{ClosedHypercube}(0_{T_5}, m \mapsto 1)$. Consider f_7 being a function from $T_6 \upharpoonright C_4$ into $T_6 \upharpoonright R_7$ such that f_7 is a homeomorphism and $f_7 \circ (\mathrm{Fr} C_4) = \mathrm{Fr} R_7$. Consider $f_7 = \mathrm{Fr} R_7$. Set $f_7 = \mathrm{Fr} R_7$. Consider $f_7 = \mathrm{Fr} R_7$. Set $f_7 = \mathrm{Fr} R_7$ into $f_7 = \mathrm{Fr} R_7$. Set $f_7 = \mathrm{Fr} R_7$ into $f_7 = \mathrm{Fr} R_7$. Set $f_7 = \mathrm{Fr} R_7$ into $f_7 = \mathrm{Fr} R_7$. Set $f_7 = \mathrm{Fr} R_7$ into $f_$

(20) Suppose r > 0 and s > 0 and T_1 and $\mathcal{E}_T^n \upharpoonright Ball(p_2, r)$ are homeomorphic and T_2 and $\mathcal{E}_T^m \upharpoonright Ball(p_1, s)$ are homeomorphic. Then $T_1 \times T_2$ and $\mathcal{E}_T^{n+m} \upharpoonright Ball(0_{\mathcal{E}_T^{n+m}}, 1)$ are homeomorphic.

3. Tietze Extension Theorem

In the sequel T, S denote topological spaces, A denotes a closed subset of T, and B denotes a subset of S.

Now we state the propositions:

(21) Let us consider a non zero natural number n and an element F of $(\text{the carrier of } \mathbb{R}^1)^{\alpha})^n$. Suppose If $i \in \text{dom } F$, then for every function

h from T into \mathbb{R}^1 such that h = F(i) holds h is continuous. Then $\prod^* F$ is continuous, where α is the carrier of T. PROOF: Set $T_4 = \mathcal{E}^n_T$. Set $F_1 = \prod^* F$. For every subset Y of T_4 such that Y is open holds $F_1^{-1}(Y)$ is open by $[16, (67)], [11, (2)], (1), [19, (17)]. \square$

- (22) Suppose T is normal. Let us consider a function f from T
 cap A into $\mathcal{E}^n_T
 cap ClosedHypercube(0_{\mathcal{E}^n_T}, n \mapsto 1)$. Suppose f is continuous. Then there exists a function g from T into $\mathcal{E}^n_T
 cap ClosedHypercube(0_{\mathcal{E}^n_T}, n \mapsto 1)$ such that
 - (i) g is continuous, and
 - (ii) $g \upharpoonright A = f$.

The theorem is a consequence of (8), (1), and (21).

- (23) Suppose T is normal. Let us consider a subset X of \mathcal{E}_{T}^{n} . Suppose X is compact, non boundary, and convex. Let us consider a function f from $T \upharpoonright A$ into $\mathcal{E}_{T}^{n} \upharpoonright X$. Suppose f is continuous. Then there exists a function g from T into $\mathcal{E}_{T}^{n} \upharpoonright X$ such that
 - (i) g is continuous, and
 - (ii) $g \upharpoonright A = f$.

The theorem is a consequence of (22).

Now we state the proposition:

(24) The First Implication of Tietze Extension Theorem for *n*-dimensional Spaces:

Suppose T is normal. Let us consider a subset X of \mathcal{E}^n_T . Suppose

- (i) X is compact, non boundary, and convex, and
- (ii) B and X are homeomorphic.

Let us consider a function f from $T \upharpoonright A$ into $S \upharpoonright B$. Suppose f is continuous. Then there exists a function g from T into $S \upharpoonright B$ such that

- (iii) g is continuous, and
- (iv) $g \upharpoonright A = f$.

The theorem is a consequence of (23).

Now we state the proposition:

(25) The Second Implication of Tietze Extension Theorem for *n*-dimensional Spaces:

Let us consider a non empty topological space T and n. Suppose

- (i) $n \ge 1$, and
- (ii) for every topological space S and for every non empty closed subset A of T and for every subset B of S such that there exists a subset X of \mathcal{E}^n_T such that X is compact, non boundary, and convex and B and

X are homeomorphic for every function f from $T \upharpoonright A$ into $S \upharpoonright B$ such that f is continuous there exists a function g from T into $S \upharpoonright B$ such that g is continuous and $g \upharpoonright A = f$.

Then T is normal. PROOF: Set $C_1 = [-1, 1]_T$. For every non empty closed subset A of T and for every continuous function f from $T \upharpoonright A$ into C_1 , there exists a continuous function g from T into $[-1, 1]_T$ such that $g \upharpoonright A = f$ by [19, (18), (17)], [11, (2)], [33, (26)]. \square

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–552, 1991.
- [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [8] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [13] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [14] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
- [15] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [16] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [17] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [18] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [19] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [20] Roman Duda. Wprowadzenie do topologii. PWN, 1986.
- [21] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53–58, 2003.
- [22] Ryszard Engelking. Dimension Theory. North-Holland, Amsterdam, 1978.
- [23] Ryszard Engelking. General Topology. Heldermann Verlag, Berlin, 1989.
- [24] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4): 449–454, 1997.
- [25] Artur Korniłowicz. The correspondence between n-dimensional Euclidean space and the product of n real lines. Formalized Mathematics, $18(\mathbf{1}):81-85$, 2010. doi:10.2478/v10037-010-0011-0.
- [26] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181–187, 2005
- [27] Artur Korniłowicz. Homeomorphism between $[:\mathcal{E}_{\mathrm{T}}^{i},\mathcal{E}_{\mathrm{T}}^{j}:]$ and $\mathcal{E}_{\mathrm{T}}^{i+j}$. Formalized Mathema-

- tics, 8(1):73-76, 1999.
- [28] Artur Korniłowicz. On the continuity of some functions. Formalized Mathematics, 18(3): 175–183, 2010. doi:10.2478/v10037-010-0020-z.
- [29] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43–60, 2009. doi:10.2478/v10037-009-0005-y.
- [30] Artur Korniłowicz and Yasunari Shidama. Brouwer fixed point theorem for disks on the plane. Formalized Mathematics, 13(2):333–336, 2005.
- [31] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}_{\mathrm{T}}^n$. Formalized Mathematics, 12(3):301–306, 2004.
- [32] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1–13, 1999.
- [33] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [34] Karol Pak. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201–205, 2009. doi:10.2478/v10037-009-0024-8.
- [35] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [36] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4): 535–545, 1991.
- [37] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [38] Andrzej Trybulec. On the geometry of a Go-Board. Formalized Mathematics, 5(3):347–352, 1996.
- [39] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [40] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [41] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [42] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [43] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.
- [44] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Formalized Mathematics, 5 (1):75–77, 1996.

Received February 11, 2014