Tietze Extension Theorem for n-dimensional Spaces ${ }^{11}$

Karol Pąk
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok
Poland

Abstract

Summary. In this article we prove the Tietze extension theorem for an arbitrary convex compact subset of \mathcal{E}^{n} with a non-empty interior. This theorem states that, if T is a normal topological space, X is a closed subset of T, and A is a convex compact subset of \mathcal{E}^{n} with a non-empty interior, then a continuous function $f: X \rightarrow A$ can be extended to a continuous function $g: T \rightarrow \mathcal{E}^{n}$. Additionally we show that a subset A is replaceable by an arbitrary subset of a topological space that is homeomorphic with a convex compact subset of \mathcal{E}^{n} with a non-empty interior. This article is based on [20]; 23] and [22] can also serve as reference books.

MSC: 54A05 03B35
Keywords: Tietze extension; hypercube
MML identifier: TIETZE_2, version: 8.1.02 5.22.1199
The notation and terminology used in this paper have been introduced in the following articles: 8], [36], [24], 30], 1], [15], [21, [16], [25], 66, 9], [17], 37], [10], [11], [3], 34], [5], 12], [26], [33], [35], [41], [42], [13], 40], [19], [31], 28], [43], [18], 44], [29], and [14].

1. Closed Hypercube

From now on n, m, i denote natural numbers, p, q denote points of $\mathcal{E}_{\mathrm{T}}^{n}, r, s$ denote real numbers, and R denotes a real-valued finite sequence.

Note that every finite sequence which is empty is also non-negative yielding.

[^0]Let n be a non zero natural number, X be a set, and F be an element of $\left(\left(\text { the carrier of } \mathbb{R}^{\mathbf{1}}\right)^{X}\right)^{n}$. Let us note that the functor $\prod^{*} F$ yields a function from X into $\mathcal{E}_{\mathrm{T}}^{n}$. Now we state the proposition:
(1) Let us consider sets X, Y, a function yielding function F, and objects x, y. Suppose
(i) F is $\left(Y^{X}\right)$-valued, or
(ii) $y \in \operatorname{dom} \Pi^{*} F$.

Then $F(x)(y)=\left(\Pi^{*} F\right)(y)(x)$.
Let us consider n, p, and r. The functor OpenHypercube (p, r) yielding an open subset of $\mathcal{E}_{\mathrm{T}}^{n}$ is defined by
(Def. 1) There exists a point e of \mathcal{E}^{n} such that
(i) $p=e$, and
(ii) it $=$ OpenHypercube (e, r).

Now we state the propositions:
(2) If $q \in \operatorname{OpenHypercube}(p, r)$ and $s \in] p(i)-r, p(i)+r[$, then $q+$. $(i, s) \in \operatorname{OpenHypercube}(p, r)$. Proof: Consider e being a point of \mathcal{E}^{n} such that $p=e$ and OpenHypercube $(p, r)=$ OpenHypercube (e, r). Set $I=\operatorname{Intervals}(e, r)$. Set $q_{3}=q+\cdot(i, s)$. For every object x such that $x \in \operatorname{dom} I$ holds $q_{3}(x) \in I(x)$ by [2, (9)], [7, (31), (32)].
(3) If $i \in \operatorname{Seg} n$, then $(\operatorname{PROJ}(n, i))^{\circ}($ OpenHypercube $\left.(p, r))=\right] p(i)-r, p(i)+$ $r[$. The theorem is a consequence of (2).
(4) $q \in \operatorname{OpenHypercube}(p, r)$ if and only if for every i such that $i \in \operatorname{Seg} n$ holds $q(i) \in] p(i)-r, p(i)+r[$. The theorem is a consequence of (3).
Let us consider n, p, and R. The functor $\operatorname{ClosedHypercube}(p, R)$ yielding a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ is defined by
(Def. 2) $\quad q \in i t$ if and only if for every i such that $i \in \operatorname{Seg} n$ holds $q(i) \in[p(i)-$ $R(i), p(i)+R(i)]$.
Now we state the propositions:
(5) If there exists i such that $i \in \operatorname{Seg} n \cap \operatorname{dom} R$ and $R(i)<0$, then ClosedHypercube (p, R) is empty.
(6) If for every i such that $i \in \operatorname{Seg} n \cap \operatorname{dom} R$ holds $R(i) \geqslant 0$, then $p \in$ ClosedHypercube (p, R).
Let us consider n and p. Let R be a non-negative yielding real-valued finite sequence. One can check that ClosedHypercube (p, R) is non empty.

Let us consider R. Let us observe that ClosedHypercube (p, R) is convex and compact.

Now we state the propositions:
(7) If $i \in \operatorname{Seg} n$ and $q \in \operatorname{ClosedHypercube}(p, R)$ and $r \in[p(i)-R(i), p(i)+$ $R(i)]$, then $q+\cdot(i, r) \in \operatorname{ClosedHypercube}(p, R)$. Proof: Set $p_{4}=q+\cdot(i, r)$. For every natural number j such that $j \in \operatorname{Seg} n$ holds $p_{4}(j) \in[p(j)-$ $R(j), p(j)+R(j)]$ by [7, (32), (31)].
(8) Suppose $i \in \operatorname{Seg} n$ and ClosedHypercube (p, R) is not empty.

Then $(\operatorname{PROJ}(n, i))^{\circ}(\operatorname{ClosedHypercube}(p, R))=[p(i)-R(i), p(i)+R(i)]$. The theorem is a consequence of (5), (7), and (6).
(9) If $n \leqslant \operatorname{len} R$ and $r \leqslant \inf \operatorname{rng} R$, then OpenHypercube $(p, r) \subseteq$ ClosedHypercube (p, R).
(10) $q \in \operatorname{Fr} \operatorname{ClosedHypercube}(p, R)$ if and only if $q \in \operatorname{ClosedHypercube}(p, R)$ and there exists i such that $i \in \operatorname{Seg} n$ and $q(i)=p(i)-R(i)$ or $q(i)=$ $p(i)+R(i)$. Proof: Set $T_{4}=\mathcal{E}_{\mathrm{T}}^{n}$. If $q \in \operatorname{Fr} \operatorname{ClosedHypercube}(p, R)$, then $q \in \operatorname{ClosedHypercube}(p, R)$ and there exists i such that $i \in \operatorname{Seg} n$ and $q(i)=p(i)-R(i)$ or $q(i)=p(i)+R(i)$ by [16, (22)], [32, (105)], [14, (33)], [6, (3)]. For every subset S of T_{4} such that S is open and $q \in S$ holds ClosedHypercube (p, R) meets S and (ClosedHypercube $(p, R))^{\text {c }}$ meets S by [16, (67)], [43, (23)], [38, (5)], [31, (13)].
(11) If $r \geqslant 0$, then $p \in \operatorname{ClosedHypercube~}(p, n \mapsto r)$.
(12) If $r>0$, then $\operatorname{Int} \operatorname{ClosedHypercube~}(p, n \mapsto r)=$ OpenHypercube (p, r). Proof: Set $O=$ OpenHypercube (p, r). Set $C=\operatorname{ClosedHypercube~}(p, n \mapsto$ $r)$. Set $T_{4}=\mathcal{E}_{\mathrm{T}}^{n}$. Set $R=n \mapsto r$. Consider e being a point of \mathcal{E}^{n} such that $p=e$ and OpenHypercube $(p, r)=$ OpenHypercube (e, r). Int $C \subseteq O$ by [43, (39)], [9, (57)], (10), [39, (29)]. Reconsider $q=x$ as a point of T_{4}. For every i such that $i \in \operatorname{Seg} n$ holds $q(i) \in[p(i)-R(i), p(i)+R(i)]$ by [9, (57)], (3). Consider i such that $i \in \operatorname{Seg} n$ and $q(i)=p(i)-R(i)$ or $\left.q(i)=p(i)+R(i) \cdot(\operatorname{PROJ}(n, i))^{\circ} O=\right] e(i)-r, e(i)+r[$.
(13) OpenHypercube $(p, r) \subseteq \operatorname{ClosedHypercube}(p, n \mapsto r)$.
(14) If $r<s$, then ClosedHypercube $(p, n \mapsto r) \subseteq \operatorname{OpenHypercube}(p, s)$. The theorem is a consequence of (4).
Let us consider n and p. Let r be a positive real number. Let us note that ClosedHypercube ($p, n \mapsto r$) is non boundary.

2. Properties of the Product of Closed Hypercube

From now on $T_{1}, T_{2}, S_{1}, S_{2}$ denote non empty topological spaces, t_{1} denotes a point of T_{1}, t_{2} denotes a point of T_{2}, p_{2}, q_{2} denote points of $\mathcal{E}_{\mathrm{T}}^{n}$, and p_{1}, q_{1} denote points of $\mathcal{E}_{\mathrm{T}}^{m}$.

Now we state the propositions:
(15) Let us consider a function f from T_{1} into T_{2} and a function g from S_{1} into S_{2}. Suppose
(i) f is a homeomorphism, and
(ii) g is a homeomorphism.

Then $f \times g$ is a homeomorphism.
(16) Suppose $r>0$ and $s>0$. Then there exists a function h from
$\left(\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright \operatorname{ClosedHypercube}\left(p_{2}, n \mapsto r\right)\right) \times\left(\mathcal{E}_{\mathrm{T}}^{m} \upharpoonright \operatorname{ClosedHypercube}\left(p_{1}, m \mapsto s\right)\right)$ into $\mathcal{E}_{\mathrm{T}}^{n+m} \upharpoonright$ ClosedHypercube $\left(0_{\mathcal{E}_{\mathrm{T}}^{n+m}},(n+m) \mapsto 1\right)$ such that
(i) h is a homeomorphism, and
(ii) $h^{\circ}\left(\operatorname{OpenHypercube}\left(p_{2}, r\right) \times \operatorname{OpenHypercube}\left(p_{1}, s\right)\right)=$ OpenHypercube $\left(0_{\mathcal{E}_{\mathrm{T}}^{n+m}}, 1\right)$.
Proof: Set $T_{6}=\mathcal{E}_{\mathrm{T}}^{n}$. Set $T_{5}=\mathcal{E}_{\mathrm{T}}^{m}$. Set $n_{1}=n+m$. Set $T_{7}=\mathcal{E}_{\mathrm{T}}^{n_{1}}$. Set $R_{2}=$ ClosedHypercube ($0_{T_{6}}, n \mapsto 1$). Set $R_{4}=$ ClosedHypercube $\left(p_{2}, n \mapsto r\right)$. Set $R_{5}=$ ClosedHypercube $\left(p_{1}, m \mapsto s\right)$. Set $R_{1}=$ ClosedHypercube $\left(0_{T_{5}}, m \mapsto\right.$ 1). Set $R_{3}=$ ClosedHypercube $\left(0_{T_{7}}, n_{1} \mapsto 1\right)$. Reconsider $R_{10}=R_{5}, R_{6}=$ R_{1} as a non empty subset of T_{5}. Consider h_{3} being a function from $T_{5} \upharpoonright R_{10}$ into $T_{5} \upharpoonright R_{6}$ such that h_{3} is a homeomorphism and $h_{3}{ }^{\circ}\left(\operatorname{Fr} R_{10}\right)=\operatorname{Fr} R_{6}$. Reconsider $R_{9}=R_{4}, R_{7}=R_{2}$ as a non empty subset of T_{6}. Consider h_{4} being a function from $T_{6} \upharpoonright R_{9}$ into $T_{6} \upharpoonright R_{7}$ such that h_{4} is a homeomorphism and $h_{4}{ }^{\circ}\left(\operatorname{Fr} R_{9}\right)=\operatorname{Fr} R_{7}$. Set $O_{8}=\operatorname{OpenHypercube}\left(p_{2}, r\right)$. Set $O_{9}=$ OpenHypercube $\left(p_{1}, s\right)$. Set $O_{6}=$ OpenHypercube $\left(0_{T_{7}}, 1\right)$. Int $R_{10}=O_{9}$. Set $O_{5}=$ OpenHypercube $\left(0_{T_{6}}, 1\right)$. Set $O_{7}=$ OpenHypercube $\left(0_{T_{5}}, 1\right)$. Reconsider $R_{8}=R_{3}$ as a non empty subset of T_{7}. Consider f being a function from $T_{6} \times T_{5}$ into T_{7} such that f is a homeomorphism and for every element f_{5} of T_{6} and for every element f_{6} of $T_{5}, f\left(f_{5}, f_{6}\right)=f_{5} \wedge f_{6} . f^{\circ}\left(R_{7} \times\right.$ $\left.R_{6}\right) \subseteq R_{8}$ by [14, (87)], [9, (57)], [6, (25)]. $R_{8} \subseteq f^{\circ}\left(R_{7} \times R_{6}\right)$ by [9, (23)], [27, (17)], [4, (11)], [6, (5)]. Set $h_{5}=h_{4} \times h_{3} . h_{5}$ is a homeomorphism. Int $R_{7}=O_{5}$. Reconsider $f_{1}=f \upharpoonright\left(R_{7} \times R_{6}\right)$ as a function from $\left(T_{6} \upharpoonright R_{7}\right) \times$ $\left(T_{5} \upharpoonright R_{6}\right)$ into $T_{7} \upharpoonright R_{8}$. Reconsider $h=f_{1} \cdot h_{5}$ as a function from $\left(T_{6} \upharpoonright R_{4}\right) \times$ $\left(T_{5} \upharpoonright R_{5}\right)$ into $T_{7} \upharpoonright R_{3}$. Int $R_{6}=O_{7}$. Int $R_{9}=O_{8} . h^{\circ}\left(O_{8} \times O_{9}\right) \subseteq O_{6}$ by [14, (87)], [10, (12)], [43, (40)], [10, (49)]. Reconsider $p_{3}=y$ as a point of T_{7}. Consider p, q being finite sequences of elements of \mathbb{R} such that len $p=n$ and len $q=m$ and $p_{3}=p^{\wedge} q . q \in O_{7} . q \in R_{6}$. Consider x_{2} being an object such that $x_{2} \in \operatorname{dom} h_{3}$ and $h_{3}\left(x_{2}\right)=q . p \in O_{5} . p \in R_{7}$. Consider x_{1} being an object such that $x_{1} \in \operatorname{dom} h_{4}$ and $h_{4}\left(x_{1}\right)=p$.
(17) Suppose $r>0$ and $s>0$. Let us consider a function f from T_{1} into $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright$ ClosedHypercube ($p_{2}, n \mapsto r$) and a function g from T_{2} into $\mathcal{E}_{\mathrm{T}}^{m} \upharpoonright$ ClosedHypercube $\left(p_{1}, m \mapsto s\right)$. Suppose
(i) f is a homeomorphism, and
(ii) g is a homeomorphism.

Then there exists a function h from $T_{1} \times T_{2}$ into
$\mathcal{E}_{\mathrm{T}}^{n+m} \upharpoonright$ ClosedHypercube $\left(0_{\mathcal{E}_{\mathrm{T}}^{n+m}},(n+m) \mapsto 1\right)$ such that
(iii) h is a homeomorphism, and
(iv) for every t_{1} and $t_{2}, f\left(t_{1}\right) \in \operatorname{OpenHypercube}\left(p_{2}, r\right)$ and $g\left(t_{2}\right) \in$ OpenHypercube $\left(p_{1}, s\right)$ iff $h\left(t_{1}, t_{2}\right) \in \operatorname{OpenHypercube}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+m}}, 1\right)$.
Proof: Set $n_{1}=n+m$. Set $T_{6}=\mathcal{E}_{\mathrm{T}}^{n}$. Set $T_{5}=\mathcal{E}_{\mathrm{T}}^{m}$. Set $T_{7}=\mathcal{E}_{\mathrm{T}}^{n_{1}}$. Set $R_{7}=n \mapsto r$. Set $R_{6}=m \mapsto s$. Set $R_{8}=n_{1} \mapsto 1$. Set $R_{4}=$ ClosedHypercube $\left(p_{2}, R_{7}\right)$. Set $R_{5}=\operatorname{ClosedHypercube}\left(p_{1}, R_{6}\right)$. Set $C_{2}=$ ClosedHypercube $\left(0_{T_{7}}, R_{8}\right)$. Reconsider $R_{10}=R_{5}$ as a non empty subset of T_{5}. Reconsider $R_{9}=R_{4}$ as a non empty subset of T_{6}. Set $O_{8}=$ OpenHypercube $\left(p_{2}, r\right)$. Set $O_{9}=\operatorname{OpenHypercube~}\left(p_{1}, s\right)$. Set $O=$ OpenHypercube $\left(0_{T_{7}}, 1\right)$. Consider h being a function from $\left(T_{6} \upharpoonright R_{9}\right) \times\left(T_{5} \upharpoonright R_{10}\right)$ into $T_{7} \upharpoonright C_{2}$ such that h is a homeomorphism and $h^{\circ}\left(O_{8} \times O_{9}\right)=O$. Reconsider $G=g$ as a function from T_{2} into $T_{5} \upharpoonright R_{10}$. Reconsider $F=f$ as a function from T_{1} into $T_{6} \upharpoonright R_{9}$. Reconsider $f_{4}=h \cdot(F \times G)$ as a function from $T_{1} \times T_{2}$ into $T_{7} \mid C_{2} . F \times G$ is a homeomorphism. $O_{9} \subseteq R_{10} . O_{8} \subseteq R_{9}$. If $f\left(t_{1}\right) \in O_{8}$ and $g\left(t_{2}\right) \in O_{9}$, then $f_{4}\left(t_{1}, t_{2}\right) \in O$ by [14, (87)], [10, (12)]. Consider x_{3} being an object such that $x_{3} \in \operatorname{dom} h$ and $x_{3} \in O_{8} \times O_{9}$ and $h\left(x_{3}\right)=h\left(\left\langle f\left(t_{1}\right), g\left(t_{2}\right)\right\rangle\right)$.
Let us consider n. One can check that there exists a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ which is non boundary, convex, and compact.

Now we state the propositions:
(18) Let us consider a non boundary convex compact subset A of $\mathcal{E}_{\mathrm{T}}^{n}$, a non boundary convex compact subset B of $\mathcal{E}_{\mathrm{T}}^{m}$, a non boundary convex compact subset C of $\mathcal{E}_{\mathrm{T}}^{n+m}$, a function f from T_{1} into $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright A$, and a function g from T_{2} into $\mathcal{E}_{\mathrm{T}}^{m} \upharpoonright B$. Suppose
(i) f is a homeomorphism, and
(ii) g is a homeomorphism.

Then there exists a function h from $T_{1} \times T_{2}$ into $\mathcal{E}_{\mathrm{T}}^{n+m} \upharpoonright C$ such that
(iii) h is a homeomorphism, and
(iv) for every t_{1} and $t_{2}, f\left(t_{1}\right) \in \operatorname{Int} A$ and $g\left(t_{2}\right) \in \operatorname{Int} B \operatorname{iff} h\left(t_{1}, t_{2}\right) \in \operatorname{Int} C$. Proof: Set $T_{6}=\mathcal{E}_{\mathrm{T}}^{n}$. Set $T_{5}=\mathcal{E}_{\mathrm{T}}^{m}$. Set $n_{1}=n+m$. Set $T_{7}=\mathcal{E}_{\mathrm{T}}^{n_{1}}$. Set $R_{7}=$ ClosedHypercube ($0_{T_{6}}, n \mapsto 1$). Set $R_{6}=\operatorname{ClosedHypercube}\left(0_{T_{5}}, m \mapsto 1\right)$. Set $R_{8}=$ ClosedHypercube $\left(0_{T_{7}}, n_{1} \mapsto 1\right)$. Consider g_{1} being a function from $T_{5} \upharpoonright B$ into $T_{5} \upharpoonright R_{6}$ such that g_{1} is a homeomorphism and $g_{1}{ }^{\circ}(\operatorname{Fr} B)=$ Fr R_{6}. Reconsider $g_{2}=g_{1} \cdot g$ as a function from T_{2} into $T_{5} \upharpoonright R_{6}$. Consider f_{7} being a function from $T_{6} \upharpoonright A$ into $T_{6} \upharpoonright R_{7}$ such that f_{7} is a homeomorphism and $f_{7}{ }^{\circ}(\operatorname{Fr} A)=\operatorname{Fr} R_{7}$. Reconsider $f_{8}=f_{7} \cdot f$ as a function from T_{1} into $T_{6} \upharpoonright R_{7}$. Set $O_{3}=$ OpenHypercube $\left(0_{T_{6}}, 1\right)$. Set $O_{2}=$ OpenHypercube $\left(0_{T_{5}}, 1\right)$. Set $O_{4}=$ OpenHypercube $\left(0_{T_{7}}, 1\right)$. Consider H
being a function from $T_{7} \upharpoonright R_{8}$ into $T_{7} \upharpoonright C$ such that H is a homeomorphism and $H^{\circ}\left(\operatorname{Fr} R_{8}\right)=\operatorname{Fr} C$. Int $R_{6}=O_{2}$. Consider P being a function from $T_{1} \times T_{2}$ into $T_{7} \upharpoonright R_{8}$ such that P is a homeomorphism and for every t_{1} and $t_{2}, f_{8}\left(t_{1}\right) \in O_{3}$ and $g_{2}\left(t_{2}\right) \in O_{2}$ iff $P\left(t_{1}, t_{2}\right) \in O_{4}$. Reconsider $H_{1}=H \cdot P$ as a function from $T_{1} \times T_{2}$ into $T_{7} \upharpoonright C$. Int $R_{8}=O_{4}$. If $f\left(t_{1}\right) \in \operatorname{Int} A$ and $g\left(t_{2}\right) \in \operatorname{Int} B$, then $H_{1}\left(t_{1}, t_{2}\right) \in \operatorname{Int} C$ by [10, (11), (12)], (12). $P\left(\left\langle t_{1}\right.\right.$, $\left.\left.t_{2}\right\rangle\right) \in \operatorname{Int} R_{8} . P\left(t_{1}, t_{2}\right) \in O_{4} . \operatorname{Int} R_{7}=O_{3} . f\left(t_{1}\right) \in \operatorname{Int} A$ by [43, (40)].
(19) Let us consider a point p_{2} of $\mathcal{E}_{\mathrm{T}}^{n}$, a point p_{1} of $\mathcal{E}_{\mathrm{T}}^{m}, r$, and s. Suppose
(i) $r>0$, and
(ii) $s>0$.

Then there exists a function h from $\operatorname{Tdisk}\left(p_{2}, r\right) \times \operatorname{Tdisk}\left(p_{1}, s\right)$ into
$\operatorname{Tdisk}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+m}}, 1\right)$ such that
(iii) h is a homeomorphism, and
(iv) $h^{\circ}\left(\operatorname{Ball}\left(p_{2}, r\right) \times \operatorname{Ball}\left(p_{1}, s\right)\right)=\operatorname{Ball}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+m}}, 1\right)$.

Proof: Set $T_{6}=\mathcal{E}_{\mathrm{T}}^{n}$. Set $T_{5}=\mathcal{E}_{\mathrm{T}}^{m}$. Set $n_{1}=n+m$. Set $T_{7}=\mathcal{E}_{\mathrm{T}}^{n_{1}}$. Reconsider $C_{4}=\overline{\operatorname{Ball}}\left(p_{2}, r\right)$ as a non empty subset of T_{6}. Reconsider $C_{3}=\overline{\operatorname{Ball}}\left(p_{1}, s\right)$ as a non empty subset of T_{5}. Reconsider $C_{5}=\overline{\operatorname{Ball}}\left(0_{T_{7}}, 1\right)$ as a non empty subset of T_{7}. Set $R_{7}=$ ClosedHypercube $\left(0_{T_{6}}, n \mapsto 1\right)$. Set $R_{6}=$ ClosedHypercube $\left(0_{T_{5}}, m \mapsto 1\right)$. Consider f_{7} being a function from $T_{6} \upharpoonright C_{4}$ into $T_{6} \upharpoonright R_{7}$ such that f_{7} is a homeomorphism and $f_{7}{ }^{\circ}\left(\operatorname{Fr} C_{4}\right)=$ $\operatorname{Fr} R_{7}$. Consider g_{1} being a function from $T_{5} \upharpoonright C_{3}$ into $T_{5} \upharpoonright R_{6}$ such that g_{1} is a homeomorphism and $g_{1}{ }^{\circ}\left(\operatorname{Fr} C_{3}\right)=\operatorname{Fr} R_{6}$. Consider P being a function from $\operatorname{Tdisk}\left(p_{2}, r\right) \times \operatorname{Tdisk}\left(p_{1}, s\right)$ into $\operatorname{Tdisk}\left(0_{T_{7}}, 1\right)$ such that P is a homeomorphism and for every point t_{1} of $T_{6} \upharpoonright C_{4}$ and for every point t_{2} of $T_{5} \upharpoonright C_{3}$, $f_{7}\left(t_{1}\right) \in \operatorname{Int} R_{7}$ and $g_{1}\left(t_{2}\right) \in \operatorname{Int} R_{6}$ iff $P\left(t_{1}, t_{2}\right) \in \operatorname{Int} C_{5} . P^{\circ}\left(\operatorname{Ball}\left(p_{2}, r\right) \times\right.$ $\left.\operatorname{Ball}\left(p_{1}, s\right)\right) \subseteq \operatorname{Ball}\left(0_{T_{7}}, 1\right)$ by [30, (3)], [43, (40)]. Consider x being an object such that $x \in \operatorname{dom} P$ and $P(x)=y$. Consider y_{1}, y_{2} being objects such that $y_{1} \in C_{4}$ and $y_{2} \in C_{3}$ and $x=\left\langle y_{1}, y_{2}\right\rangle$.
(20) Suppose $r>0$ and $s>0$ and T_{1} and $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright \operatorname{Ball}\left(p_{2}, r\right)$ are homeomorphic and T_{2} and $\mathcal{E}_{\mathrm{T}}^{m} \upharpoonright \operatorname{Ball}\left(p_{1}, s\right)$ are homeomorphic. Then $T_{1} \times T_{2}$ and $\mathcal{E}_{\mathrm{T}}^{n+m} \upharpoonright \operatorname{Ball}\left(0_{\mathcal{E}_{\mathrm{T}}^{n+m}}, 1\right)$ are homeomorphic.

3. Tietze Extension Theorem

In the sequel T, S denote topological spaces, A denotes a closed subset of T, and B denotes a subset of S.

Now we state the propositions:
(21) Let us consider a non zero natural number n and an element F of $\left(\left(\text { the carrier of } \mathbb{R}^{\mathbf{1}}\right)^{\alpha}\right)^{n}$. Suppose If $i \in \operatorname{dom} F$, then for every function
h from T into $\mathbb{R}^{\mathbf{1}}$ such that $h=F(i)$ holds h is continuous. Then $\Pi^{*} F$ is continuous, where α is the carrier of T. Proof: Set $T_{4}=\mathcal{E}_{\mathrm{T}}^{n}$. Set $F_{1}=\Pi^{*} F$. For every subset Y of T_{4} such that Y is open holds $F_{1}^{-1}(Y)$ is open by [16, (67)], [11, (2)], (1), [19, (17)].
(22) Suppose T is normal. Let us consider a function f from $T \upharpoonright A$ into $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright$ ClosedHypercube $\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}, n \mapsto 1\right)$. Suppose f is continuous. Then there exists a function g from T into $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright$ ClosedHypercube $\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}, n \mapsto 1\right)$ such that
(i) g is continuous, and
(ii) $g \upharpoonright A=f$.

The theorem is a consequence of (8), (1), and (21).
(23) Suppose T is normal. Let us consider a subset X of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose X is compact, non boundary, and convex. Let us consider a function f from $T \upharpoonright A$ into $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright X$. Suppose f is continuous. Then there exists a function g from T into $\mathcal{E}_{\mathrm{T}}^{n} \upharpoonright X$ such that
(i) g is continuous, and
(ii) $g \upharpoonright A=f$.

The theorem is a consequence of (22).
Now we state the proposition:
(24) The First Implication of Tietze Extension Theorem for ndimensional Spaces:
Suppose T is normal. Let us consider a subset X of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose
(i) X is compact, non boundary, and convex, and
(ii) B and X are homeomorphic.

Let us consider a function f from $T \upharpoonright A$ into $S \upharpoonright B$. Suppose f is continuous. Then there exists a function g from T into $S \upharpoonright B$ such that
(iii) g is continuous, and
(iv) $g\lceil A=f$.

The theorem is a consequence of (23).
Now we state the proposition:
(25) The Second Implication of Tietze Extension Theorem for n dimensional Spaces:
Let us consider a non empty topological space T and n. Suppose
(i) $n \geqslant 1$, and
(ii) for every topological space S and for every non empty closed subset A of T and for every subset B of S such that there exists a subset X of $\mathcal{E}_{\mathrm{T}}^{n}$ such that X is compact, non boundary, and convex and B and
X are homeomorphic for every function f from $T \upharpoonright A$ into $S \upharpoonright B$ such that f is continuous there exists a function g from T into $S \upharpoonright B$ such that g is continuous and $g \upharpoonright A=f$.

Then T is normal. Proof: Set $C_{1}=[-1,1]_{\mathrm{T}}$. For every non empty closed subset A of T and for every continuous function f from $T \upharpoonright A$ into C_{1}, there exists a continuous function g from T into $[-1,1]_{\mathrm{T}}$ such that $g \upharpoonright A=f$ by [19, (18), (17)], [11, (2)], [33, (26)].

References

[1] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[5] Grzegorz Bancerek. The ordinal numbers, Formalized Mathematics, 1(1):91-96, 1990.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions Formalized Mathematics, 5(4):485-492, 1996.
[8] Czesław Byliński. Binary operations Formalized Mathematics, 1(1):175-180, 1990.
[9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[10] Czesław Bylinski. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[11] Czesław Bylinski. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[12] Czesław Byliński. Partial functions Formalized Mathematics, 1(2):357-367, 1990.
[13] Czesław Bylinski. The sum and product of finite sequences of real numbers Formalized Mathematics, 1(4):661-668, 1990.
[14] Czesław Bylinski. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[15] Agata Darmochwał. Compact spaces Formalized Mathematics, 1(2):383-386, 1990.
[16] Agata Darmochwał. The Euclidean space Formalized Mathematics, 2(4):599-603, 1991.
[17] Agata Darmochwał. Finite sets, Formalized Mathematics, 1(1):165-167, 1990.
[18] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces Formalized Mathematıcs, 1(2):257-261, 1990.
[19] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts Formalized Mathematics, 2(4):605-608, 1991.
[20] Roman Duda. Wprowadzenie do topologii. PWN, 1986.
[21] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations Formalized Mathematics, 11(1):53-58, 2003.
[22] Ryszard Engelking. Dimension Theory. North-Holland, Amsterdam, 1978.
[23] Ryszard Engelking. General Topology. Heldermann Verlag, Berlin, 1989.
[24] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4): 449-454, 1997.
[25] Artur Korniłowicz. The correspondence between n-dimensional Euclidean space and the product of n real lines. Formalized Mathematics, 18(1):81-85, 2010. doi $10.2478 / \mathrm{v} 10037-$ 010-0011-0
[26] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
[27] Artur Korniłowicz. Homeomorphism between $\left[: \mathcal{E}_{\mathrm{T}}^{i}, \mathcal{E}_{\mathrm{T}}^{j}:\right]$ and $\mathcal{E}_{\mathrm{T}}^{i+j}$ Formalized Mathema-
tics, 8(1):73-76, 1999.
[28] Artur Korniłowicz. On the continuity of some functions. Formalized Mathematics, 18(3): 175-183, 2010. doi $10.2478 / \mathrm{v} 10037-010-0020-\mathrm{z}$.
[29] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009. doi 10.2478/v10037-009-0005-y.
[30] Artur Korniłowicz and Yasunari Shidama. Brouwer fixed point theorem for disks on the plane Formalized Mathematics, 13(2):333-336, 2005.
[31] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}_{\mathrm{T}}^{n}$. Formalized Mathematics, 12(3):301-306, 2004.
[32] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains Formalized Mathematics, 8(1):1-13, 1999.
[33] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[34] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009. doi 10.2478/v10037-009-0024-8.
[35] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[36] Andrzej Trybulec. A Borsuk theorem on homotopy types Formalized Mathematics, 2(4): 535-545, 1991.
[37] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
[38] Andrzej Trybulec. On the geometry of a Go-Board Formalized Mathematics, 5(3):347352, 1996.
[39] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 19y0.
[40] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[41] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[42] Edmund Woronowicz. Relations defined on sets Formalized Mathematics, 1(1):181-186, 1990.
[43] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces Formalized Mathematics, 1(1):231-237, 1990.
[44] Mariusz Żynel and Adam Guzowski. T_{0} topological spaces. Formalized Mathematics, 5 (1):75-77, 1996.

[^0]: ${ }^{1}$ The paper has been financed by the resources of the Polish National Science Centre granted by decision no DEC-2012/07/N/ST6/02147.

