

Submodule of free \mathbb{Z} -module¹

Yuichi Futa Japan Advanced Institute of Science and Technology Ishikawa, Japan

Hiroyuki Okazaki Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we formalize a free \mathbb{Z} -module and its property. In particular, we formalize the vector space of rational field corresponding to a free \mathbb{Z} -module and prove formally that submodules of a free \mathbb{Z} -module are free. \mathbb{Z} -module is necassary for lattice problems - LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [20]. Some theorems in this article are described by translating theorems in [11] into theorems of \mathbb{Z} -module, however their proofs are different.

MSC: 13C10 15A03 03B35 Keywords: free Z-module; submodule of free Z-module MML identifier: ZMODUL04, version: 8.1.02 5.22.1194

The notation and terminology used in this paper have been introduced in the following articles: [6], [1], [24], [22], [5], [12], [7], [8], [16], [25], [19], [23], [21], [3], [4], [9], [17], [30], [32], [31], [26], [29], [18], [27], [28], [33], [10], [13], [14], and [15].

1. Vector Space of Rational Field Generated by a Free \mathbb{Z} -module

From now on V denotes a Z-module and W, W_1, W_2 denote submodules of V. Let us consider a Z-module V, submodules W_1, W_2 of V, and submodules W_5, W_6 of $W_1 + W_2$. Now we state the propositions:

(1) If $W_5 = W_1$ and $W_6 = W_2$, then $W_1 + W_2 = W_5 + W_6$.

(2) If $W_5 = W_1$ and $W_6 = W_2$, then $W_1 \cap W_2 = W_5 \cap W_6$.

¹This work was supported by JSPS KAKENHI 21240001 and 22300285.

Let V be a \mathbb{Z} -module. Note that (the carrier of $V) \times (\mathbb{Z} \setminus \{0\})$ is non empty. Assume V is cancelable on multiplication. The functor EQRZM(V) yielding an equivalence relation of (the carrier of $V) \times (\mathbb{Z} \setminus \{0\})$ is defined by

(Def. 1) Let us consider elements S, T. Then $\langle S, T \rangle \in it$ if and only if $S, T \in$ (the carrier of $V \rangle \times (\mathbb{Z} \setminus \{0\})$ and there exist elements z_1, z_2 of V and there exist integers i_1, i_2 such that $S = \langle z_1, i_1 \rangle$ and $T = \langle z_2, i_2 \rangle$ and $i_1 \neq 0$ and $i_2 \neq 0$ and $i_2 \cdot z_1 = i_1 \cdot z_2$.

Now we state the proposition:

(3) Let us consider a \mathbb{Z} -module V, elements z_1 , z_2 of V, and integers i_1 , i_2 . Suppose V is cancelable on multiplication. Then $\langle \langle z_1, i_1 \rangle, \langle z_2, i_2 \rangle \rangle \in \text{EQRZM}(V)$ if and only if $i_1 \neq 0$ and $i_2 \neq 0$ and $i_2 \cdot z_1 = i_1 \cdot z_2$.

Let V be a \mathbb{Z} -module. Assume V is cancelable on multiplication. The functor addCoset V yielding a binary operation on Classes EQRZM(V) is defined by

- (Def. 2) Let us consider elements A, B. Suppose $A, B \in \text{Classes EQRZM}(V)$. Let us consider elements z_1, z_2 of V and integers i_1, i_2 . Suppose
 - (i) $i_1 \neq 0$, and
 - (ii) $i_2 \neq 0$, and
 - (iii) $A = [\langle z_1, i_1 \rangle]_{\text{EORZM}(V)}$, and
 - (iv) $B = [\langle z_2, i_2 \rangle]_{\text{EQRZM}(V)}.$

Then $it(A, B) = [\langle i_2 \cdot z_1 + i_1 \cdot z_2, i_1 \cdot i_2 \rangle]_{\text{EQRZM}(V)}.$

Assume V is cancelable on multiplication. The functor zeroCoset V yielding an element of Classes EQRZM(V) is defined by

(Def. 3) Let us consider an integer *i*. Suppose $i \neq 0$. Then $it = [\langle 0_V, i \rangle]_{\text{EQRZM}(V)}$.

Assume V is cancelable on multiplication. The functor lmultCoset V yielding a function from (the carrier of $\mathbb{F}_{\mathbb{Q}}$)×Classes EQRZM(V) into Classes EQRZM(V) is defined by

- (Def. 4) Let us consider an element q and an element A. Suppose
 - (i) $q \in \mathbb{Q}$, and
 - (ii) $A \in \text{Classes EQRZM}(V)$.

Let us consider integers m, n, i and an element z of V. Suppose

- (iii) $n \neq 0$, and
- (iv) $q = \frac{m}{n}$, and
- (v) $i \neq 0$, and
- (vi) $A = [\langle z, i \rangle]_{\text{EQRZM}(V)}.$

Then $it(q, A) = [\langle m \cdot z, n \cdot i \rangle]_{\text{EQRZM}(V)}$.

Now we state the propositions:

- (4) Let us consider a \mathbb{Z} -module V, an element z of V, and integers i, n. Suppose
 - (i) $i \neq 0$, and
 - (ii) $n \neq 0$, and
 - (iii) V is cancelable on multiplication.

Then $[\langle z, i \rangle]_{\text{EQRZM}(V)} = [\langle n \cdot z, n \cdot i \rangle]_{\text{EQRZM}(V)}$. The theorem is a consequence of (3).

(5) Let us consider a Z-module V and an element v of (Classes EQRZM(V), addCoset V, zeroCoset V, lmultCoset V). Suppose V is cancelable on multiplication. Then there exists an integer i and there exists an element z of V such that $i \neq 0$ and $v = [\langle z, i \rangle]_{EQRZM(V)}$.

Let V be a Z-module. Assume V is cancelable on multiplication. The functor $\operatorname{ZMQVectSp}(V)$ yielding a vector space over $\mathbb{F}_{\mathbb{Q}}$ is defined by the term

(Def. 5) $\langle \text{Classes EQRZM}(V), \text{addCoset } V, \text{zeroCoset } V, \text{lmultCoset } V \rangle$.

Assume V is cancelable on multiplication. The functor MorphsZQ(V) yielding a function from V into ZMQVectSp(V) is defined by

- (Def. 6) (i) *it* is one-to-one, and
 - (ii) for every element v of V, $it(v) = [\langle v, 1 \rangle]_{\text{EORZM}(V)}$, and
 - (iii) for every elements v, w of V, it(v+w) = it(v) + it(w), and
 - (iv) for every element v of V and for every integer i and for every element q of $\mathbb{F}_{\mathbb{O}}$ such that i = q holds $it(i \cdot v) = q \cdot it(v)$, and
 - (v) $it(0_V) = 0_{\text{ZMQVectSp}(V)}$.

Now we state the propositions:

- (6) Let us consider a Z-module V. Suppose V is cancelable on multiplication. Let us consider a finite sequence s of elements of V and a finite sequence t of elements of ZMQVectSp(V). Suppose
 - (i) $\operatorname{len} s = \operatorname{len} t$, and
 - (ii) for every element i of \mathbb{N} such that $i \in \text{dom } s$ there exists a vector s_1 of V such that $s_1 = s(i)$ and $t(i) = (\text{MorphsZQ}(V))(s_1)$.

Then $\sum t = (\text{MorphsZQ}(V))(\sum s)$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every finite sequence s of elements of V for every finite sequence t of elements of ZMQVectSp(V) such that len $s = \$_1$ and len s = len t and for every element i of N such that $i \in \text{dom } s$ there exists a vector s_1 of V such that $s_1 = s(i)$ and $t(i) = (\text{MorphsZQ}(V))(s_1)$ holds $\sum t =$ $(\text{MorphsZQ}(V))(\sum s)$. $\mathcal{P}[0]$ by [26, (43)]. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [5, (59)], [3, (11)], [5, (4)]. For every natural number k, $\mathcal{P}[k]$ from [3, Sch. 2]. \Box

- (7) Let us consider a \mathbb{Z} -module V, a subset I of V, a subset I_6 of ZMQVectSp (V), a z linear combination l of I, and a linear combination l_5 of I_6 . Suppose
 - (i) V is cancelable on multiplication, and
 - (ii) $I_6 = (MorphsZQ(V))^{\circ}I$, and
 - (iii) $l = l_5 \cdot \text{MorphsZQ}(V)$.

Then $\sum l_5 = (\text{MorphsZQ}(V))(\sum l)$. The theorem is a consequence of (6).

- (8) Let us consider a Z-module V, a subset I_6 of ZMQVectSp(V), and a linear combination l_5 of I_6 . Then there exists an integer m and there exists an element a of $\mathbb{F}_{\mathbb{Q}}$ such that $m \neq 0$ and m = a and $\operatorname{rng}(a \cdot l_5) \subseteq \mathbb{Z}$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every linear combination l_5 of I_6 such that the support of $\overline{l_5} = \$_1$ there exists an integer m and there exists an element a of $\mathbb{F}_{\mathbb{Q}}$ such that $m \neq 0$ and m = a and $\operatorname{rng}(a \cdot l_5) \subseteq \mathbb{Z}$. $\mathcal{P}[0]$ by [27, (28)], [8, (113)], [27, (3)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [2, (44)], [10, (31)], [2, (42)]. For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 2]. \Box
- (9) Let us consider a \mathbb{Z} -module V, a subset I of V, a subset I_6 of ZMQVectSp(V), and a linear combination l_5 of I_6 . Suppose
 - (i) V is cancelable on multiplication, and
 - (ii) $I_6 = (MorphsZQ(V))^{\circ}I.$

Then there exists an integer m and there exists an element a of $\mathbb{F}_{\mathbb{Q}}$ and there exists a z linear combination l of I such that $m \neq 0$ and m = aand $l = (a \cdot l_5) \cdot \text{MorphsZQ}(V)$ and $(\text{MorphsZQ}(V))^{-1}$ (the support of l_5) = the support of l. The theorem is a consequence of (8). PROOF: Consider m being an integer, a being an element of $\mathbb{F}_{\mathbb{Q}}$ such that $m \neq 0$ and m = a and $\operatorname{rng}(a \cdot l_5) \subseteq \mathbb{Z}$. Reconsider $l = (a \cdot l_5) \cdot \text{MorphsZQ}(V)$ as an element of $\mathbb{Z}^{\text{the carrier of } V}$. Set $T = \{v, \text{ where } v \text{ is an element of } V : l(v) \neq 0\}$. Set F = MorphsZQ(V). $T \subseteq F^{-1}$ (the support of l_5) by [7, (13)], [8, (38)]. F^{-1} (the support of $l_5) \subseteq T$ by [8, (38)], [7, (13)]. \Box

(10) Let us consider a \mathbb{Z} -module V, a subset I of V,

a subset I_6 of ZMQVectSp(V), a linear combination l_5 of I_6 , an integer m, an element a of $\mathbb{F}_{\mathbb{Q}}$, and a z linear combination l of I. Suppose

- (i) V is cancelable on multiplication, and
- (ii) $I_6 = (MorphsZQ(V))^{\circ}I$, and
- (iii) $m \neq 0$, and
- (iv) m = a, and
- (v) $l = (a \cdot l_5) \cdot \text{MorphsZQ}(V)$.

Then $a \cdot \sum l_5 = (\text{MorphsZQ}(V))(\sum l)$. The theorem is a consequence of (7).

- (11) Let us consider a \mathbb{Z} -module V, a subset I of V, and a subset I_6 of $\operatorname{ZMQVectSp}(V)$. Suppose
 - (i) V is cancelable on multiplication, and
 - (ii) $I_6 = (MorphsZQ(V))^{\circ}I$, and
 - (iii) I is linearly independent.

Then I_6 is linearly independent. The theorem is a consequence of (9) and (10).

- (12) Let us consider a \mathbb{Z} -module V, a subset I of V, a z linear combination l of I, and a subset I_6 of ZMQVectSp(V). Suppose
 - (i) V is cancelable on multiplication, and
 - (ii) $I_6 = (MorphsZQ(V))^{\circ}I.$

Then there exists a linear combination l_5 of I_6 such that

- (iii) $l = l_5 \cdot \text{MorphsZQ}(V)$, and
- (iv) the support of $l_5 = (MorphsZQ(V))^{\circ}$ the support of l.

PROOF: Reconsider I_0 = the support of l as a finite subset of V. Reconsider $I_7 = (MorphsZQ(V))^{\circ}I_0$ as a finite subset of ZMQVectSp(V). Define $\mathcal{P}[\text{element}, \text{element}] \equiv \$_1 \in I_7$ and there exists an element v of V such that $v \in I_0$ and $\$_1 = (MorphsZQ(V))(v)$ and $\$_2 = l(v)$ or $\$_1 \notin I_7$ and $\$_2 = 0_{\mathbb{F}_Q}$. For every element x such that $x \in$ the carrier of ZMQVectSp(V) there exists an element y such that $y \in \mathbb{Q}$ and $\mathcal{P}[x, y]$ by [\$, (64)]. Consider l_5 being a function from the carrier of ZMQVectSp(V) into \mathbb{Q} such that for every element x such that $x \in$ the carrier of ZMQVectSp(V) holds $\mathcal{P}[x, l_5(x)]$ from [\$, Sch. 1]. The support of $l_5 \subseteq I_7$. For every element x such that $x \in (a_5 \cdot MorphsZQ(V))(x)$ by [\$, (35), (19)], [7, (12)]. $I_7 \subseteq$ the support of l_5 by [\$, (64)], [7, (12)], [14, (8)]. \Box

- (13) Let us consider a free \mathbb{Z} -module V, a subset I of V, a subset I_6 of ZMQVectSp(V), a z linear combination l of I, and an integer i. Suppose
 - (i) $i \neq 0$, and
 - (ii) $I_6 = (\text{MorphsZQ}(V))^{\circ}I.$

Then $[\langle \sum l, i \rangle]_{\text{EQRZM}(V)} \in \text{Lin}(I_6)$. The theorem is a consequence of (12) and (7).

Let us consider a free \mathbb{Z} -module V, a subset I of V, and a subset I_6 of ZMQVectSp(V). Now we state the propositions:

- (14) If $I_6 = (MorphsZQ(V))^{\circ}I$, then $\overline{\overline{I}} = \overline{\overline{I_6}}$.
- (15) If $I_6 = (MorphsZQ(V))^{\circ}I$ and I is a basis of V, then I_6 is a basis of ZMQVectSp(V).

Let V be a finite-rank free \mathbb{Z} -module. Note that $\operatorname{ZMQVectSp}(V)$ is finite dimensional.

Now we state the propositions:

- (16) Let us consider a finite-rank free \mathbb{Z} -module V. Then rank $V = \dim(\mathbb{Z}MQ\operatorname{Vect}\operatorname{Sp}(V))$. The theorem is a consequence of (15) and (14).
- (17) Let us consider a free \mathbb{Z} -module V and finite subsets I, A of V. Suppose
 - (i) I is a basis of V, and
 - (ii) $\overline{\overline{I}} + 1 = \overline{\overline{A}}$.

Then A is linearly dependent. The theorem is a consequence of (15), (11), and (14).

- (18) Let us consider a free \mathbb{Z} -module V and subsets A, B of V. If A is linearly dependent and $A \subseteq B$, then B is linearly dependent.
- (19) Let us consider a free \mathbb{Z} -module V and subsets D, A of V. Suppose
 - (i) D is basis of V and finite, and
 - (ii) $\overline{\overline{D}} \subset \overline{\overline{A}}$.

Then A is linearly dependent. The theorem is a consequence of (17) and (18).

- (20) Let us consider a free \mathbb{Z} -module V and subsets I, A of V. Suppose
 - (i) I is basis of V and finite, and
 - (ii) A is linearly independent.

Then $\overline{\overline{A}} \subseteq \overline{\overline{I}}$.

2. Submodule of Free Z-module

Now we state the proposition:

(21) Let us consider a \mathbb{Z} -module V. If Ω_V is free, then V is free.

Let us consider a \mathbb{Z} -module V, submodules W_1 , W_2 of V, and strict submodules W_3 , W_4 of V. Now we state the propositions:

- (22) If $W_3 = \Omega_{W_1}$ and $W_4 = \Omega_{W_2}$, then $W_3 + W_4 = W_1 + W_2$.
- (23) If $W_3 = \Omega_{W_1}$ and $W_4 = \Omega_{W_2}$, then $W_3 \cap W_4 = W_1 \cap W_2$.

Now we state the propositions:

- (24) Let us consider a \mathbb{Z} -module V and a strict submodule W of V. Suppose $W \neq \mathbf{0}_V$. Then there exists a vector v of V such that
 - (i) $v \in W$, and
 - (ii) $v \neq 0_V$.

- (25) Let us consider a subset A of V and z linear combinations l_1 , l_2 of A. Suppose (the support of l_1) \cap (the support of l_2) = \emptyset . Then the support of $l_1 + l_2$ = (the support of l_1) \cup (the support of l_2). PROOF: (The support of l_1) \cup (the support of l_2) \subseteq the support of $l_1 + l_2$ by [14, (8)]. \Box
- (26) Let us consider subsets A_1 , A_2 of V and a z linear combination l of $A_1 \cup A_2$. Suppose $A_1 \cap A_2 = \emptyset$. Then there exists a z linear combination l_1 of A_1 and there exists a z linear combination l_2 of A_2 such that $l = l_1 + l_2$. PROOF: Define $\mathcal{P}[\text{element}, \text{element}] \equiv \text{if } \$_1 \text{ is a vector of } V$, then $\$_1 \in A_1$ and $\$_2 = l(\$_1)$ or $\$_1 \notin A_1$ and $\$_2 = 0$. For every element x such that $x \in$ the carrier of V there exists an element y such that $y \in \mathbb{Z}$ and $\mathcal{P}[x, y]$. There exists a function l_1 from the carrier of V into Z such that for every element x such that $x \in$ the carrier of V holds $\mathcal{P}[x, l_1(x)]$ from [8, Sch. 1]. Consider l_1 being a function from the carrier of V into Z such that for every element x such that $x \in$ the carrier of V holds $\mathcal{P}[x, l_1(x)]$. For every element x such that $x \in$ the support of l_1 holds $x \in A_1$ by [14, (8)]. Define $\mathcal{Q}[\text{element}, \text{element}] \equiv \text{if } \$_1 \text{ is a vector of } V, \text{ then } \$_1 \in A_2 \text{ and } \$_2 = l(\$_1)$ or $\$_1 \notin A_2$ and $\$_2 = 0$. For every element x such that $x \in$ the carrier of V there exists an element y such that $y \in \mathbb{Z}$ and $\mathcal{Q}[x, y]$. There exists a function l_2 from the carrier of V into Z such that for every element x such that $x \in$ the carrier of V holds $\mathcal{Q}[x, l_2(x)]$ from [8, Sch. 1]. Consider l_2 being a function from the carrier of V into \mathbb{Z} such that for every element x such that $x \in$ the carrier of V holds $\mathcal{Q}[x, l_2(x)]$. For every element x such that $x \in$ the support of l_2 holds $x \in A_2$ by [14, (8)]. For every vector $v \text{ of } V, l(v) = (l_1 + l_2)(v). \Box$
- (27) Let us consider a \mathbb{Z} -module V, free submodules W_1 , W_2 of V, a basis I_1 of W_1 , and a basis I_2 of W_2 . If V is the direct sum of W_1 and W_2 , then $I_1 \cap I_2 = \emptyset$.

Let us consider a \mathbb{Z} -module V, free submodules W_1 , W_2 of V, a basis I_1 of W_1 , a basis I_2 of W_2 , and a subset I of V. Now we state the propositions:

- (28) If V is the direct sum of W_1 and W_2 and $I = I_1 \cup I_2$, then Lin(I) =the \mathbb{Z} -module structure of V.
- (29) If V is the direct sum of W_1 and W_2 and $I = I_1 \cup I_2$, then I is linearly independent.

Let us consider a \mathbb{Z} -module V and free submodules W_1 , W_2 of V. Now we state the propositions:

- (30) If V is the direct sum of W_1 and W_2 , then V is free.
- (31) If $W_1 \cap W_2 = \mathbf{0}_V$, then $W_1 + W_2$ is free.

Let us consider a free \mathbb{Z} -module V, a basis I of V, and a vector v of V. Now we state the propositions:

(32) If $v \in I$, then $\operatorname{Lin}(I \setminus \{v\})$ is free and $\operatorname{Lin}(\{v\})$ is free.

(33) If $v \in I$, then V is the direct sum of $\operatorname{Lin}(I \setminus \{v\})$ and $\operatorname{Lin}(\{v\})$.

Let V be a finite-rank free \mathbb{Z} -module. One can verify that every submodule of V is free.

Now we state the propositions:

- (34) Let us consider a \mathbb{Z} -module V, a submodule W of V, and free submodules W_1, W_2 of V. Suppose
 - (i) $W_1 \cap W_2 = \mathbf{0}_V$, and
 - (ii) the \mathbb{Z} -module structure of $W = W_1 + W_2$.

Then W is free. The theorem is a consequence of (31).

- (35) Let us consider a prime number p and a free \mathbb{Z} -module V. If $Z_M Q_V ect Sp(V, p)$ is finite dimensional, then V is finite-rank.
- (36) Let us consider a prime number p, a \mathbb{Z} -module V, an element s of V, an integer a, and an element b of GF(p). Suppose $b = a \mod p$. Then $b \cdot ZMtoMQV(V, p, s) = ZMtoMQV(V, p, a \cdot s)$.
- (37) Let us consider a prime number p, a free \mathbb{Z} -module V, a subset I of V, a subset I_6 of $\mathbb{Z}_M \mathbb{Q}_V \operatorname{ectSp}(V, p)$, and a z linear combination l of I. Suppose $I_6 = \{\operatorname{ZMtoMQV}(V, p, u), \text{ where } u \text{ is a vector of } V : u \in I\}$. Then $\operatorname{ZMtoMQV}(V, p, \sum l) \in \operatorname{Lin}(I_6)$.
- (38) Let us consider a prime number p, a free \mathbb{Z} -module V, a subset I of V, and a subset I_6 of $\mathbb{Z}_M Q_V \text{ectSp}(V, p)$. Suppose
 - (i) $\operatorname{Lin}(I) = \operatorname{the} \mathbb{Z}$ -module structure of V, and
 - (ii) $I_6 = \{ \text{ZMtoMQV}(V, p, u), \text{ where } u \text{ is a vector of } V : u \in I \}.$

Then $\operatorname{Lin}(I_6) =$ the vector space structure of $\operatorname{Z}_{\operatorname{M}}\operatorname{Q}_{\operatorname{V}}\operatorname{ect}\operatorname{Sp}(V, p)$. The theorem is a consequence of (37). PROOF: For every element v_3 of $\operatorname{Z}_{\operatorname{M}}\operatorname{Q}_{\operatorname{V}}\operatorname{ect}\operatorname{Sp}(V, p), v_3 \in \operatorname{Lin}(I_6)$ by [15, (22)], [14, (64)]. \Box

(39) Let us consider a finitely-generated free Z-module V. Then there exists a finite subset A of V such that A is a basis of V. The theorem is a consequence of (38). PROOF: Set p = the prime number. Consider B being a finite subset of V such that Lin(B) = the Z-module structure of V. Set $B_1 = \{\text{ZMtoMQV}(V, p, u), \text{ where } u \text{ is a vector of } V : u \in B\}$. Define $\mathcal{F}(\text{element of } V) = \text{ZMtoMQV}(V, p, \$_1)$. Consider f being a function from the carrier of V into $\text{Z}_{\text{M}}\text{Q}_{\text{V}}\text{ect}\text{Sp}(V, p)$ such that for every element x of V, $f(x) = \mathcal{F}(x)$ from [8, Sch. 4]. For every element y such that $y \in B_1$ there exists an element x such that $x \in \text{dom}(f \upharpoonright B)$ and $y = (f \upharpoonright B)(x)$ by [30, (62)], [7, (47)]. Consider I_6 being a basis of $\text{Z}_{\text{M}}\text{Q}_{\text{V}}\text{ect}\text{Sp}(V, p)$ such that $I_6 \subseteq B_1$. \Box

One can verify that every finitely-generated free \mathbb{Z} -module is finite-rank and every finite-rank free \mathbb{Z} -module is finitely-generated.

Now we state the proposition:

(40) Let us consider a finite-rank free \mathbb{Z} -module V and a subset A of V. If A is linearly independent, then A is finite. The theorem is a consequence of (19).

Let V be a \mathbb{Z} -module and W_1 , W_2 be finite-rank free submodules of V. One can check that $W_1 \cap W_2$ is free.

Note that $W_1 \cap W_2$ is finite-rank.

Let V be a finite-rank free \mathbb{Z} -module. Note that every submodule of V is finite-rank.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. Formalized Mathematics, 6(3):411–415, 1997.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47–59, 2012. doi:10.2478/v10037-012-0007-z.
- [14] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of Z-module. Formalized Mathematics, 20(3):205–214, 2012. doi:10.2478/v10037-012-0024-y.
- [15] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free Z-module. Formalized Mathematics, 20(4):275–280, 2012. doi:10.2478/v10037-012-0033-x.
- [16] Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Gaussian integers. Formalized Mathematics, 21(2):115–125, 2013. doi:10.2478/forma-2013-0013.
- [17] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841–845, 1990.
- [18] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [19] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.
- [20] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. 2002.
- [21] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339– 345, 1996.
- [22] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [23] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29–34, 1999.
- [24] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1): 115–122, 1990.
- [25] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.

- [26] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [27] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1 (5):877–882, 1990.
- [28] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883–885, 1990.
- [29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [32] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.
- [33] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423–428, 1996.

Received December 31, 2013