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Object-Free Definition of Categories
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Summary. Category theory was formalized in Mizar with two different
approaches [7], [18] that correspond to those most commonly used [16], [5]. Since
there is a one-to-one correspondence between objects and identity morphisms,
some authors have used an approach that does not refer to objects as elements
of the theory, and are usually indicated as object-free category [1] or as arrows-
only category [16]. In this article is proposed a new definition of an object-free
category, introducing the two properties: left composable and right composable,
and a simplification of the notation through a symbol, a binary relation between
morphisms, that indicates whether the composition is defined. In the final part
we define two functions that allow to switch from the two definitions, with and
without objects, and it is shown that their composition produces isomorphic
categories.
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1. Yet Another Definition of Category

We consider category structures which extend 1-sorted structures and are
systems

〈〈a carrier, a composition〉〉

where the carrier is a set, the composition is a partial function from (the carrier)×
the carrier to the carrier.
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In this paper C denotes a category structure.
Let us consider C . The functor Mor C yielding a set is defined by the term

(Def. 1) The carrier of C .

A morphism of C is an element of Mor C . In the sequel f , f1, f2, f3 denote
morphisms of C .

Let us consider C , f1, and f2. We say that f1 and f2 are composable if and
only if

(Def. 2) 〈〈f1, f2〉〉 ∈ dom the composition of C .

We introduce f1 . f2 as a synonym of f1 and f2 are composable.
Assume f1 . f2. The functor f1 ◦ f2 yielding a morphism of C is defined by

the term

(Def. 3) (The composition of C )(f1, f2).

Let us consider f . We say that f is left identity if and only if

(Def. 4) Let us consider a morphism f1 of C . If f . f1, then f ◦ f1 = f1.

We say that f is right identity if and only if

(Def. 5) Let us consider a morphism f1 of C . If f1 . f , then f1 ◦ f = f1.

We say that C has left identities if and only if

(Def. 6) Let us consider a morphism f1 of C . Suppose f1 ∈ the carrier of C . Then
there exists a morphism f of C such that

(i) f . f1, and

(ii) f is left identity.

We say that C has right identities if and only if

(Def. 7) Let us consider a morphism f1 of C . Suppose f1 ∈ the carrier of C . Then
there exists a morphism f of C such that

(i) f1 . f , and

(ii) f is right identity.

We say that C is left composable if and only if

(Def. 8) Let us consider morphisms f , f1, f2 of C . Suppose f1.f2. Then f1◦f2.f
if and only if f2 . f .

We say that C is right composable if and only if

(Def. 9) Let us consider morphisms f , f1, f2 of C . Suppose f1.f2. Then f .f1◦f2
if and only if f . f1.

We say that C is associative if and only if

(Def. 10) Let us consider morphisms f1, f2, f3 of C . Suppose

(i) f1 . f2, and

(ii) f2 . f3, and

(iii) f1 ◦ f2 . f3, and
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(iv) f1 . f2 ◦ f3.

Then f1 ◦ (f2 ◦ f3) = (f1 ◦ f2) ◦ f3.
We say that C is composable if and only if

(Def. 11) C is left and right composable.

We say that C has identities if and only if

(Def. 12) C has left and right identities.

Let X be a set and f be a partial function from X ×X to X. Note that the
functor xf yields a partial function from X ×X to X. Let us consider C . The
functor C op yielding a strict category structure is defined by the term

(Def. 13) 〈〈the carrier of C ,xthe composition of C 〉〉.
Now we state the proposition:

(1) If C is empty, then f1 7 f2.
In this paper g1, g2 denote morphisms of C op.
Now we state the propositions:

(2) If f1 = g1 and f2 = g2, then f1 . f2 iff g2 . g1.

(3) If f1 = g1 and f2 = g2 and f1 . f2, then f1 ◦ f2 = g2 ◦ g1.
(4) C is left composable if and only if C op is right composable. The theorem

is a consequence of (3). Proof: For every morphisms f , f1, f2 of C such
that f1 . f2 holds f1 ◦ f2 . f iff f2 . f by [11, (42)]. �

(5) C is right composable if and only if C op is left composable. The theorem
is a consequence of (3). Proof: For every morphisms f , f1, f2 of C such
that f1 . f2 holds f . f1 ◦ f2 iff f . f1 by [11, (42)]. �

(6) C has left identities if and only if C op has right identities. The theorem
is a consequence of (3). Proof: For every morphism f1 of C such that
f1 ∈ the carrier of C there exists a morphism f of C such that f . f1 and
f is left identity by [11, (42)]. �

(7) C has right identities if and only if C op has left identities. The theorem
is a consequence of (3). Proof: For every morphism f1 of C such that
f1 ∈ the carrier of C there exists a morphism f of C such that f1 . f and
f is right identity by [11, (42)]. �

(8) C is associative if and only if C op is associative. The theorem is a conse-
quence of (3). Proof: For every morphisms f1, f2, f3 of C such that f1.f2
and f2 .f3 and f1 ◦f2 .f3 and f1 .f2 ◦f3 holds f1 ◦ (f2 ◦f3) = (f1 ◦f2)◦f3
by [11, (42)]. �

Note that there exists a category structure which is composable and asso-
ciative and has left identities and has not right identities and there exists a
category structure which is composable and associative and has right identities
and has not left identities and there exists a category structure which is non
left composable, right composable, and associative and has identities and there
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exists a category structure which is left composable, non right composable, and
associative and has identities and there exists a category structure which is non
associative and composable and has identities and there exists a category struc-
ture which is empty and every category structure which is empty is also left
and right composable and associative and has also left and right identities and
there exists a category structure which is strict, left and right composable, and
associative and has left and right identities and there exists a category structure
which is strict, composable, and associative and has identities.

A category is a composable associative category structure with identities.
Let us consider C and f . We say that f is identity if and only if

(Def. 14) f is left and right identity.

Now we state the propositions:

(9) If C has identities, then f is left identity iff f is right identity. Proof:
For every morphism f1 of C such that f . f1 holds f ◦ f1 = f1. �

(10) If C is empty, then f is identity.

(11) Let us consider morphisms g1, g2 of the category structure of C . Suppose

(i) f1 = g1, and

(ii) f2 = g2, and

(iii) f1 . f2.

Then f1 ◦ f2 = g1 ◦ g2.
(12) C is left composable if and only if the category structure of C is left

composable. The theorem is a consequence of (11). Proof: For every
morphisms f , f1, f2 of C such that f1 . f2 holds f1 ◦ f2 . f iff f2 . f . �

(13) C is right composable if and only if the category structure of C is right
composable. The theorem is a consequence of (11). Proof: For every
morphisms f , f1, f2 of C such that f1 . f2 holds f . f1 ◦ f2 iff f . f1. �

(14) C is composable if and only if the category structure of C is composable.

(15) C is associative if and only if the category structure of C is associative.
The theorem is a consequence of (11). Proof: For every morphisms f1,
f2, f3 of C such that f1 . f2 and f2 . f3 and f1 ◦ f2 . f3 and f1 . f2 ◦ f3
holds f1 ◦ (f2 ◦ f3) = (f1 ◦ f2) ◦ f3. �

(16) Let us consider a morphism g of the category structure of C . If f = g,
then f is left identity iff g is left identity. The theorem is a consequence of
(11). Proof: For every morphism f2 of C such that f .f2 holds f ◦f2 = f2.
�

(17) C has left identities if and only if the category structure of C has left
identities. The theorem is a consequence of (16). Proof: For every mor-
phism f1 of C such that f1 ∈ the carrier of C there exists a morphism f
of C such that f . f1 and f is left identity. �
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(18) Let us consider a morphism g of the category structure of C . If f = g,
then f is right identity iff g is right identity. The theorem is a consequence
of (11). Proof: For every morphism f1 of C such that f1.f holds f1◦f =
f1. �

(19) C has right identities if and only if the category structure of C has
right identities. The theorem is a consequence of (18). Proof: For every
morphism f1 of C such that f1 ∈ the carrier of C there exists a morphism
f of C such that f1 . f and f is right identity. �

(20) C has identities if and only if the category structure of C has identities.

Let us consider C . We say that C is discrete if and only if

(Def. 15) Every morphism of C is identity.

One can verify that there exists a category structure which is strict, empty,
discrete, composable, and associative and has identities.

Now we state the proposition:

(21) Let us consider a discrete category structure C and morphisms f1, f2 of
C . If f1 . f2, then f1 = f2 and f1 ◦ f2 = f2.

Observe that every category structure which is discrete is also composable
and associative.

Let X be a set. The discrete category of X yielding a strict discrete category
is defined by

(Def. 16) The carrier of it = X.

Note that there exists a category which is strict and there exists a category
which is strict and empty and there exists a category which is strict and non
empty.

Let us consider C . The functor Ob C yielding a subset of Mor C is defined
by the term

(Def. 17) {f , where f is a morphism of C : f is identity and f ∈ Mor C }.

An object of C is an element of Ob C . Let C be a non empty category
structure with identities. Let us observe that Ob C is non empty.

Now we state the propositions:

(22) Let us consider a non empty category structure C with identities and a
morphism f of C . Then f is identity if and only if f is an object of C .

(23) Let us consider a non empty category structure C with identities, mor-
phisms f , f1 of C , and an object o of C . Suppose f = o. Then

(i) if f . f1, then f ◦ f1 = f1, and

(ii) if f1 . f , then f1 ◦ f = f1, and

(iii) f . f .

The theorem is a consequence of (22).
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(24) Let us consider a non empty category structure C with identities and a
morphism f of C . If f is identity, then f .f . The theorem is a consequence
of (22) and (23).

(25) Let us consider category structures C1, C2 with identities.
Suppose the category structure of C1 = the category structure of C2. Let
us consider a morphism f1 of C1 and a morphism f2 of C2. If f1 = f2, then
f1 is identity iff f2 is identity. Proof: For every morphism f of C1 such
that f1 . f holds f1 ◦ f = f . For every morphism f of C1 such that f . f1
holds f ◦ f1 = f . �

Let C be a composable category structure with identities and f be a mor-
phism of C . The functor dom f yielding an object of C is defined by

(Def. 18) (i) there exists a morphism f1 of C such that it = f1 and f . f1 and
f1 is identity, if C is not empty,

(ii) it = the object of C , otherwise.

The functor cod f yielding an object of C is defined by

(Def. 19) (i) there exists a morphism f1 of C such that it = f1 and f1 . f and
f1 is identity, if C is not empty,

(ii) it = the object of C , otherwise.

Let us consider a composable category structure C with identities and mor-
phisms f , f1 of C . Now we state the propositions:

(26) If f . f1 and f1 is identity, then dom f = f1.

(27) If f1 . f and f1 is identity, then cod f = f1.

Let C be category structure with identities and o be an object of C . The
functor id-o yielding a morphism of C is defined by the term

(Def. 20) o.

Let C , D be category structures. A functor from C to D is a function from
C into D . In the sequel C , D , E denote category structures with identities, F
denotes a functor from C to D , G denotes a functor from D to E , and f denotes
a morphism of C .

Let us consider C , D , F , and f . The functor F(f) yielding a morphism of
D is defined by the term

(Def. 21)

{
F(f), if C is not empty ,
The object of D , otherwise.

We say that F preserves identity if and only if

(Def. 22) Let us consider a morphism f of C . If f is identity, then F(f) is identity.

We say that F is multiplicative if and only if

(Def. 23) Let us consider morphisms f1, f2 of C . Suppose f1 . f2. Then

(i) F(f1) . F(f2), and

(ii) F(f1 ◦ f2) = F(f1) ◦ F(f2).
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We say that F is anti-multiplicative if and only if

(Def. 24) Let us consider morphisms f1, f2 of C . Suppose f1 . f2. Then

(i) F(f2) . F(f1), and

(ii) F(f1 ◦ f2) = F(f2) ◦ F(f1).

Note that there exists a functor from C to D which preserves identity.
Let C be an empty category structure with identities and D be category

structure with identities. Note that there exists a functor from C to D which is
multiplicative and anti-multiplicative preserves identity.

Let C be category structure with identities and D be a non empty category
structure with identities. Let us observe that there exists a functor from C to
D which is multiplicative and anti-multiplicative preserves identity.

Now we state the propositions:

(28) There exist categories C , D and there exists a functor F from C to D
such that F is multiplicative and F does not preserve identity. The the-
orem is a consequence of (22). Proof: Set C = the non empty category.
Reconsider X = {0, 1} as a set. Set c4 = {〈〈〈〈0, 0〉〉, 0〉〉, 〈〈〈〈1, 1〉〉, 1〉〉} ∪ {〈〈〈〈0,
1〉〉, 1〉〉, 〈〈〈〈1, 0〉〉, 1〉〉}. For every element x, x ∈ c4 iff x = 〈〈〈〈0, 0〉〉, 0〉〉 or
x = 〈〈〈〈1, 1〉〉, 1〉〉 or x = 〈〈〈〈0, 1〉〉, 1〉〉 or x = 〈〈〈〈1, 0〉〉, 1〉〉. For every elements
x, y1, y2 such that 〈〈x, y1〉〉, 〈〈x, y2〉〉 ∈ c4 holds y1 = y2. For every element
x such that x ∈ c4 holds x ∈ (X × X) × X. Set D = 〈〈X, c4〉〉. For every
morphisms f1, f2 of D such that f1 . f2 holds f1 = 0 and f2 = 0 and
f1 ◦ f2 = 0 or f1 = 1 and f2 = 1 and f1 ◦ f2 = 1 or f1 = 0 and f2 = 1
and f1 ◦ f2 = 1 or f1 = 1 and f2 = 0 and f1 ◦ f2 = 1 by [9, (1)]. For
every morphisms f1, f2 of D , f1 . f2 by [9, (1)]. For every morphism f1
of D such that f1 ∈ the carrier of D there exists a morphism f of D such
that f . f1 and f is left identity. For every morphism f1 of D such that
f1 ∈ the carrier of D there exists a morphism f of D such that f1 . f and
f is right identity. For every morphisms f1, f2, f3 of D such that f1 . f2
and f2 .f3 and f1 ◦f2 .f3 and f1 .f2 ◦f3 holds f1 ◦ (f2 ◦f3) = (f1 ◦f2)◦f3.
Reconsider d1 = 1 as a morphism of D . Define H(element) = d1. Consider
F being a function from the carrier of C into the carrier of D such that
for every element x such that x ∈ the carrier of C holds F(x) = H(x)
from [10, Sch. 2]. For every morphisms f1, f2 of C such that f1 . f2 holds
F(f1) .F(f2) and F(f1 ◦ f2) = F(f1) ◦ F(f2). There exists a morphism f
of C such that f is identity and F(f) is not identity. �

(29) Suppose C is not empty and D is empty. Then there exists no a functor
F from C to D such that F is multiplicative or F is anti-multiplicative.
The theorem is a consequence of (23).

(30) There exist categories C , D and there exists a functor F from C to D
such that F is not multiplicative and F preserves identity. The theorem
is a consequence of (29).
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Let us consider C , D , and F . We say that F is covariant if and only if

(Def. 25) (i) F preserves identity, and

(ii) F is multiplicative.

We say that F is contravariant if and only if

(Def. 26) (i) F preserves identity, and

(ii) F is anti-multiplicative.

Let C be an empty category structure with identities and D be category
structure with identities. One can check that there exists a functor from C to
D which is covariant and contravariant.

Let C be category structure with identities and D be a non empty category
structure with identities. Observe that there exists a functor from C to D which
is covariant and contravariant.

Now we state the proposition:

(31) Suppose C is not empty and D is empty. Then there exists no a functor
F from C to D such that F is covariant or F is contravariant.

Let C , D be non empty category structures with identities, F be a covariant
functor from C to D , and f be an object of C . Observe that the functor F(f)
yields an object of D . Now we state the propositions:

(32) Let us consider non empty composable category structures C , D with
identities, a covariant functor F from C to D , and a morphism f of C .
Then

(i) F(dom f) = dom(F(f)), and

(ii) F(cod f) = cod(F(f)).

The theorem is a consequence of (22).

(33) Let us consider non empty composable category structures C , D with
identities, a covariant functor F from C to D , and an object o of C . Then
F(id-o) = id-(F(o)).

Let us consider C , D , E , F , and G. Assume F is covariant or F is contra-
variant and G is covariant or G is contravariant. The functor G ◦ F yielding a
functor from C to E is defined by the term

(Def. 27) F · G.

Now we state the propositions:

(34) Suppose F is covariant and G is covariant and C is not empty. Then
(G ◦ F)(f) = G(F(f)). The theorem is a consequence of (29).

(35) If F is covariant and G is covariant, then G ◦F is covariant. The theorem
is a consequence of (34), (22), and (10). Proof: Set G1 = G ◦ F . For
every morphism f of C such that f is identity holds G1(f) is identity. For
every morphisms f1, f2 of C such that f1 . f2 holds G1(f1) . G1(f2) and
G1(f1 ◦ f2) = G1(f1) ◦ G1(f2). �



Object-free definition of categories 201

Let us consider C . Note that the functor idC yields a functor from C to C .
Let us observe that idC is covariant.

Let us consider D . We say that C and D are isomorphic if and only if

(Def. 28) There exists a functor F from C to D and there exists a functor G from
D to C such that F is covariant and G is covariant and G ◦ F = idC and
F ◦ G = idD .

Note that the predicate is reflexive and symmetric.
We introduce C ∼= D as a synonym of C and D are isomorphic.

2. Transform a Category in the Other

Let C be a category structure. The functor CompMap C yielding a partial
function from Mor C ×Mor C to Mor C is defined by the term

(Def. 29) The composition of C .

Let C be a composable category structure with identities. The functors:
SourceMap C and TargetMap C yielding functions from Mor C into Ob C are
defined by conditions, respectively.

(Def. 30) (i) for every element f of Mor C , (SourceMap C )(f) = dom f , if C is
not empty,

(ii) SourceMap C = ∅, otherwise.
(Def. 31) (i) for every element f of Mor C , (TargetMap C )(f) = cod f , if C is

not empty,

(ii) TargetMap C = ∅, otherwise.
Let C be category structure with identities. The functor IdMap C yielding

a function from Ob C into Mor C is defined by

(Def. 32) (i) for every element o of Ob C , it(o) = id-o, if C is not empty,

(ii) it = ∅, otherwise.
Now we state the propositions:

(36) Let us consider a non empty composable category structure C with iden-
tities and elements f , g of Mor C . Then 〈〈g, f〉〉 ∈ dom CompMap C if and
only if (SourceMap C )(g) = (TargetMap C )(f).

(37) Let us consider a composable category structure C with identities and
elements f , g of Mor C . Suppose (SourceMap C )(g) = (TargetMap C )(f).
Then

(i) (SourceMap C )((CompMap C )(g, f)) = (SourceMap C )(f), and

(ii) (TargetMap C )((CompMap C )(g, f)) = (TargetMap C )(g).

The theorem is a consequence of (36).
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(38) Let us consider a composable associative category structure C with iden-
tities and elements f , g, h of Mor C . Suppose

(i) (SourceMap C )(h) = (TargetMap C )(g), and

(ii) (SourceMap C )(g) = (TargetMap C )(f).

Then (CompMap C )(h, (CompMap C )(g, f)) = (CompMap C )((CompMap
C )(h, g), f). The theorem is a consequence of (36).

(39) Let us consider a composable category structure C with identities and
an element b of Ob C . Then

(i) (SourceMap C )(IdMap C (b)) = b, and

(ii) (TargetMap C )(IdMap C (b)) = b, and

(iii) for every element f of Mor C such that (TargetMap C )(f) = b holds
(CompMap C )(IdMap C (b), f) = f , and

(iv) for every element g of Mor C such that (SourceMap C )(g) = b holds
(CompMap C )(g, IdMap C (b)) = g.

The theorem is a consequence of (22) and (36).

A category defined in [7], to avoid confusion, is called an object-category.
Let C be a non empty category. The functor Alter(C ) yielding a strict

object-category is defined by the term

(Def. 33) 〈〈Ob C ,Mor C , SourceMap C ,TargetMap C ,CompMap C 〉〉.
Let A be an object-category. The functor alter A yielding a strict category

is defined by the term

(Def. 34) 〈〈the carrier’ of A , (the composition of A )〉〉.
Observe that alter A is non empty.
Now we state the propositions:

(40) Let us consider an object-category A , morphisms a1, a2 of A , and mor-
phisms f1, f2 of alter A . Suppose

(i) a1 = f1, and

(ii) a2 = f2, and

(iii) 〈〈a1, a2〉〉 ∈ dom the composition of A .

Then a1 ◦ a2 = f1 ◦ f2.
(41) Let us consider an object-category A and a morphism f of alter A .

Then f is identity if and only if there exists an object o of A such that
f = ido. The theorem is a consequence of (22), (23), and (40). Proof: For
every morphism f1 of alter A such that f .f1 holds f ◦f1 = f1 by [7, (15),
(21)]. For every morphism f1 of alter A such that f1 . f holds f1 ◦ f = f1
by [7, (15), (22)]. �
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(42) Let us consider object-categories A , B. Then every functor from A
to B is a covariant functor from alter A to alter B. The theorem is a
consequence of (40) and (41). Proof: Reconsider H = F as a function
from alter A into alter B. For every morphisms f1, f2 of alter A such that
f1 . f2 holds H(f1) . H(f2) and H(f1 ◦ f2) = H(f1) ◦ H(f2) by [7, (15),
(72), (64)]. For every morphism f of alter A such that f is identity holds
H(f) is identity by [7, (62)]. �

(43) Let us consider a non empty category C , morphisms a1, a2 of Alter(C ),
and morphisms f1, f2 of C . Suppose

(i) a1 = f1, and

(ii) a2 = f2, and

(iii) f1 . f2.

Then a1 ◦ a2 = f1 ◦ f2.
(44) Let us consider a non empty category C , a morphism f1 of C , and a

morphism a1 of Alter(C ). Suppose a1 = f1. Then

(i) dom f1 = dom a1, and

(ii) cod f1 = cod a1.

(45) Let us consider a non empty category C , an object o1 of C , and an object
o2 of Alter(C ). If o1 = o2, then id-o1 = ido2 . The theorem is a consequence
of (22), (24), (44), and (43). Proof: Reconsider a2 = o2 as a morphism
of Alter(C ). Reconsider a3 = a2 as a morphism from o2 to o2. For every
object b of Alter(C ), if hom(o2, b) 6= ∅, then for every morphism a from
o2 to b, a ◦ a3 = a and if hom(b, o2) 6= ∅, then for every morphism a from
b to o2, a3 ◦ a = a by [7, (5), (15)]. �

(46) Let us consider a non empty category C and a morphism f of C . Then
f is identity if and only if there exists an object o of Alter(C ) such that
f = ido. The theorem is a consequence of (25) and (41).

(47) Let us consider non empty categories C , D . Then every covariant functor
from C to D is a functor from Alter(C ) to Alter(D). The theorem is a
consequence of (46), (44), (32), and (45). Proof: Reconsider H = F as
a function from the carrier’ of Alter(C ) into the carrier’ of Alter(D). For
every object a of Alter(C ), there exists an object b of Alter(D) such that
H(ida) = idb. For every morphism f of Alter(C ), H(iddom f ) = iddom(H(f))
and H(idcod f ) = idcod(H(f)). For every morphisms f , g of Alter(C ) such
that dom g = cod f holds H(g ◦ f) = H(g) ◦ H(f) by [7, (15), (16)]. �

(48) Let us consider object-categories C , D . Then every covariant functor
from alter C to alter D is a functor from C to D . The theorem is a con-
sequence of (41), (26), and (27). Proof: Reconsider H = F as a function
from the carrier’ of C into the carrier’ of D . For every object a of C , there
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exists an object b of D such that H(ida) = idb. For every morphism f of C ,
H(iddom f ) = iddom(H(f)) andH(idcod f ) = idcod(H(f)) by [7, (15)]. For every
morphisms f , g of C such that dom g = cod f holds H(g◦f) = H(g)◦H(f)
by [7, (15), (16)]. �

Let us consider object-categories C1, C2. Now we state the propositions:

(49) If alter C1 ∼= alter C2, then C1 ∼= C2.

(50) Suppose the carrier’ of C1 = the carrier’ of C2 and the composition of
C1 = the composition of C2. Then C1 ∼= C2.

Now we state the propositions:

(51) Let us consider an object-category C . Then C ∼= Alter(alter C ).

(52) Let us consider a non empty category C . Then C ∼= alter Alter(C ). The
theorem is a consequence of (16) and (18). Proof: Set D = alter Alter(C ).
Reconsider F = idC as a functor from C to D . Reconsider G = idC as a
functor from D to C . For every morphism f of C such that f is identity
holds F(f) is identity. For every morphisms f1, f2 of C such that f1 . f2
holds F(f1).F(f2) and F(f1 ◦f2) = F(f1)◦F(f2). For every morphism f
of D such that f is identity holds G(f) is identity. For every morphisms f1,
f2 of D such that f1 .f2 holds G(f1).G(f2) and G(f1 ◦f2) = G(f1)◦G(f2).
�
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