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Summary. In this article, we formalize the Advanced Encryption Stan-
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world, is a block cipher that was selected by the National Institute of Standards
and Technology (NIST) as an official Federal Information Processing Standard
for the United States in 2001 [12]. AES is the successor to DES [I3], which was
formerly the most widely used symmetric cryptosystem in the world. We forma-
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MixColumns, and AddRoundKey transformations (see [12]). In this formalization,
the SubBytes and MixColumns transformations are given as permutations, becau-
se it is necessary to treat the finite field GF(2®) for those transformations. The
formalization of AES that considers the finite field GF(2®) is formalized by the
future article.
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1. PRELIMINARIES

Let us consider natural numbers k, m. Now we state the propositions:

(1) Ifm #0and (k+1) mod m # 0, then (k+1) mod m = (kK mod m) + 1.
(2) If m#0and (k4 1) mod m # 0, then (k + 1)divm = kdivm.

(3) If m#0 and (k+ 1) mod m = 0, then m — 1 = k mod m.

(4) If m#0 and (k+ 1) mod m = 0, then (k+ 1)divm = (kdivm) + 1.
(5) (k—m) mod m =k mod m.

(6) If m#0, then (k—m)divm = (kdivm) — 1.

Let m, n be natural numbers, X, D be non empty sets, F' be a function
from X into (D™)™, and x be an element of X. Let us observe that the functor
F(x) yields an element of (D™)™. Let m be a natural number, X, Y, D be non
empty sets, and F' be a function from X x Y into D™. Let y be an element of
Y. Note that the functor F(z,y) yields an element of D™. Now we state the
propositions:

(7) Let us consider natural numbers m, n, a non empty set D, and elements
Fy, F5 of (D™)™. Suppose natural numbers ¢, j. If i € Segm and j € Segn,
then Fl(l)(j) = FQ(Z)(]) Then F1 = FQ.

(8) Let us consider a non empty set D and elements x1, xa, x3, x4 of D.
Then (x1, T2, 23, 74) is an element of D*.

(9) Let us consider a non empty set D and elements x1, x2, o3, x4, x5 of D.
Then (z1, 22, 3,4, T5) is an element of D°.

(10) Let us consider a non empty set D and elements x1, xo, x3, 24, T5, Tg,
x7, g of D. Then (21, 72,23, 74) " (5, T, T7, Tg) is an element of D®. The
theorem is a consequence of (8).

(11) Let us consider a non empty set D and elements x1, x2, 3, x4, T5, T¢,
x7, x8, 9, 19 of D. Then (xy,x9,x3,x4,25) ~ (v¢, T7, T8, T9,T10) IS an
element of DY, The theorem is a consequence of (9).

(12) Let us consider a non empty set D and elements x1, x2, z3, T4, 5, Zp,
x7, g of D*. Then (x1 " x5, 20 " 6,23 " 27,74 " xg) is an element of (D¥)%.
The theorem is a consequence of (8).

(13) Let us consider a non empty set D, an element z of (D*)*, and an element
k of N. Suppose k € Seg4. Then there exist elements x1, x2, T3, x4 of D

such that

(i) 1 = z(k)(1), and
(ii) z2 = z(k)(2), and
(ili) x3 = z(k)(3), and
(iv) x4 = x(k)(4).
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Let us consider non empty sets X, Y, a function f from X into Y, and
a function g from Y into X. Suppose

(i) for every element x of X, g(f(z)) = x, and

(ii) for every element y of Y, f(g(y)) = v.
Then

(iii) f is one-to-one, and

(i
(v

v) f is onto, and

)
(vi) ¢ is onto, and

)

) [

g is one-to-one, and

(lg—flan

(viii

2. STATE ARRAY

The array of AES-State yielding a function from Boolean'?® into (( Boolean®)*)*
is defined by

(Def. 1) Let us consider an element i; of Boolean'®® and natural numbers i, j

Suppose i, j € Seg4. Then it(i1)(7)(j) = mid(iy, (1 + (i =" 1) -8) + (j —/
1)-32,(1+(G—-"1)-8)+(j —"1)-32) + 7).
Now we state the propositions:

(15)

Let us consider a natural number k. Suppose 1 < k
exist natural numbers ¢, 5 such that

(i) 4, j € Seg4, and

(i) A4+GE—"1)-8)+(j—"1)-32<k<((1+(i—"1)-8)+(j—"1)-32)+7.
Let us consider natural numbers i, j, i, jo. Suppose

(1) Z.a jv an jO S Seg4a and

< 128. Then there

(16)

(ii) it is not true that ¢« = ig and j = jo.

Then {k, where k is a natural number : (14 (: =" 1)-8) + (j —"1) - 32 <

k< (8+ (z —"1)-8) + (j =" 1) - 32} n {k, where k is a natural number :

14+ (Go—"1)-8)+(Jo—"1)-32< k< (84 (ip—"1)-8)+ (jo—'1)-32} = 0.
Let us consider natural numbers k, i, j, ig, jo. Suppose

(i) 1 <k <128, and

(ii) 4, 4, 40, jo € Seg4, and

(ii)) (14+G—"1)-8)+(j—"1)-32<k<((1+(i—"1)-8)+(j—"1)-32)+7,
and

(17)
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(iv) (14(i0—"1)-8)+(jo—"1)-32 < k < ((14+(20—"1)-8)+ (jo—'1)-32)+7.
Then
(v) i =g, and
(vi) J = Jjo-
The theorem is a consequence of (16).

(18) The array of AES-State is one-to-one. The theorem is a consequence of
(15). PROOF: For every elements 1, x2 such that z1, xo € Boolean'?®
and (the array of AES-State)(z1) = (the array of AES-State)(z2) holds

(19) The array of AES-State is onto. The theorem is a consequence of (15)
and (17). PROOF: For every element y such that y € ((Boolean®)*)? there
exists an element z such that z € Boolean'®® and y = (the array of

Let us note that the array of AES-State is bijective.
Now we state the proposition:

(20) Let us consider an element ¢ of ((Boolean®)*)*. Then (the array of
AES-State)((the array of AES-State)™1(c)) = c.

3. SubBytes

In this paper S denotes a permutation of Boolean®.
Let us consider S. The functor SubBytes(.S) yielding a function
from ((Boolean®)*)* into ((Boolean®)*)* is defined by

(Def. 2) Let us consider an element i; of ((Boolean®)*)* and natural numbers 4,
j. Suppose 4, j € Seg4. Then there exists an element io of Boolean® such

that
(i) o = i1(4)(j), and
(if) it (i) (1) (5) = S(iz).
The functor InvSubBytes(S) yielding a function from ((Boolean®)*)?* into

((Boolean®)*)* is defined by

(Def. 3) Let us consider an element i of ((Boolean®)*)* and natural numbers i,
j. Suppose i, j € Seg4. Then there exists an element iy of Boolean® such

that
(i) i2 = i1(2)(j), and
(i) it(i1)(2)(j) = S (i2).

Now we state the propositions:
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(21) Let us consider an element i1 of ((Boolean®)*)?.

Then (InvSubBytes(S))((SubBytes(S))(i1)) = 1. The theorem is a con-
sequence of (7).

(22) Let us consider an element o of ((Boolean®)*).

Then (SubBytes(S))((InvSubBytes(S))(0)) = o. The theorem is a conse-
quence of (7).

(23) (i) SubBytes(S) is one-to-one, and
(ii) SubBytes(S) is onto, and
(iii) InvSubBytes(S) is one-to-one, and

(v) InvSubBytes(S) = (SubBytes(S))™!, and

(vi) SubBytes(S) = (InvSubBytes(S))!
The theorem is a consequence of (21), (22), and (14).

)
)
(iv) InvSubBytes(S) is onto, and
)
)

4. ShiftRows

The functor ShiftRows yielding a function
from ((Boolean®)*)* into ((Boolean®)*)* is defined by

(Def. 4) Let us consider an element iy of ((Boolean®)*)* and a natural number
1. Suppose i € Seg4. Then there exists an element x; of (Boolean8)4 such
that

(1) Ty = Zl(Z)J and
(i) 4t(i1)(i) = Op-Shift(z;, 5 — 7).
The functor InvShiftRows yielding a function from ((Boolean®)*)* into
((Boolean®)*)* is defined by
(Def. 5) Let us consider an element iy of ((Boolean®)*)* and a natural number
i. Suppose i € Seg4. Then there exists an element z; of (Boolean®)* such
that
(1) xTr; = il(i), and
(i) 4t(i1)(i) = Op-Shift(z;,7 — 1).
Now we state the propositions:

(24) Let us consider an element i1 of ((Boolean )H4.
Then InvShiftRows(ShiftRows(i;

) =
(25) Let us consider an element o of ((Boolean )44
Then ShiftRows(InvShiftRows(0)) =

(26) (i) ShiftRows is one-to-one, and

(ii) ShiftRows is onto, and
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(iii) InvShiftRows is one-to-one, and

(v

(vi) ShiftRows = InvShiftRows !

)

(iv) InvShiftRows is onto, and
) InvShiftRows = ShiftRows !, and
)

5. AddRoundKey

The functor AddRoundKey yielding a function
from ((Boolean®)*)* x ((Boolean®)*)* into ((Boolean®)*)* is defined by
(Def. 6) Let us consider elements ¢1, k1 of ((Boolean®)*)* and natural numbers i,
j. Suppose i, j € Seg4. Then there exist elements to, ko of Boolean® such

that
(i) t2 = t1(2)(j), and
(ii) k2 = k1(é)(j), and
(iid) nuhkgux ) = Op-XOR(ta, ks).

6. KEY EXPANSION

Let us consider S. Let x be an element of (Boolean®)*.

The functor SubWord(S,z) yielding an element of (Boolean®)* is defined by
(Def. 7) Let us consider an element ¢ of Seg4. Then it(:) = S(z(1)).

The functor RotWord(z) yielding an element of (Boolean®)* is defined by the
term

(Def. 8) Op-LeftShift .

Let n, m be non zero elements of N and s, ¢ be elements of (Boolean™)™
The functor XOR-Word(s,t) yielding an element of (Boolean™)™ is defined by

(Def. 9) Let us consider an element i of Segm. Then it(i) = Op-XOR(s(7), t()).
The functor Rcon yielding an element of ((Boolean®)*)!0 is defined by
(Def. 10) (i) it(1) = ((0,0,0,0)~(0,0,0,1),(0,0,0,0) " (0,0,0,0), {0,0,0,0) ~ (0,
0,0,0),(0,0,0,0) ~(0,0,0,0)), and

(i) it(2) = ((0,0,0,0) ~ (0,0,1,0), (0,0,0,0) ~ (0,0,0,0), (0,0,0,0) ~ (0,

0,0,0), (0,0,0,0) ™ (0,0,0,0)), and

(iii) (3) = ({0,0,0,0) ™ (0,1,0,0), (0,0,0,0) ~ (0,0,0,0), (0,0,0,0) ~ (0
0,0,0), (0,0,0,0) " (0,0,0,0)), and

(iv) it(4) = ((0,0,0,0) ~ (1,0,0,0), (0,0,0,0) ~ (0,0,0,0), (0,0,0,0) ~ (0
0,0,0), (0,0,0,0) ™ (0,0,0,0)), and
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1> - <O7 0’ 0’ O>’ <07 07 0’ 0> - <O7 07 07 0>7 <07 07 07 0> - <07
~(0,0,0,0)), and

)~ (0,0,0,0), (0,0,0,0) ~ (0,0,0,0), (0,0,0,0) ™ (0,
~{0,0,0,0)), and

(0,0,0,0Y, (0,0,0,0) ~ (0,0,0,0), (0,0,0,0) ~ (0,
(0,0,0,0)), and

<0,0, 0, 0>, <0,0,0, 0> - <0,0,0,0>, <0, 0,0,0> - <0,
(0,0,0,0)), and

(ix) 4t(9) = ((0,0,0,1) ~(1,0,1,1),(0,0,0,0) ~(0,0,0,0),(0,0,0,0) ~ (0,
0,0,0),(0,0,0,0) " (0,0,0,0)), and

(x) it(10) = ({0,0,1,1) " (0,1, 1,0), (0,0,0,0) ~ (0,0, 0,0), (0,0,0,0) " (0,
0,0,0), (0,0,0,0) ™ (0,0,0,0)).

Let us consider S. Let m, ¢ be natural numbers and w be an element of

(Boolean®)*. Assume m =4 orm=6or m =8 and i <4-(7+m) and m < i.

The functor KeyExpansionT(S,m,i,w) yielding an element of (Boolean®)* is

defined by
(Def. 11) (i) there exists an element T3 of (Boolean®)* such that T3 = Reon(-L)
and it = XOR-Word(SubWord (.S, (RotWord(w))), T3), if @ mod m =0,
(ii) ¢t = SubWord(S,w), if m = 8 and 7 mod 8 = 4,

0,0,0), (0,0,0,0

(iii) it = w, otherwise.

Let m be a natural number. Assume m = 4 or m = 6 or m = 8. The functor
KeyExpansionW(S, m) yielding a function from ((Boolean®)*)™ into
((Boolean®)*)*(7+m) is defined by

(Def. 12) Let us consider an element K of ((Boolean®)*)™. Then

(i) for every element i of N such that i < m holds it(K)(i+1) = K(i+1),
and

(ii) for every element i of N such that m < i < 4- (7 + m) there exi-
sts an element P of (Boolean®)* and there exists an element @Q of
(Boolean®)* such that P = it(K)((i —m) +1) and Q = it(K)(i) and

it(K)(i + 1) = XOR-Word (P, (KeyExpansionT(S,m,i,Q))).
The functor KeyExpansion(S,m) yielding a function from ((Boolean®)*)™

into (((Boolean®)*)*)™™™ is defined by
(Def. 13) Let us consider an element K of ((Boolean®)*)™. Then there exists an
element w of ((Boolean®)*)*("+™) such that

(i) w = (KeyExpansionW(S,m))(K), and

(ii) for every natural number i such that ¢ < 7+ m holds it(K)(i+ 1) =
(WA -i+1),wdi+2),wd i+3),wd-i+4).
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7. ENCRYPTION AND DECRYPTION

In the sequel M; denotes a permutation of ((Boolean®)*)* and My denotes
a permutation of ((Boolean®)*)*.

Let us consider S and M;j. Let m be a natural number, t; be an ele-
ment of ((Boolean®)*)*, and K be an element of ((Boolean®)*)™. The functor
AES-Cipher(S, My, 1, K) yielding an element of ((Boolean®)*)? is defined by

(Def. 14) There exists a finite sequence s; of elements of ((Boolean®)*)* such that
(i) lens; = (74+m) — 1, and
(ii) there exists an element K of ((Boolean®)*)* such that
K, = (KeyExpansion(S,m))(K)(1) and s;(1) = AddRoundKey(¢1, K1),
and
(iii) for every natural number i such that 1 <1 < (74 m) — 1 there exists
an element K; of ((Boolean®)*)* such that
K; = (KeyExpansion(S,m))(K)(i + 1) and
s1(i+1) = AddRoundKey(((M;-ShiftRows)-SubBytes(S5))(s1(7)), K;),
and
(iv) there exists an element K,, of ((Boolean®)*)* such that
K,, = (KeyExpansion(S,m))(K)(7 +m) and
it = AddRoundKey((ShiftRows - SubBytes(S))(s1((7+m)—1)), K,).
The functor AES-InvCipher(S, M, t1, K) yielding an element
of ((Boolean®)*)* is defined by

(Def. 15) There exists a finite sequence s; of elements of ((Boolean®)*)* such that
(i) lens; = (7+m) —1, and
(ii) there exists an element K of ((Boolean®)*)* such that
K, = (Rev((KeyExpansion(S,m))(K)))(1) and s1(1) =
(InvSubBytes(S) - InvShiftRows)(AddRoundKey(¢1, K1)), and
(iii) for every natural number i such that 1 <i < (74 m) — 1 there exists
an element K; of ((Boolean®)*)* such that
K; = (Rev((KeyExpansion(S,m))(K)))(i+1) and s1(i + 1) =
((InvSubBytes(S) InvShiftRows) - M; ') (AddRoundKey(s; (i), K;)),
and
(iv) there exists an element K,, of ((Boolean®)*)* such that
K, = (Rev((KeyExpansion(S,m))(K)))(7+ m) and it =
AddRoundKey(s1((7+m) — 1), K,,).
Now we state the propositions:
(27) Let us consider an element 4; of ((Boolean®)*)*.
Then M7~ Y (M1(iq)) = i1.
(28) Let us consider an element o of ((Boolean®)*)*. Then M1(M;7(0)) = o.
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Let us consider a natural number m and an element t; of ((Boolean®)*)%.

Now we state the propositions:
(29) (InvSubBytes(S)-InvShiftRows)((ShiftRows - SubBytes(S))(t1)) = ti.
(30) ((InvSubBytes(S)-InvShiftRows) - Mj~1)(((M;-ShiftRows) SubBytes
(9))(t1)) = t1.
Now we state the propositions:

(31) Let us consider a natural number m, an element t; of ((Boolean®)*),

an element K of ((Boolean®)*)™, and elements dy,, ) of ((Boolean®)*)*.
Suppose

(i) m=4orm=6orm=8, and

(ii) dr = (Rev((KeyExpansion(S,m))(K)))(1), and
(iii) ex = (KeyExpansion(S,m))(K)(7+ m).
Then AddRoundKey(AddRoundKey(t1,ex),dr) = t;. The theorem is a con-
sequence of (7).

(32) Let us consider a natural number m, an element ¢, of ((Boolean®)*)4,

m 4

an element k; of ((Boolean®)*)™, and elements dy, e of ((Boolean®)*)%.

Suppose
(i) m=4orm=6orm=28§, and
(ii) di = (KeyExpansion(S,m))(k1)(1), and
(iii) ex = (Rev((KeyExpansion(S,m))(k1)))(7 + m).

Then AddRoundKey(AddRoundKey(t1,ex),dr) = t;. The theorem is a con-
sequence of (7).

(33) Let us consider a natural number m, elements t1, 01 of ((Boolean®)*)?,
an element K of ((Boolean®)*)™, and elements K, K,, of ((Boolean®)*)*.
Suppose

(i) m=4orm=6orm=28§, and

(ii) K = (KeyExpansion(S,m))(K)(1), and
(iii) K, = (Rev((KeyExpansion(S,m))(K)))(7+m), and
(iv) 01 = AddRoundKey((ShiftRows - SubBytes(S))(t1), Ky).

Then (InvSubBytes(S) - InvShiftRows)(AddRoundKey(o01, K1)) = t1. The

theorem is a consequence of (32) and (29).

(34) Let us consider natural numbers m, i, an element t; of ((Boolean®)*),

an element K of ((Boolean®)*)™, and elements e;, d; of ((Boolean®)*)*.
Suppose

(i) m=4orm=6orm=28, and
(ii) ¢ < (74+m)—1, and
(iii) e; = (KeyExpansion(S,m))(K)((7+ m) — i), and
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(iv) d;i = (Rev((KeyExpansion(S,m))(K)))(i + 1).

Then AddRoundKey(AddRoundKey(t1,€;),d;) = t;. The theorem is a conse-
quence of (7).

(35) Let us consider a natural number m, an element t; of ((Boolean®)*)?,

and an element K of ((Boolean®)*)™. Suppose
(i) m =4, or

(ii) m =6, or
(iii) m = 8.
Then AES-InvCipher(S, M1, (AES-Cipher(S, M1,t1,K)), K) = t1. The
theorem is a consequence of (34) and (30). PROOF: Reconsider N =
(7 4+ m) — 1 as a natural number. Consider e; being a finite sequence
of elements of ((Boolean®)*)* such that lene, = N and there exists an ele-
ment K of ((Boolean®)*)* such that K; = (KeyExpansion(S,m))(K)(1)
and eg(1) = AddRoundKey(t1, K1) and for every natural number i such
that 1 < i < N there exists an element K; of ((Boolean®)*)* such that
K; = (KeyExpansion(S,m))(K)(i+1) and es(i+1) = AddRoundKey(((M;-
ShiftRows) - SubBytes(S))(es(7)), K;) and there exists an element K, of
((Boolean®)*)* such that K, = (KeyExpansion(S,m))(K)(7 + m) and
AES-Cipher(S, My, t1, K) = AddRoundKey((ShiftRows - SubBytes(S5))(es
(N)), K,). Consider d being a finite sequence of elements of (( Boolean®)*)*
such that len d;, = N and there exists an element K of ((Boolean®)*)* such
that K1 = (Rev((KeyExpansion(S,m))(K)))(1) and ds(1) = (InvSubBytes
(S)-InvShiftRows)(AddRoundKey(AES-Cipher(S, M, t1, K), K1)) and for
every natural number ¢ such that 1 < ¢ < N there exists an element K;
of ((Boolean®)*)* such that K; = (Rev((KeyExpansion(S,m))(K)))(i+1)
and ds(i+1) = ((InvSubBytes(S)-InvShiftRows)-M; 1) (AddRoundKey(d;
(1), K;)) and there exists an element K, of ((Boolean®)*)* such that K,, =
(Rev((KeyExpansion(S,m))(K)))(7 +m) and AES-InvCipher(S, My,
(AES-Cipher(S, M1, t1, K)), K) = AddRoundKey(ds(N), K,,). Consider e;
being an element of ((Boolean®)*)* such that e; = (KeyExpansion(S,m))
(K)(1) and es(1) = AddRoundKey(¢1,e;). Consider e, being an element
of ((Boolean®)*)* such that e, = (KeyExpansion(S,m))(K)(7 + m) and
AES-Cipher(S, M, t1, K) = AddRoundKey((ShiftRows - SubBytes(S))(es
(N)), e,). Consider d; being an element of ((Boolean®)*)* such that d; =
(Rev((KeyExpansion(S,m))(K)))(1) and ds(1) = (InvSubBytes(S)-
InvShiftRows)(AddRoundKey(AES-Cipher(S, My, t1, K),d1)). Consider d,,
being an element of (( Boolean®)*)* such that d,, = (Rev((KeyExpansion(S,
m))(K)))(7+m) and AES-InvCipher (S, M1, (AES-Cipher(S, M1, 1, K)),
K) = AddRoundKey(ds(N),d,). Define R[natural number] = if $; < N,
then ds($1 + 1) = es(IN — $1). For every natural number 7 such that R[i]
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holds R[i + 1] by [2, (11)], [I5 (3)], [2, (14)]. For every natural number k,
RI[k] from [2, Sch. 2]. O
(36) Let us consider a non empty set D, non zero elements n, m of N, and
an element r of D™. Suppose
(i) m <n, and
(i) 8 < n—m.
Then Op-Left(Op-Right(r,m), 8) is an element of DS,
Let 7 be an element of Boolean'*. The functor AES-InitStatel28Key(r)
yielding an element of ((Boolean®)*)* is defined by
(Def. 16) (i) (1) = (Op-Left(r, 8), Op-Left(Op-Right(r, 8), 8), Op-Left(Op-Right
(r,16),8), Op-Left(Op-Right(r, 24),8)), and
(ii) it( ) = (Op-Left(Op-Right(r, 32), 8), Op-Left(Op-Right(r, 40), 8),
Op-Left(Op-Right(r, 48), 8), Op-Left(Op-Right(r, 56), 8)), and
(iii) 4t(3) = (Op-Left(Op-Right(r, 64), 8), Op-Left(Op-Right(r, 72),8),
Op-Left(Op-Right(r, 80), 8), Op-Left(Op-Right(r, 88), 8)), and
(iv) it(4) = (Op-Left(Op-Right(r, 96), 8), Op-Left(Op-Right(r, 104), 8),
Op-Left(Op-Right(r, 112), 8), Op-Right(r, 120)).
Let r be an element of Boolean'??. The functor AES-InitStatel92Key(r)
yielding an element of ((Boolean®)*)% is defined by
(Def. 17) (i) 4t(1) = (Op-Left(r, 8), Op-Left(Op-Right(r, 8), 8), Op-Left(Op-Right
(r,16), 8), Op-Left(Op-Right(r, 24),8)), and
(ii) t(2) = (Op-Left(Op-Right(r, 32), 8), Op-Left(Op-Right(r, 40), 8),
Op-Left(Op-Right(r, 48), 8), Op-Left(Op-Right(r, 56), 8)), and
(iii) ¢(3) = (Op-Left(Op-Right(r, 64), 8), Op-Left(Op-Right(r, 72),8),
Op-Left(Op-Right(r, 80), 8), Op-Left(Op-Right(r, 88), 8)), and
(iv) it(4) = (Op-Left(Op-Right(r, 96), 8), Op-Left(Op-Right(r, 104), 8),
Op-Left(Op-Right(r, 112), 8), Op-Left(Op-Right(r, 120), 8)), and
(v) it(5) = (Op-Left(Op-Right(r, 128),8), Op-Left(Op-Right(r, 136), 8),
Op-Left(Op-Right(r, 144), 8), Op-Left(Op-Right(r, 152), 8)), and
(vi) t(6) = (Op-Left(Op-Right(r,160),8), Op-Left(Op-Right(r, 168), 8),
Op-Left(Op-Right(r, 176), 8), Op-Right(r, 184)).
Let r be an element of Boolean®*®. The functor AES-InitState256Key(r)
yielding an element of ((Boolean®)*)® is defined by
(Def. 18) (i) #t(1) = (Op-Left(r, 8), Op-Left(Op-Right(r, 8), 8), Op-Left
(Op-Right(r, 16), 8), Op-Left(Op-Right(r, 24), 8)), and
(ii) 4t(2) = (Op-Left(Op-Right(r, 32), 8), Op-Left(Op-Right(r, 40), 8),
Op-Left(Op-Right(r, 48), 8), Op-Left(Op-Right(r, 56), 8)), and
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(iii) 4t(3) = (Op-Left(Op-Right(r, 64), 8), Op-Left(Op-Right(r, 72), 8),
Op-Left(Op-Right(r, 80), 8), Op-Left(Op-Right(r, 88), 8)), and

(iv) it(4) = (Op-Left(Op-Right(r, 96), 8), Op-Left(Op-Right(r, 104), 8),
Op-Left(Op-Right(r, 112), 8), Op-Left (Op-Right(r, 120), 8)), and

(v) it(5) = (Op-Left(Op-Right(r, 128),8), Op-Left(Op-Right(r, 136), 8),
Op-Left(Op-Right(r, 144), 8), Op-Left (Op-Right(r, 152), 8)), and

(vi) t(6) = (Op-Left(Op-Right(r,160),8), Op-Left(Op-Right(r, 168), 8),

(
(vii) it(7) = (Op-Left(Op-Right(r,192),8), Op-Left(Op-Right(r, 200), 8),
Op-Left(Op-Right(r, 208), 8), Op-Left (Op-Right(r, 216), 8)), and
(viii) (8) = (Op-Left(Op-Right(r,224),8), Op-Left(Op-Right(r, 232), 8),
Op-Left(Op-Right(r, 240), 8), Op-Right(r, 248)).

Let us consider S and Ms. Let my be an element of Boolean'?® and K be
an element of Boolean'?®. The functor AES-128enc(S, Ma, my, K) yielding an
element of Boolean'?® is defined by the term

(Def. 19) (The array of AES-State) ™! (AES-Cipher(S, Ma, ((the array of
AES-State)(mq)), (AES-InitState128Key(K)))).

Let ¢ be an element of Boolean'?®. The functor AES-128dec(S, Mo, ¢, K)

yielding an element of Boolean'?® is defined by the term
(Def. 20) (The array of AES-State) ' (AES-InvCipher(S, My, ((the array of
AES-State)(c)), (AES-InitState128Key(K)))).

Now we state the proposition:

8),
(
8),
Op-Left(Op-Right(r, 176), 8), Op-Left (Op-Right(r, 184), 8)), and
8),
(

(37) Let us consider a permutation S of Boolean®, a permutation Moy of
((Boolean®)*)*, and elements my, K of Boolean'*.
Then AES-128dec(S, Mg, (AES-128enc(S, Mo, m1, K)), K) = m;. The the-
orem is a consequence of (20) and (35).

Let us consider S and Ms. Let m; be an element of Boolean'?® and K be
an element of Boolean!'®?. The functor AES-192enc(S, My, m1, K) yielding an
element of Boolean'?® is defined by the term

(Def. 21) (The array of AES-State)~*(AES-Cipher(S, Ma, ((the array of
AES-State)(m1)), (AES-InitState192Key(K)))).

Let ¢ be an element of Boolean!'?®. The functor AES-192dec(S, Ma, ¢, K)
yielding an element of Boolean'?® is defined by the term

(Def. 22) (The array of AES-State) ™! (AES-InvCipher(S, My, ((the array of
AES-State)(c)), (AES-InitState192Key(K)))).

Now we state the proposition:

(38) Let us consider a permutation S of Boolean®, a permutation My of

((Boolean®)*)*, an element m; of Boolean'?®, and an element K

of Boolean??.
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Then AES-192dec(S, Ma, (AES-192enc(S, Mo, m1, K)), K) = m1. The the-
orem is a consequence of (20) and (35).

Let us consider S and Msy. Let mq be an element of Boolean'?® and K be
an element of Boolean®®. The functor AES-256enc(S, Ma, m1, K) yielding an
element of Boolean'?® is defined by the term

(Def. 23) (The array of AES-State) ™! (AES-Cipher(S, Ma, ((the array of
AES-State)(mq)), (AES-InitState256Key(K)))).

Let ¢ be an element of Boolean'?®. The functor AES-256dec(S, Mo, ¢, K)
yielding an element of Boolean'?® is defined by the term

(Def. 24) (The array of AES-State) ™! (AES-InvCipher(S, M, ((the array of
AES-State)(c)), (AES-InitState256Key(K)))).

Now we state the proposition:

(39) Let us consider a permutation S of Boolean®, a permutation Moy of

128

((Boolean®)*)*, an element m; of Boolean'®®, and an element K

of Boolean®*.
Then AES-256dec(S, Ma, (AES-256enc(S, Mo, m1, K)), K) = m1. The the-
orem is a consequence of (20) and (35).
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