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Differentiation in Normed Spaces1
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Summary. In this article we formalized the Fréchet differentiation. It is
defined as a generalization of the differentiation of a real-valued function of a
single real variable to more general functions whose domain and range are subsets
of normed spaces [14].
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The notation and terminology used in this paper have been introduced in the
following articles: [5], [1], [4], [10], [6], [7], [16], [15], [11], [12], [13], [3], [8], [19],
[20], [17], [18], [21], and [9].

Let us consider non empty sets D, E, F . Now we state the propositions:

(1) There exists a function I from (FE)D into FD×E such that

(i) I is bijective, and

(ii) for every function f from D into FE and for every elements d, e such
that d ∈ D and e ∈ E holds I(f)(d, e) = f(d)(e).

(2) There exists a function I from (FE)D into FE×D such that

(i) I is bijective, and

(ii) for every function f from D into FE and for every elements e, d such
that e ∈ E and d ∈ D holds I(f)(e, d) = f(d)(e).

Now we state the propositions:

(3) Let us consider non-empty non empty finite sequences D, E and a
non empty set F . Then there exists a function L from (F

∏
E)
∏
D into

F
∏
(EaD) such that

(i) L is bijective, and
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(ii) for every function f from
∏
D into F

∏
E and for every finite sequen-

ces e, d such that e ∈
∏
E and d ∈

∏
D holds L(f)(e a d) = f(d)(e).

The theorem is a consequence of (2). Proof: Consider I being a function
from (F

∏
E)
∏
D into F

∏
E×
∏
D such that I is bijective and for every

function f from
∏
D into F

∏
E and for every elements e, d such that

e ∈
∏
E and d ∈

∏
D holds I(f)(e, d) = f(d)(e). Consider J being a

function from
∏
E ×

∏
D into

∏
(E a D) such that J is one-to-one and

onto and for every finite sequences x, y such that x ∈
∏
E and y ∈

∏
D

holds J(x, y) = xay. ReconsiderK = J−1 as a function from
∏

(EaD) into∏
E×
∏
D. Define G(element) = I($1) ·K. For every element x such that

x ∈ (F
∏
E)
∏
D holds G(x) ∈ F

∏
(EaD) by [7, (5), (8), (128)]. Consider

L being a function from (F
∏
E)
∏
D into F

∏
(EaD) such that for every

element e such that e ∈ (F
∏
E)
∏
D holds L(e) = G(e) from [7, Sch. 2].

For every function f from
∏
D into F

∏
E and for every finite sequences

e, d such that e ∈
∏
E and d ∈

∏
D holds L(f)(e a d) = f(d)(e) by [9,

(87)], [7, (26), (8), (5)]. �

(4) Let us consider non empty sets X, Y . Then there exists a function I
from X × Y into X ×

∏
〈Y 〉 such that

(i) I is bijective, and

(ii) for every elements x, y such that x ∈ X and y ∈ Y holds I(x, y) = 〈〈x,
〈y〉〉〉.

Proof: Consider J being a function from Y into
∏
〈Y 〉 such that J is one-

to-one and onto and for every element y such that y ∈ Y holds J(y) = 〈y〉.
Define P[element, element, element] ≡ $3 = 〈〈$1, 〈$2〉〉〉. For every elements
x, y such that x ∈ X and y ∈ Y there exists an element z such that
z ∈ X ×

∏
〈Y 〉 and P[x, y, z] by [7, (5)], [9, (87)]. Consider I being a

function from X×Y into X×
∏
〈Y 〉 such that for every elements x, y such

that x ∈ X and y ∈ Y holds P[x, y, I(x, y)] from [5, Sch. 1]. �

(5) Let us consider a non-empty non empty finite sequence X and a non
empty set Y . Then there exists a functionK from

∏
X×Y into

∏
(Xa〈Y 〉)

such that

(i) K is bijective, and

(ii) for every finite sequence x and for every element y such that x ∈
∏
X

and y ∈ Y holds K(x, y) = x a 〈y〉.
The theorem is a consequence of (4). Proof: Consider I being a function
from

∏
X × Y into

∏
X ×

∏
〈Y 〉 such that I is bijective and for every

element x and for every element y such that x ∈
∏
X and y ∈ Y holds

I(x, y) = 〈〈x, 〈y〉〉〉. Consider J being a function from
∏
X ×

∏
〈Y 〉 into∏

(X a 〈Y 〉) such that J is one-to-one and onto and for every finite sequ-
ences x, y such that x ∈

∏
X and y ∈

∏
〈Y 〉 holds J(x, y) = x a y. Set
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K = J · I. For every finite sequence x and for every element y such that
x ∈
∏
X and y ∈ Y holds K(x, y) = x a 〈y〉 by [9, (87)], [7, (5), (15)]. �

(6) Let us consider a non empty set D, a non-empty non empty finite se-
quence E, and a non empty set F . Then there exists a function L from
(F
∏
E)D into F

∏
(Ea〈D〉) such that

(i) L is bijective, and

(ii) for every function f from D into F
∏
E and for every finite sequence

e and for every element d such that e ∈
∏
E and d ∈ D holds

L(f)(e a 〈d〉) = f(d)(e).

The theorem is a consequence of (2) and (5). Proof: Consider I being
a function from (F

∏
E)D into F

∏
E×D such that I is bijective and for

every function f from D into F
∏
E and for every elements e, d such that

e ∈
∏
E and d ∈ D holds I(f)(e, d) = f(d)(e). Consider J being a function

from
∏
E×D into

∏
(E a 〈D〉) such that J is bijective and for every finite

sequence x and for every element y such that x ∈
∏
E and y ∈ D holds

J(x, y) = xa 〈y〉. Reconsider K = J−1 as a function from
∏

(E a 〈D〉) into∏
E × D. Define G(element) = I($1) ·K. For every element x such that
x ∈ (F

∏
E)D holds G(x) ∈ F

∏
(Ea〈D〉) by [7, (5), (8), (128)]. Consider L

being a function from (F
∏
E)D into F

∏
(Ea〈D〉) such that for every element

e such that e ∈ (F
∏
E)D holds L(e) = G(e) from [7, Sch. 2]. For every

function f from D into F
∏
E and for every finite sequence e and for every

element d such that e ∈
∏
E and d ∈ D holds L(f)(e a 〈d〉) = f(d)(e) by

[7, (5), (26), (8)]. �

In this paper S, T denote real normed spaces, f , f1, f2 denote partial func-
tions from S to T , Z denotes a subset of S, and i, n denote natural numbers.

Let S be a set. Assume S is a real normed space. The functor NormSpR(S)
yielding a real normed space is defined by the term

(Def. 1) S.

Let S, T be real normed spaces. The functor diffSP(S, T ) yielding a function
is defined by

(Def. 2) (i) dom it = N, and

(ii) it(0) = T , and

(iii) for every natural number i, it(i+1) = the real norm space of bounded
linear operators from S into NormSpR(it(i)).

Now we state the proposition:

(7) (i) (diffSP(S, T ))(0) = T , and

(ii) (diffSP(S, T ))(1) = the real norm space of bounded linear operators
from S into T , and
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(iii) (diffSP(S, T ))(2) = the real norm space of bounded linear operators
from S into the real norm space of bounded linear operators from S
into T .

Let us consider a natural number i. Now we state the propositions:

(8) (diffSP(S, T ))(i) is a real normed space.

(9) There exists a real normed space H such that

(i) H = (diffSP(S, T ))(i), and

(ii) (diffSP(S, T ))(i+1) = the real norm space of bounded linear operators
from S into H.

Let S, T be real normed spaces and i be a natural number. The functor
diffSP(Si, T ) yielding a real normed space is defined by the term

(Def. 3) (diffSP(S, T ))(i).

Now we state the proposition:

(10) Let us consider a natural number i. Then diffSP(S(i+1), T ) = the real
norm space of bounded linear operators from S into diffSP(Si, T ). The
theorem is a consequence of (9).

Let S, T be real normed spaces and f be a set. Assume f is a partial function
from S to T . The functor PartFuncs(f, S, T ) yielding a partial function from S
to T is defined by the term

(Def. 4) f .

Let f be a partial function from S to T and Z be a subset of S. The functor
f ′(Z) yielding a function is defined by

(Def. 5) (i) dom it = N, and

(ii) it(0) = f�Z, and

(iii) for every natural number i, it(i+ 1) =
(PartFuncs(it(i), S,diffSP(Si, T )))′�Z .

Now we state the propositions:

(11) (i) f ′(Z)(0) = f�Z, and

(ii) f ′(Z)(1) = (f�Z)′�Z , and

(iii) f ′(Z)(2) = ((f�Z)′�Z)′�Z .
The theorem is a consequence of (7).

(12) Let us consider a natural number i. Then f ′(Z)(i) is a partial function
from S to diffSP(Si, T ). The theorem is a consequence of (7). Proof:
Define P[natural number] ≡ f ′(Z)($1) is a partial function from S to
diffSP(S$1 , T ). For every natural number n, P[n] from [2, Sch. 2]. �

Let S, T be real normed spaces, f be a partial function from S to T , Z be a
subset of S, and i be a natural number. The functor diffZ(f, i) yielding a partial
function from S to diffSP(Si, T ) is defined by the term
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(Def. 6) f ′(Z)(i).

Now we state the proposition:

(13) diffZ(f, i+ 1) = diffZ(f, i)′�Z . The theorem is a consequence of (12) and
(8).

Let S, T be real normed spaces, f be a partial function from S to T , Z be a
subset of S, and n be a natural number. We say that f is differentiable n times
on Z if and only if

(Def. 7) (i) Z ⊆ dom f , and

(ii) for every natural number i such that i ¬ n− 1 holds
PartFuncs(f ′(Z)(i), S,diffSP(Si, T )) is differentiable on Z.

Now we state the propositions:

(14) f is differentiable n times on Z if and only if Z ⊆ dom f and for every
natural number i such that i ¬ n− 1 holds diffZ(f, i) is differentiable on
Z.

(15) f is differentiable 1 times on Z if and only if Z ⊆ dom f and f�Z is
differentiable on Z. The theorem is a consequence of (14) and (7). Pro-
of: For every natural number i such that i ¬ 1 − 1 holds diffZ(f, i) is
differentiable on Z. �

(16) f is differentiable 2 times on Z if and only if Z ⊆ dom f and f�Z is
differentiable on Z and (f�Z)′�Z is differentiable on Z. The theorem is a
consequence of (14), (7), and (11). Proof: For every natural number i
such that i ¬ 2− 1 holds diffZ(f, i) is differentiable on Z by [2, (14)]. �

(17) Let us consider real normed spaces S, T , a partial function f from S to
T , a subset Z of S, and a natural number n. Suppose f is differentiable
n times on Z. Let us consider a natural number m. If m ¬ n, then f is
differentiable m times on Z.

(18) Let us consider a natural number n and a partial function f from S to
T . If 1 ¬ n and f is differentiable n times on Z, then Z is open. The
theorem is a consequence of (17) and (15).

(19) Let us consider a natural number n and a partial function f from S to
T . Suppose

(i) 1 ¬ n, and

(ii) f is differentiable n times on Z.

Let us consider a natural number i. Suppose i ¬ n. Then

(iii) (diffSP(S, T ))(i) is a real normed space, and

(iv) f ′(Z)(i) is a partial function from S to diffSP(Si, T ), and

(v) dom diffZ(f, i) = Z.

The theorem is a consequence of (13) and (14).
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(20) Let us consider a natural number n and partial functions f , g from S to
T . Suppose

(i) 1 ¬ n, and

(ii) f is differentiable n times on Z, and

(iii) g is differentiable n times on Z.

Let us consider a natural number i. Suppose i ¬ n. Then diffZ(f + g, i) =
diffZ(f, i) + diffZ(g, i). The theorem is a consequence of (18), (14), (19),
(13), and (10). Proof: Define P[natural number] ≡ if $1 ¬ n, then
diffZ(f + g, $1) = diffZ(f, $1) + diffZ(g, $1). P[0] by [21, (27)]. For eve-
ry natural number i such that P[i] holds P[i + 1] by [2, (11)], [11, (39)],
[8, (5)]. For every natural number n, P[n] from [2, Sch. 2]. �

(21) Let us consider a natural number n and partial functions f , g from S to
T . Suppose

(i) 1 ¬ n, and

(ii) f is differentiable n times on Z, and

(iii) g is differentiable n times on Z.

Then f+g is differentiable n times on Z. The theorem is a consequence of
(18), (14), (19), and (20). Proof: For every natural number i such that
i ¬ n− 1 holds diffZ(f + g, i) is differentiable on Z by [11, (39)]. �

(22) Let us consider a natural number n and partial functions f , g from S to
T . Suppose

(i) 1 ¬ n, and

(ii) f is differentiable n times on Z, and

(iii) g is differentiable n times on Z.

Let us consider a natural number i. Suppose i ¬ n. Then diffZ(f − g, i) =
diffZ(f, i) − diffZ(g, i). The theorem is a consequence of (18), (14), (19),
(13), and (10). Proof: Define P[natural number] ≡ if $1 ¬ n, then
diffZ(f − g, $1) = diffZ(f, $1) − diffZ(g, $1). P[0] by [21, (30)]. For eve-
ry natural number i such that P[i] holds P[i + 1] by [2, (11)], [11, (40)],
[8, (5)]. For every natural number n, P[n] from [2, Sch. 2]. �

(23) Let us consider a natural number n and partial functions f , g from S to
T . Suppose

(i) 1 ¬ n, and

(ii) f is differentiable n times on Z, and

(iii) g is differentiable n times on Z.

Then f−g is differentiable n times on Z. The theorem is a consequence of
(18), (14), (19), and (22). Proof: For every natural number i such that
i ¬ n− 1 holds diffZ(f − g, i) is differentiable on Z by [11, (40)]. �
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(24) Let us consider a natural number n, a real number r, and a partial
function f from S to T . Suppose

(i) 1 ¬ n, and

(ii) f is differentiable n times on Z.

Let us consider a natural number i. If i ¬ n, then diffZ(r · f, i) = r ·
diffZ(f, i). The theorem is a consequence of (18), (14), (19), (10), and
(13). Proof: Define P[natural number] ≡ if $1 ¬ n, then diffZ(r ·f, $1) =
r · diffZ(f, $1). P[0] by [21, (31)]. For every natural number i such that
P[i] holds P[i + 1] by [2, (11)], [11, (41)]. For every natural number n,
P[n] from [2, Sch. 2]. �

(25) Let us consider a natural number n, a real number r, and a partial
function f from S to T . Suppose

(i) 1 ¬ n, and

(ii) f is differentiable n times on Z.

Then r · f is differentiable n times on Z. The theorem is a consequence of
(18), (14), (24), and (19). Proof: For every natural number i such that
i ¬ n− 1 holds diffZ(r · f, i) is differentiable on Z by [11, (41)]. �

(26) Let us consider a natural number n and a partial function f from S to
T . Suppose

(i) 1 ¬ n, and

(ii) f is differentiable n times on Z.

Let us consider a natural number i. Suppose i ¬ n. Then diffZ(−f, i) =
−diffZ(f, i). The theorem is a consequence of (24).

(27) Let us consider a natural number n and a partial function f from S to
T . Suppose

(i) 1 ¬ n, and

(ii) f is differentiable n times on Z.

Then −f is differentiable n times on Z. The theorem is a consequence of
(25).
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