FORMALIZED MATHEMATICS ™~
Vol. 21, No. 2, Pages 95-102, 2013 VERSITA

DOI: 10.2478 /forma-2013-0011 degruyter.com/view/j/forma

Differentiation in Normed Spacesd|

Noboru Endou Yasunari Shidama,
Gifu National College of Technology Shinshu University
Japan Nagano, Japan

Summary. In this article we formalized the Fréchet differentiation. It is
defined as a generalization of the differentiation of a real-valued function of a
single real variable to more general functions whose domain and range are subsets
of normed spaces [14].
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The notation and terminology used in this paper have been introduced in the
following articles: [5], [1], [, [10], 6], [7], [16], [15], [11], [12], [13], 3], 8], [19],
[20], [17], [18], [21], and [9].
Let us consider non empty sets D, E, F. Now we state the propositions:
(1) There exists a function I from (F¥)P into FP*¥ such that
(i) I is bijective, and
(ii) for every function f from D into F'¥ and for every elements d, e such
that d € D and e € E holds I(f)(d,e) = f(d)(e).
(2) There exists a function I from (F¥)P into FE*P such that
(i) I is bijective, and
(ii) for every function f from D into F'F and for every elements e, d such
that e € E and d € D holds I(f)(e,d) = f(d)(e).
Now we state the propositions:

(3) Let us consider non-empty non empty finite sequences D, F and a
non empty set F. Then there exists a function L from (F 1z )HD into
FIIE"D) gych that

(i) L is bijective, and

IThis work was supported by JSPS KAKENHI 23500029 and 22300285.

@ 2013 University of Bialystok
CC-BY-SA License ver. 3.0 or later
95 ISSN 1426-2630(Print), 1898-9934(Online)


http://www.degruyter.com/view/j/forma
http://zbmath.org/classification/?q=cc:58C20
http://zbmath.org/classification/?q=cc:46G05
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/ndiff_6.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

NOBORU ENDOU AND YASUNARI SHIDAMA

(ii) for every function f from [] D into FIIE and for every finite sequen-
ces e, d such that e € [[ E and d € [] D holds L(f)(e "~ d) = f(d)(e).

The theorem is a consequence of (2). PROOF: Consider I being a function
from (FHE)HD into FIIEXIID guch that I is bijective and for every
function f from []D into FIIE and for every elements e, d such that
e € [IE and d € [[D holds I(f)(e,d) = f(d)(e). Consider J being a
function from [[ F x [[ D into [[(E ™ D) such that J is one-to-one and
onto and for every finite sequences z, y such that x € [[E and y € [[ D
holds J(z,y) = 2"y. Reconsider K = J~! as a function from [[(E"D) into
[IE x [ID. Define G(element) = I($;) - K. For every element x such that
x € (FHE)HD holds G(z) € FIIED) by h , (128)]. Consider
L being a function from (F HE 1D into FIIE" D such that for every
element e such that e € (FHE)HD holds L(e) = G(e) from [7, Sch. 2].
For every function f from [ D into FL1¥ and for every finite sequences
e, d such that e € [[ E and d € [[ D holds L(f)(e ™ d) = f(d)(e) by [9}
(87)], [7, (26), (8), (5)]. O

(4) Let us consider non empty sets X, Y. Then there exists a function [
from X x Y into X x [[(Y) such that

(i) I is bijective, and
(ii) for every elements x, y such that x € X and y € Y holds I(z,y) = (x,

()

PRrROOF: Consider J being a function from Y into [[(Y’) such that J is one-
to-one and onto and for every element y such that y € Y holds J(y) = (y).
Define P[element, element, element] = $3 = ($1, ($2)). For every elements
xz, y such that z € X and y € Y there exists an element z such that
z € X x [{Y) and Plz,y, 2] by [1, (5)], [9 (87)]. Consider I being a
function from X x Y into X x [[(Y) such that for every elements z, y such
that x € X and y € Y holds P[z,y, I(z,y)] from [5, Sch. 1]. O
(5) Let us consider a non-empty non empty finite sequence X and a non

empty set Y. Then there exists a function K from [T X xY into [[(X~(Y))
such that

(i) K is bijective, and

(ii) for every finite sequence = and for every element y such that z € [ X

and y € Y holds K(z,y) =z~ (y).

The theorem is a consequence of (4). PROOF: Consider I being a function
from [TX x Y into [[X X [[(Y) such that I is bijective and for every
element z and for every element y such that x € [[X and y € Y holds
I(z,y) = (z, (y)). Consider J being a function from []JX x [[(Y) into
[I(X ™ (Y)) such that J is one-to-one and onto and for every finite sequ-
ences z, y such that z € [[X and y € [[(Y) holds J(z,y) = x " y. Set
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K = J - 1. For every finite sequence x and for every element y such that
z€[[X and y € Y holds K(z,y) =z~ (y) by [9, (87)], [7, (5), (15)]. O
(6) Let us consider a non empty set D, a non-empty non empty finite se-

quence F, and a non empty set F. Then there exists a function L from
(FHE)D into FIIE™(P) such that

(i) L is bijective, and

(ii) for every function f from D into FIIE and for every finite sequence
e and for every element d such that e € [[E and d € D holds

L(f)(e™ (d)) = f(d)(e)-

The theorem is a consequence of (2) and (5). PROOF: Consider I being
a function from (FHE)D into FLIZXP guch that I is bijective and for
every function f from D into FIIE and for every elements e, d such that
ec€[[EFandd e Dholds I(f)(e,d) = f(d)(e). Consider J being a function
from [T E x D into [T(E ™ (D)) such that .J is bijective and for every finite
sequence x and for every element y such that x € [[F and y € D holds
J(z,y) = " (y). Reconsider K = J~! as a function from [[(E " (D)) into
[[E x D. Define G(element) = I($;) - K. For every element x such that
x € (FHE)D holds G(z) € FIIED) by [7, (5), (8), (128)]. Consider L
being a function from (FH EVD into FIIE (D) guch that for every element
e such that e € (FHE)D holds L(e) = G(e) from [7, Sch. 2]. For every
function f from D into FIIE and for every finite sequence e and for every
element d such that e € [[ E and d € D holds L(f)(e ™ (d)) = f(d)(e) by
[, (5), (26), (8)]. O
In this paper S, T' denote real normed spaces, f, fi, fo denote partial func-
tions from S to T, Z denotes a subset of S, and ¢, n denote natural numbers.
Let S be a set. Assume S is a real normed space. The functor NormSpg(.S)
yielding a real normed space is defined by the term

(Def. 1) S.

Let S, T be real normed spaces. The functor diffsp (S, T) yielding a function
is defined by

(Def. 2) (i) dom it =N, and
(ii) #(0) =T, and
(iii) for every natural number 4, it(i+1) = the real norm space of bounded
linear operators from S into NormSpy (it(4)).
Now we state the proposition:
() () (diffsp(S,T))(0) = T, and

(ii) (diffgp(S,T))(1) = the real norm space of bounded linear operators
from S into 7', and
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(iii) (diffsp(S,T"))(2) = the real norm space of bounded linear operators
from S into the real norm space of bounded linear operators from S
into 7.
Let us consider a natural number i. Now we state the propositions:
(8) (diffgp(S,T))(4) is a real normed space.
(9) There exists a real normed space H such that

() H = (diffsp(S, T))(i), and
(ii) (diffgp(S,T))(i4+1) = the real norm space of bounded linear operators
from S into H.

Let S, T be real normed spaces and ¢ be a natural number. The functor
diffgp(S*, T') yielding a real normed space is defined by the term
(Def. 3) (diffsp(S,T))(1).
Now we state the proposition:

(10) Let us consider a natural number . Then diffgp(SU+D, T') = the real
norm space of bounded linear operators from S into diffgp(S*,T"). The
theorem is a consequence of (9).

Let S, T be real normed spaces and f be a set. Assume f is a partial function
from S to T. The functor PartFuncs(f, S, T) yielding a partial function from S
to T is defined by the term
(Def. 4) f.
Let f be a partial function from S to 7" and Z be a subset of S. The functor
1'(Z) yielding a function is defined by
(Def. 5) (i) domit =N, and
(ii) it(0) = f1Z, and
(iii) for every natural number 7, it(i + 1) =
(PartFuncs(it(i), S, diffsp (S, T)))’ -
Now we state the propositions:
(1) () f(2)0) = f1Z, and
(ii) f(2)(1) = (f12)z, and
(i) /(2)(2) = ((F12)) 1)1
The theorem is a consequence of (7).

(12) Let us consider a natural number i. Then f/(Z)(i) is a partial function
from S to diffgp(S*,T"). The theorem is a consequence of (7). PROOF:
Define P[natural number] = f/(Z)($1) is a partial function from S to
diffgp(S®1, T). For every natural number n, P[n] from [2, Sch. 2]. O

Let S, T be real normed spaces, f be a partial function from S to T', Z be a
subset of S, and ¢ be a natural number. The functor diff z(f, ) yielding a partial
function from S to diffgp(S*,T") is defined by the term
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(Detf. 6) f'(Z)(7).
Now we state the proposition:
(13) diffz(f,i+ 1) = diffz(f,4)},. The theorem is a consequence of (12) and
(8)-
Let S, T be real normed spaces, f be a partial function from S to T, Z be a

subset of S, and n be a natural number. We say that f is differentiable n times
on Z if and only if

(Def. 7) (i) Z C dom f, and
(ii) for every natural number i such that ¢ <n — 1 holds
PartFuncs(f'(Z)(i), S, diffsp(S?, T)) is differentiable on Z.
Now we state the propositions:
(14) f is differentiable n times on Z if and only if Z C dom f and for every

natural number ¢ such that ¢ < n — 1 holds diff z(f,4) is differentiable on
Z.

(15) f is differentiable 1 times on Z if and only if Z C dom f and f[Z is
differentiable on Z. The theorem is a consequence of (14) and (7). Pro-
OF: For every natural number i such that i < 1 — 1 holds diffz(f,4) is
differentiable on Z.

(16) f is differentiable 2 times on Z if and only if Z C dom f and f]Z is
differentiable on Z and (f[Z)}, is differentiable on Z. The theorem is a
consequence of (14), (7), and (11). PROOF: For every natural number 4
such that i < 2 — 1 holds diff z(f,¢) is differentiable on Z by [2 (14)]. O

(17) Let us consider real normed spaces S, T, a partial function f from S to
T, a subset Z of S, and a natural number n. Suppose f is differentiable
n times on Z. Let us consider a natural number m. If m < n, then f is
differentiable m times on Z.

(18) Let us consider a natural number n and a partial function f from S to
T.1If 1 < n and f is differentiable n times on Z, then Z is open. The
theorem is a consequence of (17) and (15).

(19) Let us consider a natural number n and a partial function f from S to
T. Suppose

(i) 1 <n,and

(ii) f is differentiable n times on Z.

Let us consider a natural number i. Suppose ¢ < n. Then

(iii) (diffgp(S,T))(7) is a real normed space, and

(iv) f'(Z)(i) is a partial function from S to diffsp(S?, T), and
(v) domdiffz(f,7) = Z.

The theorem is a consequence of (13) and (14).
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(20) Let us consider a natural number n and partial functions f, g from S to
T. Suppose
(i) 1 < n, and
(ii) f is differentiable n times on Z, and
(ili) g is differentiable n times on Z.
Let us consider a natural number i. Suppose ¢ < n. Then diff z(f + g,1) =
diff z(f,7) + diff (g, ). The theorem is a consequence of (18), (14), (19),
(13), and (10). PrROOF: Define Plnatural number| = if $; < n, then
diff z(f + g,%1) = diff z(f, $1) + diff z(g, $1). P[0] by [2I, (27)]. For eve-
ry natural number ¢ such that P[i] holds P[i + 1] by [2, (11)], [IT], (39)],
I8, (5)]. For every natural number n, P[n| from [2, Sch. 2]. O
(21) Let us consider a natural number n and partial functions f, g from S to

T. Suppose
(i) 1 < n, and
(ii) f is differentiable n times on Z, and
(iii) g is differentiable n times on Z.
Then f 4+ g is differentiable n times on Z. The theorem is a consequence of
(18), (14), (19), and (20). PROOF: For every natural number i such that
i <n—1 holds diffz(f + g,4) is differentiable on Z by [11 (39)]. O
(22) Let us consider a natural number n and partial functions f, g from S to
T. Suppose
(i) 1 < n, and
(ii) f is differentiable n times on Z, and
(ili) g is differentiable n times on Z.

Let us consider a natural number i. Suppose ¢ < n. Then diff z(f — g,1) =
diff z(f, 1) — diff z(g, 7). The theorem is a consequence of (18), (14), (19),
(13), and (10). PROOF: Define Plnatural number| = if $; < n, then
diff z(f — g,%1) = diff z(f, $1) — diff z(g, $1). P[0] by [21, (30)]. For eve-
ry natural number ¢ such that P[i] holds P[i + 1] by [2, (11)], [IT], (40)],
I8, (5)]. For every natural number n, P[n| from [2, Sch. 2]. O

(23) Let us consider a natural number n and partial functions f, g from S to
T. Suppose
(i) 1 <n, and
(ii) f is differentiable n times on Z, and
(iii) g is differentiable n times on Z.

Then f — g is differentiable n times on Z. The theorem is a consequence of
(18), (14), (19), and (22). PROOF: For every natural number i such that
i <n—1 holds diffz(f — g,4) is differentiable on Z by [11} (40)]. O
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(24) Let us consider a natural number n, a real number r, and a partial
function f from S to T. Suppose

(i) 1 < n, and
(ii) f is differentiable n times on Z.

Let us consider a natural number i. If i < n, then diffz(r - f,i) = r -
diff z(f,4). The theorem is a consequence of (18), (14), (19), (10), and
(13). PROOF: Define P[natural number| = if $; < n, then diff z(r- f,$1) =
r-diff z7(f,$1). P[0] by [21, (31)]. For every natural number 4 such that
P[i] holds Pli + 1] by [2, (11)], [11, (41)]. For every natural number n,
P[n] from [2], Sch. 2]. O

(25) Let us consider a natural number n, a real number r, and a partial
function f from S to T'. Suppose

(i) 1 < n, and
(ii) f is differentiable n times on Z.

Then 7 - f is differentiable n times on Z. The theorem is a consequence of
(18), (14), (24), and (19). PROOF: For every natural number 7 such that
i <n—1holds diff z(r - f,4) is differentiable on Z by [11, (41)]. O

(26) Let us consider a natural number n and a partial function f from S to
T. Suppose

(i) 1 < n, and
(ii) f is differentiable n times on Z.

Let us consider a natural number i. Suppose i < n. Then diffz(—f,i) =
—diff z(f, 7). The theorem is a consequence of (24).

(27) Let us consider a natural number n and a partial function f from S to
T. Suppose

(i) 1 < n, and
(ii) f is differentiable n times on Z.

Then —f is differentiable n times on Z. The theorem is a consequence of
(25).
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