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N-Dimensional Binary Vector Spaces
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Summary. The binary set {0,1} together with modulo-2 addition and
multiplication is called a binary field, which is denoted by Fs. The binary field
F is defined in [I]. A vector space over Iy is called a binary vector space. The
set of all binary vectors of length n forms an n-dimensional vector space V,, over
Fs. Binary fields and n-dimensional binary vector spaces play an important role
in practical computer science, for example, coding theory [15] and cryptology.
In cryptology, binary fields and n-dimensional binary vector spaces are very im-
portant in proving the security of cryptographic systems [13]. In this article we
define the n-dimensional binary vector space V,,. Moreover, we formalize some
facts about the n-dimensional binary vector space V.
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The notation and terminology used in this paper have been introduced in the
following articles: [6], [11, [2], [16], [5], [7], [I1], [I7], [8], [9], [18], [24], [14], [4],
[25], [26], [19], [23], [12], [20], [21], [22], [27], and [10].
In this paper m, n, s denote non zero elements of N.
Now we state the proposition:
(1) Let us consider elements u1, v1, wy of Boolean™. Then Op-XOR((Op-XOR
(ul, Ul)), U)l) = Op—XOR(ul, (Op—XOR(Ul, wl))).
Let n be a non zero element of N. The functor XORp(n) yielding a binary
operation on Boolean™ is defined by
(Def. 1) Let us consider elements z, y of Boolean™. Then it(z,y) = Op-XOR(z, y).
The functor Zerog(n) yielding an element of Boolean™ is defined by the term
(Def. 2) n—0.
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The functor n-binary additive group yielding a strict additive loop structure
is defined by the term
(Def. 3) (Boolean™, XORg(n), Zerog(n)).
Let us consider an element u; of Boolean™. Now we state the propositions:
(2) Op-XOR(u1,Zerog(n)) = u;.
(3) Op-XOR(ui,u1) = Zerog(n).

Let n be a non zero element of N. Note that n-binary additive group is add-
associative right zeroed right complementable Abelian and non empty and every
element of Z, is Boolean.

Let u, v be elements of Zs. We identify u ® v with u 4+ v. We identify u A v
with u - v. Let n be a non zero element of N. The functor MLTg(n) yielding a
function from (the carrier of Zy) x Boolean™ into Boolean™ is defined by

(Def. 4) Let us consider an element a of Boolean, an element x of Boolean™, and
a set i. If i € Segn, then it(a,x)(i) = a A x(3).

The functor n-binary vector space yielding a vector space over Zo is defined

by the term
(Def. 5) (Boolean™, XORgp(n), Zerog(n), MLTg(n)).

Let us note that n-binary vector space is finite.

Let us note that every subspace of n-binary vector space is finite.

Now we state the propositions:

(4) Let us consider a natural number n. Then > n + 0z, = 0z,.

(5) Let us consider a finite sequence x of elements of Zs, an element v of Zs,
and a natural number j. Suppose
(i) lenx = m, and
(ii) j € Segm, and
(iii) for every natural number ¢ such that i € Segm holds if i = j, then
x(i) = v and if ¢ # j, then x(i) = Ogz,.
Then Y x = wv. The theorem is a consequence of (4). PROOF: Define
P[natural number] = for every non zero element m of N for every fini-
te sequence x of elements of Zo for every element v of Zs for every natural
number j such that $ = m and lenx = m and j € Segm and for every
natural number ¢ such that ¢ € Segm holds if ¢ = j, then z(i) = v and if
i # j, then z(i) = 0z, holds Y x = v. For every natural number k such
that P[k] holds Pk + 1] by [3, (11)], [, (59), (5), (1)]. For every natural
number k, P[k] from [3, Sch. 2]. O
(6) Let us consider a (the carrier of n-binary vector space)-valued finite se-
quence L and a natural number j. Suppose

(i) len L = m, and

(ii) m < n, and
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(iii) j € Segn.
Then there exists a finite sequence x of elements of Zy such that
(iv) lenz = m, and

(v) for every natural number ¢ such that i € Segm there exists an element
K of Boolean™ such that K = L(i) and z(i) = K(j).

PROOF: Define Q[natural number,set] = there exists an element K of
Boolean™ such that K = L($;) and $2 = K (j). For every natural number
1 such that ¢ € Segm there exists an element y of Boolean such that
Qli,y]. Consider x being a finite sequence of elements of Boolean such
that domz = Segm and for every natural number ¢ such that ¢ € Segm
holds Q[i, z(7)] from [5, Sch. 5]. O

(7) Let us consider a (the carrier of n-binary vector space)-valued finite se-
quence L, an element S of Boolean™, and a natural number j. Suppose

(i) len L = m, and
(il) m < n, and
(iii) S =3 L, and
(iv) j € Segn.
Then there exists a finite sequence x of elements of Zy such that
(v) lenxz = m, and

(vi) $(j) = ¥, and
(vii) for every natural number ¢ such that i € Segm there exists an element
K of Boolean™ such that K = L(i) and z(i) = K (j).

The theorem is a consequence of (6). PROOF: Consider = being a finite
sequence of elements of Zs such that lenxz = m and for every natural
number 4 such that i € Segm there exists an element K of Boolean™
such that K = L(i) and x(i) = K(j). Consider f being a function
from N into n-binary vector space such that Y L = f(len L) and f(0) =
On-binary vector space and for every natural number j and for every element
v of n-binary vector space such that j < len L and v = L(j + 1) holds
f(j+1) = f(j) + v. Define Qnatural number, set] = there exists an ele-
ment K of Boolean™ such that K = f($1) and $2 = K (j). For every ele-
ment i of N, there exists an element y of the carrier of Zy such that Qli, y]
by [I, (3)]. Consider g being a function from N into Zs such that for every
element i of N, Q[i, g(4)] from [9, Sch. 3]. Set S; = S(j). S; = g(lenz).
g(0) = 0z, by [1, (5)]. For every natural number k and for every element
vy of Zg such that k < lenx and vy = z(k + 1) holds g(k + 1) = g(k) + v
by [3, (11), (13)]. O

(8) Suppose m < n. Then there exists a finite sequence A of elements of
Boolean™ such that
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(i) len A = m, and

(iii) rng A = m, and

)
(ii) A is one-to-one, and
)
(iv) for every natural numbers i, j such that i € Segm and j € Segn

holds if i = j, then A(i)(j) = true and if i # j, then A(:)(j) = false.

PROOF: Define P[natural number, function] = for every natural number
j such that j € Segn holds if $; = j, then $3(j) = true and if $; # j,
then $2(j) = false. For every natural number k such that k € Seg m there
exists an element x of Boolean™ such that P[k,z]. Consider A being a
finite sequence of elements of Boolean™ such that dom A = Segm and for
every natural number k such that k& € Segm holds Pk, A(k)] from [5]
Sch. 5]. For every elements x, y such that z, y € dom A and A(x) = A(y)
holds z =y by [5, (5)]. O

(9) Let us consider a finite sequence A of elements of Boolean™, a finite
subset B of n-binary vector space, a linear combination [ of B, and an
element S of Boolean™. Suppose

(i) rng A = B, and
(ii

) m < n, and
(iii) len A =m, and
(iv) S=3>_1, and
(v) A is one-to-one, and
(vi) for every natural numbers i, j such that i € Segn and j € Segm
holds if i = j, then A(i)(j) = true and if i # j, then A(7)(j) = false.

Let us consider a natural number j. If j € Segm, then S(j) = I(A(j)).
The theorem is a consequence of (7) and (5). PROOF: Set V' = n-binary
vector space. Reconsider F; = A as a finite sequence of elements of V.
Consider = being a finite sequence of elements of Zy such that lenx = m
and S(j) = >z and for every natural number ¢ such that i € Segm
there exists an element K of Boolean™ such that K = (I - F1)(i) and
x(i) = K(j). For every natural number ¢ such that ¢ € Segm holds if
i = j, then z(i) = [(A(y)) and if i # j, then z(i) = 0z, by [5, (5)], [ (3),
(5)]. O

(10) Let us consider a finite sequence A of elements of Boolean™ and a finite
subset B of n-binary vector space. Suppose

(i) rng A = B, and

(i) m
(iii) len A = m, and
)

< n, and

(iv) A is one-to-one, and
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(v) for every natural numbers i, j such that i € Segn and j € Segm
holds if ¢ = j, then A(i)(j) = true and if ¢ # j, then A(3)(j) = false.

Then B is linearly independent. The theorem is a consequence of (9).
PROOF: Set V' = n-binary vector space. For every linear combination [ of
B such that "1 = 0y holds the support of I =) by [1}, (5)]. O

(11) Let us consider a finite sequence A of elements of Boolean™, a finite subset
B of n-binary vector space, and an element v of Boolean™. Suppose

(i) rng A = B, and

(ii) len A = n, and
(iii) A is one-to-one.
Then there exists a linear combination [ of B such that for every na-
tural number j such that j € Segn holds v(j) = I(A(j)). PROOF: Set
V' = n-binary vector space. Define Qlelement, element] = there exists a
natural number j such that j € Segn and $; = A(j) and $2 = v(y).
For every element = such that x € B there exists an element y such that
y € the carrier of Zs and Q[z,y] by [I, (3)]. Consider I; being a function
from B into the carrier of Zo such that for every element z such that
x € B holds Q[z,!l;(x)] from [9, Sch. 1]. For every natural number j such
that j € Segn holds I1(A(j)) = v(j) by [8, (3)]. Set f = (the carrier of
V) +—— 0gz,. Set | = f+:1;. For every element v of V such that v ¢ B holds
[(v) = 0z, by [I7, (7)]. For every element x such that = € the support
of [ holds x € B. For every natural number j such that j € Segn holds
v(j) = (A7) by [8 (3)]. O

(12) Let us consider a finite sequence A of elements of Boolean™ and a finite
subset B of n-binary vector space. Suppose

(i) rng A = B, and

(ii) len A = n, and
(iii) A is one-to-one, and
(iv) for every natural numbers 4, j such that i, j € Segn holds if i = j,

then A(7)(j) = true and if i # j, then A(3)(j) = false.
Then Lin(B) = (the carrier of n-binary vector space, the addition of n-bi—
nary vector space, the zero of n-binary vector space, the left multiplication
of n-binary vector space). The theorem is a consequence of (11) and (9).
PROOF: Set V' = n-binary vector space. For every element x, z € the carrier
of Lin(B) iff z € the carrier of V' by [5, (13)], [22, (7)]. O
(13) There exists a finite subset B of n-binary vector space such that

(i) B is a basis of n-binary vector space, and

(ii) B =n, and
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(iii) there exists a finite sequence A of elements of Boolean™ such that

len A = n and A is one-to-one and rng A = n and rng A = B and for
every natural numbers ¢, j such that i, j € Segn holds if ¢ = j, then
A(i)(j) = true and if i # j, then A(i)(j) = false.
The theorem is a consequence of (8), (10), and (12).
(14) (i) n-binary vector space is finite dimensional, and
(ii) dim(n-binary vector space) = n.
The theorem is a consequence of (13).

Let n be a non zero element of N. One can verify that n-binary vector space
is finite dimensional.
Now we state the proposition:

(15) Let us consider a finite sequence A of elements of Boolean™ and a subset
C of n-binary vector space. Suppose

(i) len A =n, and

(ii) A is one-to-one, and

)
(iii) rng A = n, and
(iv) for every natural numbers i, j such that i, j € Segn holds if i = j,
then A(7)(j) = true and if i # j, then A(i)(j) = false, and

(v) C CrngA.

Then

(vi) Lin(C) is a subspace of n-binary vector space, and
(vii) C'is a basis of Lin(C'), and
(viii) dim(Lin(C)) = C.

The theorem is a consequence of (10).
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