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Summary. We have been working on the formalization of groups. In [I], we
encoded some theorems concerning the product of cyclic groups. In this article,
we present the generalized formalization of [I]. First, we show that every finite
commutative group which order is composite number is isomorphic to a direct
product of finite commutative groups which orders are relatively prime. Next, we
describe finite direct products of finite commutative groups.
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The notation and terminology used in this paper have been introduced in the
following articles: [2], [3], [19], [7], [13], [20], [8], [9], [10], [23], [24], [25], [24],
[27), [14], [22], [17), [4], [5], [15], [16], [6], [11], [21], [18], [29], [28], and [12].

1. PRELIMINARIES

Now we state the propositions:
(1) Let us consider sets A, B, A1, By. Suppose

(i) A misses B, and
(i) A} C A, and
(iii) By € B, and
(iv) AiUuB; =AUB.
Then
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(v) A; = A, and
(vi) By = B.
ProOOF: AC A;. BC By. I
(2) Let us consider non empty finite sets H, K. Then [[(H,K) = H- K.
Let us consider bags p2, p1, f of Prime and a natural number ¢q. Now we
state the propositions:
(3) If support p2 misses support p; and f = pa + p; and ¢ € support pa, then

p2(q) = f(q)-
(4) If support p2 misses support p; and f = ps + p1 and ¢ € support p1, then
pi(q) = f(a).

Now we state the propositions:

(5) Let us consider a non zero natural number h and a prime number ¢. If
q and h are not relatively prime, then ¢ | h.

(6) Let us consider non zero natural numbers h, s. Suppose a prime num-
ber ¢. Suppose ¢ € support PrimeFactorization(s). Then ¢ and h are not
relatively prime. Then support PrimeFactorization(s) C
support PrimeFactorization(h). The theorem is a consequence of (5).

(7) Let us consider non zero natural numbers h, k, s, t. Suppose
(i) h and k are relatively prime, and
(ii) s-t=h-k, and

(iii) for every prime number ¢ such that ¢ € support PrimeFactorization(s)
holds ¢ and h are not relatively prime, and

(iv) for every prime number g such that ¢ € support PrimeFactorization(t)
holds ¢ and k are not relatively prime.

Then
(v) s=h, and
(vi) t =k.

The theorem is a consequence of (6), (1), (3), and (4). PROOF: Set ps =
PrimeFactorization(s). Set p; = PrimeFactorization(t). For every natural
number p such that p € support PFExp(h) holds po(p) = pPe0w(h) For
every natural number p such that p € support PFExp(k) holds pi(p) =
pp—count(k). 0O
Let G be a non empty multiplicative magma, I be a finite set, and b be a
(the carrier of G)-valued total I-defined function. The functor []b yielding an
element of G is defined by

(Def. 1) There exists a finite sequence f of elements of G such that
(i) it =]1f, and
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(i) f=b-CFS().
Now we state the propositions:

(8) Let us consider a commutative group G, non empty finite sets A, B, a
(the carrier of G)-valued total A-defined function F3, a (the carrier of G)-
valued total B-defined function F», and a (the carrier of G)-valued total
A U B-defined function Fj. Suppose

(i) A misses B, and
(i) Fy = Fsy+ Fy.
Then [[ F1 =1 F5 - [] Fa.
(9) Let us consider a non empty multiplicative magma G, a set ¢, an element

z of G, and a (the carrier of G)-valued total {¢}-defined function f. If
f=q——z then [[f = 2.

2. DiIREcT PrRODUCT OF FINITE COMMUTATIVE GROUPS

Now we state the propositions:

(10) Let us consider non empty multiplicative magmas X, Y. Then the carrier
of [[{X,Y) = [I(the carrier of X, the carrier of Y'). PROOF: Set CarrX =
the carrier of X. Set CarrY = the carrier of Y. For every element a such
that a € domthe support of (X,Y) holds (the support of (X,Y))(a) =
(the carrier of X, the carrier of Y)(a). O

(11) Let us consider a group G and normal subgroups A, B of G. Suppose
(the carrier of A) N (the carrier of B) = {1¢}. Let us consider elements a,
bof G.Ifac Aand be B, thena-b=1b-a.

(12) Let us consider a group G and normal subgroups A, B of G. Suppose

(i) for every element x of G, there exist elements a, b of G such that
a€ Aand b€ B and x =a-b, and

(ii) (the carrier of A) N (the carrier of B) = {1¢}.

Then there exists a homomorphism A from [[(4, B) to G such that

(iii) h is bijective, and

(iv) for every elements a, b of G such that a € A and b € B holds h({(a,
b)) =a-b.

The theorem is a consequence of (11). PROOF: Define P|[set, set] = there

exists an element x of G and there exists an element y of G such that x € A

and y € B and $; = (z,y) and $2 = x - y. For every element z of [](A,

B), there exists an element w of G such that P[z, w]. Consider h being a

function from [](A, B) into G such that for every element z of [[(A, B),
P[z,h(z)]. For every elements a, b of G such that a € A and b € B holds
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h({a,b)) = a-b. For every elements z, w of [[(4, B), h(z-w) = h(z)-h(w).
O

Let us consider a finite commutative group G, a natural number m, and a
subset A of G. Now we state the propositions:
(13) Suppose A = {z where x is an element of G : 2™ = 1¢}. Then
(i) A#0, and
(ii) for every elements g1, g2 of G such that g1, g2 € A holds g; - g2 € A,
and

iii) for every element ¢ of G such that g € A holds ¢~ ! € A.
(iii) y g g g

(14) Suppose A = {z where x is an element of G : 2™ = 1¢}. Then there
exists a strict finite subgroup H of G such that

(i) the carrier of H = A, and
(ii) H is commutative and normal.
Now we state the propositions:

(15) Let us consider a finite commutative group G, a natural number m,
and a finite subgroup H of G. Suppose the carrier of H = {z where x is
an element of G : 2™ = 1¢}. Let us consider a prime number g. Suppo-

se ¢ € support PrimeFactorization( H ). Then ¢ and m are not relatively
prime.

(16) Let us consider a finite commutative group G and natural numbers h,
k. Suppose

(i) G =h-k, and
(ii) h and k are relatively prime.
Then there exist strict finite subgroups H, K of G such that
(iii) the carrier of H = {x where x is an element of G : 2" = 15}, and
(iv
(v

) the carrier of K = {z where x is an element of G : ¥ = 15}, and

)
(vi) K is normal, and

)

H is normal, and

(vii) for every element x of G, there exist elements a, b of G such that
a€ Hand be K and x =a-b, and

(viii) (the carrier of H) N (the carrier of K) = {1¢}.

The theorem is a consequence of (14). PROOF: Set A = {z where z is
an element of G : 2" = 15}. Set B = {z where z is an element of G :
ak = 1¢}. A C the carrier of G. B C the carrier of G. Consider H being
a strict finite subgroup of GG such that the carrier of H = A and H is
commutative and H is normal. Consider K being a strict finite subgroup
of GG such that the carrier of K = B and K is commutative and K is
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normal. Consider a, b being integers such that a-h+b-k = 1. (The carrier
of H) N (the carrier of K) C {1¢}. For every element x of G, there exist
elements s, t of G such that s € H andt € K and z =s-t. O

(17) Let us consider finite groups H, K. Then [[(H,K) = H - K. The
theorem is a consequence of (10) and (2).

(18) Let us consider a finite commutative group G and non zero natural
numbers h, k. Suppose

(i) G=h-k, and
(ii) h and k are relatively prime.
Then there exist strict finite subgroups H, K of GG such that
(iii) H = h, and
(iv) K =k, and
(v) (the carrier of H) N (the carrier of K) = {1¢}, and
)

(vi) there exists a homomorphism F' from [[(H, K) to G such that F is

bijective and for every elements a, b of G such that a € H and b € K
holds F'({a,b)) =a - b.

The theorem is a consequence of (16), (12), (17), (15), and (7).

3. FINITE DIRECT ProODUCTS OF FINITE COMMUTATIVE GROUPS

Let us consider a group G, a set ¢, an associative group-like multiplicative
magma family F of {q}, and a function f from G into [[ F. Now we state the
propositions:

(19) If F = ¢——G and for every element = of G, f(x) = g—x, then f is a
homomorphism from G to [ F.

(20) If FF = ¢——G and for every element x of G, f(zr) = ¢—=x, then f is
bijective.

Now we state the propositions:

(21) Let us consider a set ¢, an associative group-like multiplicative magma
family F of {¢q}, and a group G. Suppose F' = g——@G. Then there exists a
homomorphism [ from G to [[ F' such that

(i) I is bijective, and
(ii) for every element x of G, I(x) = ¢——u.

The theorem is a consequence of (19) and (20). PROOF: Define P[set, set] =
$2 = g——8,. For every element z of G, there exists an element w of [[ F
such that P[z, w]. Consider I being a function from G into [] F' such that
for every element z of G, Plz, I(x)]. O
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(22) Let us consider non empty finite sets Iy, I, an associative group-like mul-
tiplicative magma family Fy of Iy, an associative group-like multiplicative
magma family F' of I, groups H, K, an element g of I, an element k of
K, and a function g. Suppose

(i) g € the carrier of [] Fp, and
(ii) q ¢ Ip, and
(i) I =1IyU{q}, and
() F = Fot-(g-—K).
Then g+-(¢——k) € the carrier of [[ F. PROOF: Set HK = (H, K). Set

w = g+-(¢g——k). For every element x such that x € dom the support of
F holds w(x) € (the support of F)(x). O
Let us consider non empty finite sets Iy, I, an associative group-like multi-
plicative magma family Fy of I, an associative group-like multiplicative magma
family F of I, groups H, K, an element ¢ of I, a function Gy from H into [] Fp,
and a function G from [[(H, K) into [] F'. Now we state the propositions:

(23) Suppose Gy is a homomorphism from H to [] Fy and G is bijective and
q ¢ Ipand I = IhU{q} and F = Fy+-(¢—K). Then suppose for every
element h of H and for every element k of K, there exists a function g such
that g = Go(h) and G((h, k)) = g+-(¢——k). Then G is a homomorphism
from [](H, K) to [[ F.

(24) Suppose Gy is a homomorphism from H to [] Fy and Gy is bijective and
q ¢ Ipand I = Iy U {q} and F = Fy+(¢——K). Then suppose for every
element h of H and for every element k& of K, there exists a function g
such that g = Go(h) and G((h,k)) = g+-(g——k). Then G is bijective.

Now we state the propositions:

(25) Let us consider a set ¢, a multiplicative magma family F' of {¢}, and a
non empty multiplicative magma G. Suppose F = g——G'. Let us consider
a (the carrier of G)-valued total {q}-defined function y. Then

(i) y € the carrier of [] F, and
(ii) y(q) € the carrier of G, and
(il)) ¥ = ¢——y(q).
(26) Let us consider a set ¢, an associative group-like multiplicative magma

family F' of {¢}, and a group G. Suppose F' = g——G. Then there exists a
homomorphism Hy from [] F' to G such that

(i) Hy is bijective, and

(ii) for every (the carrier of G)-valued total {q}-defined function z, Hy(x) =
]z
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The theorem is a consequence of (21), (25), and (9). PROOF: Consider I
being a homomorphism from G to [[ F such that I is bijective and for
every element z of G, I(x) = g——x. Set Hy = I~!. For every (the carrier
of G)-valued total {¢}-defined function y, Hyo(y) = [[y. O

(27) Let us consider non empty finite sets Iy, I, an associative group-like mul-
tiplicative magma family Fj of Iy, an associative group-like multiplicative
magma family F of I, groups H, K, an element ¢ of I, and a homomor-
phism Gg from H to [] Fp. Suppose

(i) ¢ & Io, and
(ii) I =1IyU{q}, and
(iii) F = Fy+-(¢——K), and
(iv) Gy is bijective.
Then there exists a homomorphism G from [[(H, K) to [] F such that
(v) G is bijective, and
(vi) for every element h of H and for every element k of K, there exists
a function g such that g = Go(h) and G((h,k)) = g+-(g—k).

The theorem is a consequence of (22), (23), and (24). PROOF: Set HK =
(H, K). Define P[set,set] = there exists an element h of H and there
exists an element k of K and there exists a function g such that $; = (h,
k) and g = Go(h) and $2 = g+-(q——k). For every element z of [[(H,
K), there exists an element w of the carrier of [[ F' such that P[z, w].
Consider G being a function from [[(H, K) into [] F' such that for every
element x of [[(H, K), Plz, G(z)]. For every element h of H and for every
element k of K, there exists a function g such that ¢ = Go(h) and G((h,
k)) = g+-(¢——k). O

(28) Let us consider non empty finite sets Iy, I, an associative group-like mul-
tiplicative magma family Fj of Iy, an associative group-like multiplicative
magma family F of I, groups H, K, an element ¢ of I, and a homomor-
phism Gq from [] Fy to H. Suppose

(i) ¢ & Io, and
(ii) I =1IyU{q}, and
(iii) F = Fy+-(¢——K), and
(iv) Gy is bijective.
Then there exists a homomorphism G from [] F' to [[(H, K) such that
(v) G is bijective, and

(vi) for every function xy and for every element k of K and for eve-
ry element h of H such that h = Gp(zg) and zo € []Fp holds
G(zo+-(g=—k)) = (h, k).
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The theorem is a consequence of (27). PROOF: Set L0 = G~ !. Consider
L being a homomorphism from [[(H, K) to [[ F such that L is bijective
and for every element h of H and for every element k of K, there exists a
function g such that g = LO(h) and L((h, k)) = g+ (g——k). Set G = L~L.
For every function xg and for every element k of K and for every element
h of H such that h = Go(xp) and zg € [] Fp holds G(zo+-(g——k)) = (h,
k). O

(29) Let us consider a non empty finite set I, an associative group-like multi-
plicative magma family F' of I, and a total I-defined function x. Suppose
an element p of I. Then z(p) € F(p). Then x € the carrier of [] F.

(30) Let us consider non empty finite sets Iy, I, an associative group-like mul-
tiplicative magma family Fy of Iy, an associative group-like multiplicative
magma family F of I, a group K, an element ¢ of I, and an element x of
[1 F. Suppose

(i) q ¢ Iy, and

(ii) I =1IpU{q}, and

(ili) F = Fo+(q——K).
Then there exists a total Ip-defined function xy and there exists an element
k of K such that zo € [] Fy and x = z¢+-(¢g——k) and for every element
p of Iy, xzo(p) € Fy(p). PROOF: Reconsider y = z as a total I-defined
function. Reconsider k£ = y(¢) as an element of K. Reconsider y0 = y[Ij
as an [p-defined function. For every element i of Iy, y0(i) € (the support
of Fy)(i) and y0(¢) € Fy(s). O

(31) Let us consider a group G, a subgroup H of G, a finite sequence f of
elements of G, and a finite sequence g of elements of H. If f = g, then
[1f =11g- PrROOF: Define P[natural number] = for every finite sequence
f of elements of G for every finite sequence g of elements of H such that
$1 =len f and f = g holds [] f = [1g. P[0]. For every natural number k
such that P[k] holds Pk + 1]. O

(32) Let us consider a non empty finite set I, a group G, a subgroup H of G,
a (the carrier of G)-valued total I-defined function x, and a (the carrier
of H)-valued total I-defined function xq. If © = xq, then [[x = [[zo. The
theorem is a consequence of (31).

(33) Let us consider a commutative group G, non empty finite sets Iy, I, an
element ¢ of I, a (the carrier of GG)-valued total I-defined function z, a
(the carrier of G)-valued total Ip-defined function g, and an element k of
G. Suppose

(i) ¢ ¢ Iy, and
(ii) I =1IoU{q}, and
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(i) = = xo+-(g—k).
Then [« = []2o-k. The theorem is a consequence of (8) and (9). PROOF:

Reconsider y = g——k as a (the carrier of G)-valued total {q}-defined
function. Iy misses {¢}. O

Let us consider a finite commutative group G. Now we state the propositions:

(34) Suppose G > 1. Then there exists a non empty finite set I and there
exists an associative group-like commutative multiplicative magma family
F of I and there exists a homomorphism Hy from [[F to G such that

I = support PrimeFactorization(G) and for every element p of I, F(p) is

a subgroup of G and F(p) = (PrimeFactorization(G))(p) and for every
elements p, q of I such that p # ¢ holds (the carrier of F/(p)) N (the carrier
of F(q)) = {1g} and Hj is bijective and for every (the carrier of G)-valued
total I-defined function x such that for every element p of I, z(p) € F(p)
holds « € [T F and Hy(z) =[] =.

(35) Suppose G > 1. Then there exists a non empty finite set I and there
exists an associative group-like commutative multiplicative magma family

F of I such that I = support PrimeFactorization(G) and for every element

p of I, F(p) is a subgroup of G and F(p) = (PrimeFactorization(G))(p)
and for every elements p, ¢ of I such that p # ¢ holds (the carrier of
F(p)) N (the carrier of F(q)) = {1¢} and for every element y of G, there
exists a (the carrier of G)-valued total I-defined function x such that for
every element p of I, x(p) € F(p) and y = [[z and for every (the carrier
of G)-valued total I-defined functions z1, xa such that for every element
p of I, x1(p) € F(p) and for every element p of I, xz2(p) € F(p) and
Hml = HQZQ holds 1 = X2.
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