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Summary.We have been working on the formalization of groups. In [1], we
encoded some theorems concerning the product of cyclic groups. In this article,
we present the generalized formalization of [1]. First, we show that every finite
commutative group which order is composite number is isomorphic to a direct
product of finite commutative groups which orders are relatively prime. Next, we
describe finite direct products of finite commutative groups.
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The notation and terminology used in this paper have been introduced in the
following articles: [2], [3], [19], [7], [13], [20], [8], [9], [10], [23], [24], [25], [26],
[27], [14], [22], [17], [4], [5], [15], [16], [6], [11], [21], [18], [29], [28], and [12].

1. Preliminaries

Now we state the propositions:

(1) Let us consider sets A, B, A1, B1. Suppose

(i) A misses B, and

(ii) A1 ⊆ A, and

(iii) B1 ⊆ B, and

(iv) A1 ∪B1 = A ∪B.

Then
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(v) A1 = A, and

(vi) B1 = B.

Proof: A ⊆ A1. B ⊆ B1. �

(2) Let us consider non empty finite sets H, K. Then
∏
〈H,K〉 = H · K .

Let us consider bags p2, p1, f of Prime and a natural number q. Now we
state the propositions:

(3) If support p2 misses support p1 and f = p2+ p1 and q ∈ support p2, then
p2(q) = f(q).

(4) If support p2 misses support p1 and f = p2+ p1 and q ∈ support p1, then
p1(q) = f(q).

Now we state the propositions:

(5) Let us consider a non zero natural number h and a prime number q. If
q and h are not relatively prime, then q | h.

(6) Let us consider non zero natural numbers h, s. Suppose a prime num-
ber q. Suppose q ∈ support PrimeFactorization(s). Then q and h are not
relatively prime. Then support PrimeFactorization(s) ⊆
support PrimeFactorization(h). The theorem is a consequence of (5).

(7) Let us consider non zero natural numbers h, k, s, t. Suppose

(i) h and k are relatively prime, and

(ii) s · t = h · k, and

(iii) for every prime number q such that q ∈ support PrimeFactorization(s)
holds q and h are not relatively prime, and

(iv) for every prime number q such that q ∈ support PrimeFactorization(t)
holds q and k are not relatively prime.

Then

(v) s = h, and

(vi) t = k.

The theorem is a consequence of (6), (1), (3), and (4). Proof: Set p2 =
PrimeFactorization(s). Set p1 = PrimeFactorization(t). For every natural
number p such that p ∈ support PFExp(h) holds p2(p) = pp -count(h). For
every natural number p such that p ∈ support PFExp(k) holds p1(p) =
pp -count(k). �

Let G be a non empty multiplicative magma, I be a finite set, and b be a
(the carrier of G)-valued total I-defined function. The functor

∏
b yielding an

element of G is defined by

(Def. 1) There exists a finite sequence f of elements of G such that

(i) it =
∏
f , and
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(ii) f = b · CFS(I).

Now we state the propositions:

(8) Let us consider a commutative group G, non empty finite sets A, B, a
(the carrier of G)-valued total A-defined function F3, a (the carrier of G)-
valued total B-defined function F2, and a (the carrier of G)-valued total
A ∪B-defined function F1. Suppose

(i) A misses B, and

(ii) F1 = F3+·F2.
Then

∏
F1 =

∏
F3 ·
∏
F2.

(9) Let us consider a non empty multiplicative magma G, a set q, an element
z of G, and a (the carrier of G)-valued total {q}-defined function f . If
f = q 7−→. z, then

∏
f = z.

2. Direct Product of Finite Commutative Groups

Now we state the propositions:

(10) Let us consider non empty multiplicative magmasX, Y . Then the carrier
of
∏
〈X,Y 〉 =

∏
〈the carrier of X, the carrier of Y 〉. Proof: Set CarrX =

the carrier of X. Set CarrY = the carrier of Y . For every element a such
that a ∈ dom the support of 〈X,Y 〉 holds (the support of 〈X,Y 〉)(a) =
〈the carrier of X, the carrier of Y 〉(a). �

(11) Let us consider a group G and normal subgroups A, B of G. Suppose
(the carrier of A)∩ (the carrier of B) = {1G}. Let us consider elements a,
b of G. If a ∈ A and b ∈ B, then a · b = b · a.

(12) Let us consider a group G and normal subgroups A, B of G. Suppose

(i) for every element x of G, there exist elements a, b of G such that
a ∈ A and b ∈ B and x = a · b, and

(ii) (the carrier of A) ∩ (the carrier of B) = {1G}.
Then there exists a homomorphism h from

∏
〈A,B〉 to G such that

(iii) h is bijective, and

(iv) for every elements a, b of G such that a ∈ A and b ∈ B holds h(〈a,
b〉) = a · b.

The theorem is a consequence of (11). Proof: Define P[set, set] ≡ there
exists an element x of G and there exists an element y of G such that x ∈ A
and y ∈ B and $1 = 〈x, y〉 and $2 = x · y. For every element z of

∏
〈A,

B〉, there exists an element w of G such that P[z, w]. Consider h being a
function from

∏
〈A,B〉 into G such that for every element z of

∏
〈A,B〉,

P[z, h(z)]. For every elements a, b of G such that a ∈ A and b ∈ B holds
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h(〈a, b〉) = a · b. For every elements z, w of
∏
〈A,B〉, h(z ·w) = h(z) ·h(w).

�

Let us consider a finite commutative group G, a natural number m, and a
subset A of G. Now we state the propositions:

(13) Suppose A = {x where x is an element of G : xm = 1G}. Then

(i) A 6= ∅, and

(ii) for every elements g1, g2 of G such that g1, g2 ∈ A holds g1 · g2 ∈ A,
and

(iii) for every element g of G such that g ∈ A holds g−1 ∈ A.

(14) Suppose A = {x where x is an element of G : xm = 1G}. Then there
exists a strict finite subgroup H of G such that

(i) the carrier of H = A, and

(ii) H is commutative and normal.

Now we state the propositions:

(15) Let us consider a finite commutative group G, a natural number m,
and a finite subgroup H of G. Suppose the carrier of H = {x where x is
an element of G : xm = 1G}. Let us consider a prime number q. Suppo-
se q ∈ support PrimeFactorization(H ). Then q and m are not relatively
prime.

(16) Let us consider a finite commutative group G and natural numbers h,
k. Suppose

(i) G = h · k, and

(ii) h and k are relatively prime.

Then there exist strict finite subgroups H, K of G such that

(iii) the carrier of H = {x where x is an element of G : xh = 1G}, and

(iv) the carrier of K = {x where x is an element of G : xk = 1G}, and

(v) H is normal, and

(vi) K is normal, and

(vii) for every element x of G, there exist elements a, b of G such that
a ∈ H and b ∈ K and x = a · b, and

(viii) (the carrier of H) ∩ (the carrier of K) = {1G}.
The theorem is a consequence of (14). Proof: Set A = {x where x is
an element of G : xh = 1G}. Set B = {x where x is an element of G :
xk = 1G}. A ⊆ the carrier of G. B ⊆ the carrier of G. Consider H being
a strict finite subgroup of G such that the carrier of H = A and H is
commutative and H is normal. Consider K being a strict finite subgroup
of G such that the carrier of K = B and K is commutative and K is
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normal. Consider a, b being integers such that a ·h+b ·k = 1. (The carrier
of H) ∩ (the carrier of K) ⊆ {1G}. For every element x of G, there exist
elements s, t of G such that s ∈ H and t ∈ K and x = s · t. �

(17) Let us consider finite groups H, K. Then
∏
〈H,K〉 = H · K . The

theorem is a consequence of (10) and (2).

(18) Let us consider a finite commutative group G and non zero natural
numbers h, k. Suppose

(i) G = h · k, and

(ii) h and k are relatively prime.

Then there exist strict finite subgroups H, K of G such that

(iii) H = h, and

(iv) K = k, and

(v) (the carrier of H) ∩ (the carrier of K) = {1G}, and

(vi) there exists a homomorphism F from
∏
〈H,K〉 to G such that F is

bijective and for every elements a, b of G such that a ∈ H and b ∈ K
holds F (〈a, b〉) = a · b.

The theorem is a consequence of (16), (12), (17), (15), and (7).

3. Finite Direct Products of Finite Commutative Groups

Let us consider a group G, a set q, an associative group-like multiplicative
magma family F of {q}, and a function f from G into

∏
F . Now we state the

propositions:

(19) If F = q 7−→. G and for every element x of G, f(x) = q 7−→. x, then f is a
homomorphism from G to

∏
F .

(20) If F = q 7−→. G and for every element x of G, f(x) = q 7−→. x, then f is
bijective.

Now we state the propositions:

(21) Let us consider a set q, an associative group-like multiplicative magma
family F of {q}, and a group G. Suppose F = q 7−→. G. Then there exists a
homomorphism I from G to

∏
F such that

(i) I is bijective, and

(ii) for every element x of G, I(x) = q 7−→. x.
The theorem is a consequence of (19) and (20). Proof: Define P[set, set] ≡
$2 = q 7−→. $1. For every element z of G, there exists an element w of

∏
F

such that P[z, w]. Consider I being a function from G into
∏
F such that

for every element x of G, P[x, I(x)]. �
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(22) Let us consider non empty finite sets I0, I, an associative group-like mul-
tiplicative magma family F0 of I0, an associative group-like multiplicative
magma family F of I, groups H, K, an element q of I, an element k of
K, and a function g. Suppose

(i) g ∈ the carrier of
∏
F0, and

(ii) q /∈ I0, and

(iii) I = I0 ∪ {q}, and

(iv) F = F0+·(q 7−→. K).

Then g+·(q 7−→. k) ∈ the carrier of
∏
F . Proof: Set HK = 〈H,K〉. Set

w = g+·(q 7−→. k). For every element x such that x ∈ dom the support of
F holds w(x) ∈ (the support of F )(x). �

Let us consider non empty finite sets I0, I, an associative group-like multi-
plicative magma family F0 of I0, an associative group-like multiplicative magma
family F of I, groups H, K, an element q of I, a function G0 from H into

∏
F0,

and a function G from
∏
〈H,K〉 into

∏
F . Now we state the propositions:

(23) Suppose G0 is a homomorphism from H to
∏
F0 and G0 is bijective and

q /∈ I0 and I = I0 ∪ {q} and F = F0+·(q 7−→. K). Then suppose for every
element h of H and for every element k of K, there exists a function g such
that g = G0(h) and G(〈h, k〉) = g+·(q 7−→. k). Then G is a homomorphism
from

∏
〈H,K〉 to

∏
F .

(24) Suppose G0 is a homomorphism from H to
∏
F0 and G0 is bijective and

q /∈ I0 and I = I0 ∪ {q} and F = F0+·(q 7−→. K). Then suppose for every
element h of H and for every element k of K, there exists a function g
such that g = G0(h) and G(〈h, k〉) = g+·(q 7−→. k). Then G is bijective.

Now we state the propositions:

(25) Let us consider a set q, a multiplicative magma family F of {q}, and a
non empty multiplicative magma G. Suppose F = q 7−→. G. Let us consider
a (the carrier of G)-valued total {q}-defined function y. Then

(i) y ∈ the carrier of
∏
F , and

(ii) y(q) ∈ the carrier of G, and

(iii) y = q 7−→. y(q).

(26) Let us consider a set q, an associative group-like multiplicative magma
family F of {q}, and a group G. Suppose F = q 7−→. G. Then there exists a
homomorphism H0 from

∏
F to G such that

(i) H0 is bijective, and

(ii) for every (the carrier ofG)-valued total {q}-defined function x,H0(x) =∏
x.
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The theorem is a consequence of (21), (25), and (9). Proof: Consider I
being a homomorphism from G to

∏
F such that I is bijective and for

every element x of G, I(x) = q 7−→. x. Set H0 = I−1. For every (the carrier
of G)-valued total {q}-defined function y, H0(y) =

∏
y. �

(27) Let us consider non empty finite sets I0, I, an associative group-like mul-
tiplicative magma family F0 of I0, an associative group-like multiplicative
magma family F of I, groups H, K, an element q of I, and a homomor-
phism G0 from H to

∏
F0. Suppose

(i) q /∈ I0, and

(ii) I = I0 ∪ {q}, and

(iii) F = F0+·(q 7−→. K), and

(iv) G0 is bijective.

Then there exists a homomorphism G from
∏
〈H,K〉 to

∏
F such that

(v) G is bijective, and

(vi) for every element h of H and for every element k of K, there exists
a function g such that g = G0(h) and G(〈h, k〉) = g+·(q 7−→. k).

The theorem is a consequence of (22), (23), and (24). Proof: Set HK =
〈H,K〉. Define P[set, set] ≡ there exists an element h of H and there
exists an element k of K and there exists a function g such that $1 = 〈h,
k〉 and g = G0(h) and $2 = g+·(q 7−→. k). For every element z of

∏
〈H,

K〉, there exists an element w of the carrier of
∏
F such that P[z, w].

Consider G being a function from
∏
〈H,K〉 into

∏
F such that for every

element x of
∏
〈H,K〉, P[x,G(x)]. For every element h of H and for every

element k of K, there exists a function g such that g = G0(h) and G(〈h,
k〉) = g+·(q 7−→. k). �

(28) Let us consider non empty finite sets I0, I, an associative group-like mul-
tiplicative magma family F0 of I0, an associative group-like multiplicative
magma family F of I, groups H, K, an element q of I, and a homomor-
phism G0 from

∏
F0 to H. Suppose

(i) q /∈ I0, and

(ii) I = I0 ∪ {q}, and

(iii) F = F0+·(q 7−→. K), and

(iv) G0 is bijective.

Then there exists a homomorphism G from
∏
F to

∏
〈H,K〉 such that

(v) G is bijective, and

(vi) for every function x0 and for every element k of K and for eve-
ry element h of H such that h = G0(x0) and x0 ∈

∏
F0 holds

G(x0+·(q 7−→. k)) = 〈h, k〉.
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The theorem is a consequence of (27). Proof: Set L0 = G0−1. Consider
L being a homomorphism from

∏
〈H,K〉 to

∏
F such that L is bijective

and for every element h of H and for every element k of K, there exists a
function g such that g = L0(h) and L(〈h, k〉) = g+·(q 7−→. k). Set G = L−1.
For every function x0 and for every element k of K and for every element
h of H such that h = G0(x0) and x0 ∈

∏
F0 holds G(x0+·(q 7−→. k)) = 〈h,

k〉. �

(29) Let us consider a non empty finite set I, an associative group-like multi-
plicative magma family F of I, and a total I-defined function x. Suppose
an element p of I. Then x(p) ∈ F (p). Then x ∈ the carrier of

∏
F .

(30) Let us consider non empty finite sets I0, I, an associative group-like mul-
tiplicative magma family F0 of I0, an associative group-like multiplicative
magma family F of I, a group K, an element q of I, and an element x of∏
F . Suppose

(i) q /∈ I0, and

(ii) I = I0 ∪ {q}, and

(iii) F = F0+·(q 7−→. K).

Then there exists a total I0-defined function x0 and there exists an element
k of K such that x0 ∈

∏
F0 and x = x0+·(q 7−→. k) and for every element

p of I0, x0(p) ∈ F0(p). Proof: Reconsider y = x as a total I-defined
function. Reconsider k = y(q) as an element of K. Reconsider y0 = y�I0
as an I0-defined function. For every element i of I0, y0(i) ∈ (the support
of F0)(i) and y0(i) ∈ F0(i). �

(31) Let us consider a group G, a subgroup H of G, a finite sequence f of
elements of G, and a finite sequence g of elements of H. If f = g, then∏
f =
∏
g. Proof: Define P[natural number] ≡ for every finite sequence

f of elements of G for every finite sequence g of elements of H such that
$1 = len f and f = g holds

∏
f =
∏
g. P[0]. For every natural number k

such that P[k] holds P[k + 1]. �

(32) Let us consider a non empty finite set I, a group G, a subgroup H of G,
a (the carrier of G)-valued total I-defined function x, and a (the carrier
of H)-valued total I-defined function x0. If x = x0, then

∏
x =
∏
x0. The

theorem is a consequence of (31).

(33) Let us consider a commutative group G, non empty finite sets I0, I, an
element q of I, a (the carrier of G)-valued total I-defined function x, a
(the carrier of G)-valued total I0-defined function x0, and an element k of
G. Suppose

(i) q /∈ I0, and

(ii) I = I0 ∪ {q}, and
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(iii) x = x0+·(q 7−→. k).
Then

∏
x =
∏
x0 ·k. The theorem is a consequence of (8) and (9). Proof:

Reconsider y = q 7−→. k as a (the carrier of G)-valued total {q}-defined
function. I0 misses {q}. �

Let us consider a finite commutative group G. Now we state the propositions:

(34) Suppose G > 1. Then there exists a non empty finite set I and there
exists an associative group-like commutative multiplicative magma family
F of I and there exists a homomorphism H0 from

∏
F to G such that

I = support PrimeFactorization(G) and for every element p of I, F (p) is

a subgroup of G and F (p) = (PrimeFactorization(G))(p) and for every
elements p, q of I such that p 6= q holds (the carrier of F (p))∩(the carrier
of F (q)) = {1G} and H0 is bijective and for every (the carrier of G)-valued
total I-defined function x such that for every element p of I, x(p) ∈ F (p)
holds x ∈

∏
F and H0(x) =

∏
x.

(35) Suppose G > 1. Then there exists a non empty finite set I and there
exists an associative group-like commutative multiplicative magma family
F of I such that I = support PrimeFactorization(G) and for every element

p of I, F (p) is a subgroup of G and F (p) = (PrimeFactorization(G))(p)
and for every elements p, q of I such that p 6= q holds (the carrier of
F (p)) ∩ (the carrier of F (q)) = {1G} and for every element y of G, there
exists a (the carrier of G)-valued total I-defined function x such that for
every element p of I, x(p) ∈ F (p) and y =

∏
x and for every (the carrier

of G)-valued total I-defined functions x1, x2 such that for every element
p of I, x1(p) ∈ F (p) and for every element p of I, x2(p) ∈ F (p) and∏
x1 =

∏
x2 holds x1 = x2.
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