

Isomorphisms of Direct Products of Finite Commutative Groups¹

Hiroyuki Okazaki Shinshu University Nagano, Japan Hiroshi Yamazaki Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. We have been working on the formalization of groups. In [1], we encoded some theorems concerning the product of cyclic groups. In this article, we present the generalized formalization of [1]. First, we show that every finite commutative group which order is composite number is isomorphic to a direct product of finite commutative groups which orders are relatively prime. Next, we describe finite direct products of finite commutative groups.

MML identifier: GROUP_17, version: 8.1.01 5.9.1172

The notation and terminology used in this paper have been introduced in the following articles: [2], [3], [19], [7], [13], [20], [8], [9], [10], [23], [24], [25], [26], [27], [14], [22], [17], [4], [5], [15], [16], [6], [11], [21], [18], [29], [28], and [12].

1. Preliminaries

Now we state the propositions:

- (1) Let us consider sets A, B, A_1, B_1 . Suppose
 - (i) A misses B, and
 - (ii) $A_1 \subseteq A$, and
 - (iii) $B_1 \subseteq B$, and
 - (iv) $A_1 \cup B_1 = A \cup B$.

Then

 $^{^1{\}rm The~1st}$ author was supported by JSPS KAKENHI 21240001, and the 3rd author was supported by JSPS KAKENHI 22300285.

- (v) $A_1 = A$, and
- (vi) $B_1 = B$.

PROOF: $A \subseteq A_1$. $B \subseteq B_1$. \square

(2) Let us consider non empty finite sets H, K. Then $\overline{\overline{\prod \langle H, K \rangle}} = \overline{\overline{H}} \cdot \overline{\overline{K}}$.

Let us consider bags p_2 , p_1 , f of Prime and a natural number q. Now we state the propositions:

- (3) If support p_2 misses support p_1 and $f = p_2 + p_1$ and $q \in \text{support } p_2$, then $p_2(q) = f(q)$.
- (4) If support p_2 misses support p_1 and $f = p_2 + p_1$ and $q \in \text{support } p_1$, then $p_1(q) = f(q)$.

Now we state the propositions:

- (5) Let us consider a non zero natural number h and a prime number q. If q and h are not relatively prime, then $q \mid h$.
- (6) Let us consider non zero natural numbers h, s. Suppose a prime number q. Suppose $q \in \text{support PrimeFactorization}(s)$. Then q and h are not relatively prime. Then support PrimeFactorization $(s) \subseteq \text{support PrimeFactorization}(h)$. The theorem is a consequence of (5).
- (7) Let us consider non zero natural numbers h, k, s, t. Suppose
 - (i) h and k are relatively prime, and
 - (ii) $s \cdot t = h \cdot k$, and
 - (iii) for every prime number q such that $q \in \text{support PrimeFactorization}(s)$ holds q and h are not relatively prime, and
 - (iv) for every prime number q such that $q \in \text{support PrimeFactorization}(t)$ holds q and k are not relatively prime.

Then

- (v) s = h, and
- (vi) t = k.

The theorem is a consequence of (6), (1), (3), and (4). PROOF: Set p_2 = PrimeFactorization(s). Set p_1 = PrimeFactorization(t). For every natural number p such that $p \in \text{support PFExp}(h)$ holds $p_2(p) = p^{p-\text{count}(h)}$. For every natural number p such that $p \in \text{support PFExp}(k)$ holds $p_1(p) = p^{p-\text{count}(k)}$. \square

Let G be a non empty multiplicative magma, I be a finite set, and b be a (the carrier of G)-valued total I-defined function. The functor $\prod b$ yielding an element of G is defined by

(Def. 1) There exists a finite sequence f of elements of G such that

(i)
$$it = \prod f$$
, and

(ii) $f = b \cdot CFS(I)$.

Now we state the propositions:

- (8) Let us consider a commutative group G, non empty finite sets A, B, a (the carrier of G)-valued total A-defined function F_3 , a (the carrier of G)-valued total B-defined function F_2 , and a (the carrier of G)-valued total $A \cup B$ -defined function F_1 . Suppose
 - (i) A misses B, and
 - (ii) $F_1 = F_3 + \cdot F_2$.

Then $\prod F_1 = \prod F_3 \cdot \prod F_2$.

- (9) Let us consider a non empty multiplicative magma G, a set q, an element z of G, and a (the carrier of G)-valued total $\{q\}$ -defined function f. If $f = q \mapsto z$, then $\prod f = z$.
 - 2. Direct Product of Finite Commutative Groups

Now we state the propositions:

- (10) Let us consider non empty multiplicative magmas X, Y. Then the carrier of $\prod \langle X, Y \rangle = \prod \langle \text{the carrier of } X, \text{ the carrier of } Y \rangle$. PROOF: Set CarrX = the carrier of X. Set CarrY = the carrier of Y. For every element a such that $a \in \text{dom the support of } \langle X, Y \rangle$ holds (the support of $\langle X, Y \rangle$) $(a) = \langle \text{the carrier of } X, \text{ the carrier of } Y \rangle (a)$. \square
- (11) Let us consider a group G and normal subgroups A, B of G. Suppose (the carrier of A) \cap (the carrier of B) = $\{\mathbf{1}_G\}$. Let us consider elements a, b of G. If $a \in A$ and $b \in B$, then $a \cdot b = b \cdot a$.
- (12) Let us consider a group G and normal subgroups A, B of G. Suppose
 - (i) for every element x of G, there exist elements a, b of G such that $a \in A$ and $b \in B$ and $x = a \cdot b$, and
 - (ii) (the carrier of A) \cap (the carrier of B) = { $\mathbf{1}_G$ }.

Then there exists a homomorphism h from $\prod \langle A, B \rangle$ to G such that

- (iii) h is bijective, and
- (iv) for every elements a, b of G such that $a \in A$ and $b \in B$ holds $h(\langle a, b \rangle) = a \cdot b$.

The theorem is a consequence of (11). PROOF: Define $\mathcal{P}[\operatorname{set}, \operatorname{set}] \equiv \operatorname{there}$ exists an element x of G and there exists an element y of G such that $x \in A$ and $y \in B$ and $\$_1 = \langle x, y \rangle$ and $\$_2 = x \cdot y$. For every element z of $\prod \langle A, B \rangle$, there exists an element w of G such that $\mathcal{P}[z, w]$. Consider h being a function from $\prod \langle A, B \rangle$ into G such that for every element z of $\prod \langle A, B \rangle$, $\mathcal{P}[z, h(z)]$. For every elements a, b of G such that $a \in A$ and $b \in B$ holds

$$h(\langle a,b\rangle)=a\cdot b.$$
 For every elements z,w of $\prod \langle A,B\rangle,$ $h(z\cdot w)=h(z)\cdot h(w).$

Let us consider a finite commutative group G, a natural number m, and a subset A of G. Now we state the propositions:

- (13) Suppose $A = \{x \text{ where } x \text{ is an element of } G : x^m = \mathbf{1}_G\}$. Then
 - (i) $A \neq \emptyset$, and
 - (ii) for every elements g_1 , g_2 of G such that g_1 , $g_2 \in A$ holds $g_1 \cdot g_2 \in A$, and
 - (iii) for every element g of G such that $g \in A$ holds $g^{-1} \in A$.
- (14) Suppose $A = \{x \text{ where } x \text{ is an element of } G : x^m = \mathbf{1}_G\}$. Then there exists a strict finite subgroup H of G such that
 - (i) the carrier of H = A, and
 - (ii) H is commutative and normal.

Now we state the propositions:

- (15) Let us consider a finite commutative group G, a natural number m, and a finite subgroup H of G. Suppose the carrier of $H = \{x \text{ where } x \text{ is an element of } G : x^m = \mathbf{1}_G\}$. Let us consider a prime number q. Suppose $q \in \text{support PrimeFactorization}(\overline{\overline{H}})$. Then q and m are not relatively prime.
- (16) Let us consider a finite commutative group G and natural numbers h, k. Suppose
 - (i) $\overline{\overline{G}} = h \cdot k$, and
 - (ii) h and k are relatively prime.

Then there exist strict finite subgroups H, K of G such that

- (iii) the carrier of $H = \{x \text{ where } x \text{ is an element of } G : x^h = \mathbf{1}_G\}, \text{ and } x^h = \mathbf{1}_G\}$
- (iv) the carrier of $K = \{x \text{ where } x \text{ is an element of } G : x^k = \mathbf{1}_G\}$, and
- (v) H is normal, and
- (vi) K is normal, and
- (vii) for every element x of G, there exist elements a, b of G such that $a \in H$ and $b \in K$ and $x = a \cdot b$, and
- (viii) (the carrier of H) \cap (the carrier of K) = { $\mathbf{1}_G$ }.

The theorem is a consequence of (14). PROOF: Set $A = \{x \text{ where } x \text{ is an element of } G : x^h = \mathbf{1}_G\}$. Set $B = \{x \text{ where } x \text{ is an element of } G : x^k = \mathbf{1}_G\}$. $A \subseteq \text{the carrier of } G$. $B \subseteq \text{the carrier of } G$. Consider H being a strict finite subgroup of G such that the carrier of H = A and H is commutative and H is normal. Consider H being a strict finite subgroup of H such that the carrier of H and H is commutative and H is commut

normal. Consider a, b being integers such that $a \cdot h + b \cdot k = 1$. (The carrier of H) \cap (the carrier of K) $\subseteq \{\mathbf{1}_G\}$. For every element x of G, there exist elements s, t of G such that $s \in H$ and $t \in K$ and $x = s \cdot t$. \square

- (17) Let us consider finite groups H, K. Then $\overline{\prod \langle H, K \rangle} = \overline{\overline{H}} \cdot \overline{\overline{K}}$. The theorem is a consequence of (10) and (2).
- (18) Let us consider a finite commutative group G and non zero natural numbers h, k. Suppose
 - (i) $\overline{\overline{G}} = h \cdot k$, and
 - (ii) h and k are relatively prime.

Then there exist strict finite subgroups H, K of G such that

- (iii) $\overline{\overline{H}} = h$, and
- (iv) $\overline{\overline{K}} = k$, and
- (v) (the carrier of H) \cap (the carrier of K) = { $\mathbf{1}_G$ }, and
- (vi) there exists a homomorphism F from $\prod \langle H, K \rangle$ to G such that F is bijective and for every elements a, b of G such that $a \in H$ and $b \in K$ holds $F(\langle a, b \rangle) = a \cdot b$.

The theorem is a consequence of (16), (12), (17), (15), and (7).

3. Finite Direct Products of Finite Commutative Groups

Let us consider a group G, a set q, an associative group-like multiplicative magma family F of $\{q\}$, and a function f from G into $\prod F$. Now we state the propositions:

- (19) If $F = q \mapsto G$ and for every element x of G, $f(x) = q \mapsto x$, then f is a homomorphism from G to $\prod F$.
- (20) If $F = q \mapsto G$ and for every element x of G, $f(x) = q \mapsto x$, then f is bijective.

Now we state the propositions:

- (21) Let us consider a set q, an associative group-like multiplicative magma family F of $\{q\}$, and a group G. Suppose $F = q \mapsto G$. Then there exists a homomorphism I from G to $\prod F$ such that
 - (i) I is bijective, and
 - (ii) for every element x of G, $I(x) = q \rightarrow x$.

The theorem is a consequence of (19) and (20). PROOF: Define $\mathcal{P}[\text{set}, \text{set}] \equiv \$_2 = q \mapsto \$_1$. For every element z of G, there exists an element w of $\prod F$ such that $\mathcal{P}[z,w]$. Consider I being a function from G into $\prod F$ such that for every element x of G, $\mathcal{P}[x,I(x)]$. \square

- (22) Let us consider non empty finite sets I_0 , I, an associative group-like multiplicative magma family F_0 of I_0 , an associative group-like multiplicative magma family F of I, groups H, K, an element q of I, an element k of K, and a function g. Suppose
 - (i) $g \in \text{the carrier of } \prod F_0$, and
 - (ii) $q \notin I_0$, and
 - (iii) $I = I_0 \cup \{q\}$, and
 - (iv) $F = F_0 + \cdot (q \mapsto K)$.

Then $g+\cdot(q\mapsto k)\in$ the carrier of $\prod F$. PROOF: Set $HK=\langle H,K\rangle$. Set $w=g+\cdot(q\mapsto k)$. For every element x such that $x\in$ dom the support of F holds $w(x)\in$ (the support of F)(x). \square

Let us consider non empty finite sets I_0 , I, an associative group-like multiplicative magma family F_0 of I_0 , an associative group-like multiplicative magma family F of I, groups H, K, an element q of I, a function G_0 from H into $\prod F_0$, and a function G from $\prod \langle H, K \rangle$ into $\prod F$. Now we state the propositions:

- (23) Suppose G_0 is a homomorphism from H to $\prod F_0$ and G_0 is bijective and $q \notin I_0$ and $I = I_0 \cup \{q\}$ and $F = F_0 + \cdot (q \mapsto K)$. Then suppose for every element h of H and for every element k of K, there exists a function g such that $g = G_0(h)$ and $G(\langle h, k \rangle) = g + \cdot (q \mapsto k)$. Then G is a homomorphism from $\prod \langle H, K \rangle$ to $\prod F$.
- (24) Suppose G_0 is a homomorphism from H to $\prod F_0$ and G_0 is bijective and $q \notin I_0$ and $I = I_0 \cup \{q\}$ and $F = F_0 + (q \mapsto K)$. Then suppose for every element h of H and for every element k of K, there exists a function g such that $g = G_0(h)$ and $G(\langle h, k \rangle) = g + (q \mapsto k)$. Then G is bijective.

Now we state the propositions:

- (25) Let us consider a set q, a multiplicative magma family F of $\{q\}$, and a non empty multiplicative magma G. Suppose $F = q \mapsto G$. Let us consider a (the carrier of G)-valued total $\{q\}$ -defined function y. Then
 - (i) $y \in \text{the carrier of } \prod F$, and
 - (ii) $y(q) \in \text{the carrier of } G$, and
 - (iii) $y = q \mapsto y(q)$.
- (26) Let us consider a set q, an associative group-like multiplicative magma family F of $\{q\}$, and a group G. Suppose $F = q \mapsto G$. Then there exists a homomorphism H_0 from $\prod F$ to G such that
 - (i) H_0 is bijective, and
 - (ii) for every (the carrier of G)-valued total $\{q\}$ -defined function $x, H_0(x) = \prod x$.

The theorem is a consequence of (21), (25), and (9). PROOF: Consider I being a homomorphism from G to $\prod F$ such that I is bijective and for every element x of G, $I(x) = q \mapsto x$. Set $H_0 = I^{-1}$. For every (the carrier of G)-valued total $\{q\}$ -defined function y, $H_0(y) = \prod y$. \square

- (27) Let us consider non empty finite sets I_0 , I, an associative group-like multiplicative magma family F_0 of I_0 , an associative group-like multiplicative magma family F of I, groups H, K, an element q of I, and a homomorphism G_0 from H to $\prod F_0$. Suppose
 - (i) $q \notin I_0$, and
 - (ii) $I = I_0 \cup \{q\}$, and
 - (iii) $F = F_0 + (q \mapsto K)$, and
 - (iv) G_0 is bijective.

Then there exists a homomorphism G from $\prod \langle H, K \rangle$ to $\prod F$ such that

- (v) G is bijective, and
- (vi) for every element h of H and for every element k of K, there exists a function g such that $g = G_0(h)$ and $G(\langle h, k \rangle) = g + (q \mapsto k)$.

The theorem is a consequence of (22), (23), and (24). PROOF: Set $HK = \langle H, K \rangle$. Define $\mathcal{P}[\text{set}, \text{set}] \equiv$ there exists an element h of H and there exists an element k of K and there exists a function g such that $\$_1 = \langle h, k \rangle$ and $g = G_0(h)$ and $\$_2 = g + (q \mapsto k)$. For every element z of $\prod \langle H, K \rangle$, there exists an element w of the carrier of $\prod F$ such that $\mathcal{P}[z, w]$. Consider G being a function from $\prod \langle H, K \rangle$ into $\prod F$ such that for every element x of $\prod \langle H, K \rangle$, $\mathcal{P}[x, G(x)]$. For every element h of H and for every element k of K, there exists a function g such that $g = G_0(h)$ and $G(\langle h, k \rangle) = g + (q \mapsto k)$. \square

- (28) Let us consider non empty finite sets I_0 , I, an associative group-like multiplicative magma family F_0 of I_0 , an associative group-like multiplicative magma family F of I, groups H, K, an element q of I, and a homomorphism G_0 from $\prod F_0$ to H. Suppose
 - (i) $q \notin I_0$, and
 - (ii) $I = I_0 \cup \{q\}$, and
 - (iii) $F = F_0 + (q \mapsto K)$, and
 - (iv) G_0 is bijective.

Then there exists a homomorphism G from $\prod F$ to $\prod \langle H, K \rangle$ such that

- (v) G is bijective, and
- (vi) for every function x_0 and for every element k of K and for every element h of H such that $h = G_0(x_0)$ and $x_0 \in \prod F_0$ holds $G(x_0 + (q \mapsto k)) = \langle h, k \rangle$.

The theorem is a consequence of (27). PROOF: Set $L0 = G_0^{-1}$. Consider L being a homomorphism from $\prod \langle H, K \rangle$ to $\prod F$ such that L is bijective and for every element h of H and for every element k of K, there exists a function g such that g = L0(h) and $L(\langle h, k \rangle) = g + (q \mapsto k)$. Set $G = L^{-1}$. For every function x_0 and for every element k of K and for every element h of H such that $h = G_0(x_0)$ and $x_0 \in \prod F_0$ holds $G(x_0 + (q \mapsto k)) = \langle h, k \rangle$. \square

- (29) Let us consider a non empty finite set I, an associative group-like multiplicative magma family F of I, and a total I-defined function x. Suppose an element p of I. Then $x(p) \in F(p)$. Then $x \in \text{the carrier of } \prod F$.
- (30) Let us consider non empty finite sets I_0 , I, an associative group-like multiplicative magma family F_0 of I_0 , an associative group-like multiplicative magma family F of I, a group K, an element q of I, and an element x of $\prod F$. Suppose
 - (i) $q \notin I_0$, and
 - (ii) $I = I_0 \cup \{q\}$, and
 - (iii) $F = F_0 + \cdot (q \mapsto K)$.

Then there exists a total I_0 -defined function x_0 and there exists an element k of K such that $x_0 \in \prod F_0$ and $x = x_0 + (q \mapsto k)$ and for every element p of I_0 , $x_0(p) \in F_0(p)$. PROOF: Reconsider y = x as a total I-defined function. Reconsider k = y(q) as an element of K. Reconsider $y_0 = y \mid I_0$ as an I_0 -defined function. For every element i of I_0 , $y_0(i) \in I_0$ (the support of I_0) and I_0 0 and I_0 1 defined function. I_0 2 defined function.

- (31) Let us consider a group G, a subgroup H of G, a finite sequence f of elements of G, and a finite sequence g of elements of H. If f=g, then $\prod f=\prod g$. PROOF: Define $\mathcal{P}[\text{natural number}]\equiv \text{for every finite sequence}$ f of elements of G for every finite sequence g of elements of G such that $g_1 = \lim_{g \to g} f$ and $g = \lim_{g \to g} f$ holds $g = \lim_{g \to g} f$. For every natural number g such that $g = \lim_{g \to g} f$ holds $g = \lim_{$
- (32) Let us consider a non empty finite set I, a group G, a subgroup H of G, a (the carrier of G)-valued total I-defined function x_0 . If $x = x_0$, then $\prod x = \prod x_0$. The theorem is a consequence of (31).
- (33) Let us consider a commutative group G, non empty finite sets I_0 , I, an element q of I, a (the carrier of G)-valued total I-defined function x, a (the carrier of G)-valued total I_0 -defined function x_0 , and an element k of G. Suppose
 - (i) $q \notin I_0$, and
 - (ii) $I = I_0 \cup \{q\}$, and

(iii) $x = x_0 + (q \mapsto k)$.

Then $\prod x = \prod x_0 \cdot k$. The theorem is a consequence of (8) and (9). PROOF: Reconsider $y = q \mapsto k$ as a (the carrier of G)-valued total $\{q\}$ -defined function. I_0 misses $\{q\}$. \square

Let us consider a finite commutative group G. Now we state the propositions:

- (34) Suppose $\overline{\overline{G}} > 1$. Then there exists a non empty finite set I and there exists an associative group-like commutative multiplicative magma family F of I and there exists a homomorphism H_0 from $\prod F$ to G such that $I = \text{support PrimeFactorization}(\overline{\overline{G}})$ and for every element p of I, F(p) is a subgroup of G and $\overline{F(p)} = (\text{PrimeFactorization}(\overline{\overline{G}}))(p)$ and for every elements p, q of I such that $p \neq q$ holds (the carrier of F(p)) \cap (the carrier of F(q)) = $\{\mathbf{1}_G\}$ and H_0 is bijective and for every (the carrier of G)-valued total I-defined function x such that for every element p of I, $x(p) \in F(p)$ holds $x \in \prod F$ and $H_0(x) = \prod x$.
- (35) Suppose $\overline{\overline{G}} > 1$. Then there exists a non empty finite set I and there exists an associative group-like commutative multiplicative magma family F of I such that $I = \text{support PrimeFactorization}(\overline{\overline{G}})$ and for every element p of I, F(p) is a subgroup of G and $\overline{F(p)} = (\text{PrimeFactorization}(\overline{\overline{G}}))(p)$ and for every elements p, q of I such that $p \neq q$ holds (the carrier of $F(p) \cap (\text{the carrier of } F(q)) = \{\mathbf{1}_G\}$ and for every element p of p, there exists a (the carrier of p)-valued total p-valued function p and p and for every (the carrier of p)-valued total p-defined functions p and for every element p of p-valued total p-defined functions p-valued functions p-valued total p-valued functions p-valu

References

- [1] Kenichi Arai, Hiroyuki Okazaki, and Yasunari Shidama. Isomorphisms of direct products of finite cyclic groups. *Formalized Mathematics*, 20(4):343–347, 2012. doi:10.2478/v10037-012-0038-5.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [4] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213–225, 1992.
- [5] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [6] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

- [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [14] Artur Korniłowicz. The product of the families of the groups. Formalized Mathematics, 7(1):127–134, 1998.
- [15] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179–186, 2004.
- [16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.
- [18] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1): 103–108, 1993.
- [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115–122, 1990.
- [20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [21] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [24] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5): 855–864, 1990.
- [25] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955–962, 1990.
- [26] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41–47, 1991.
- [27] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.
- [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.

Received January 31, 2013