A Test for the Stability of Networks

Agnieszka Rowińska-Schwarzweller
Chair of Display Technology
University of Stuttgart
Allmandring 3b, 70596 Stuttgart, Germany
Christoph Schwarzweller
Institute of Computer Science
University of Gdansk
Wita Stwosza 57, 80-952 Gdansk, Poland

Abstract

Summary. A complex polynomial is called a Hurwitz polynomial, if all its roots have a real part smaller than zero. This kind of polynomial plays an all-dominant role in stability checks of electrical (analog or digital) networks. In this article we prove that a polynomial p can be shown to be Hurwitz by checking whether the rational function $e(p) / o(p)$ can be realized as a reactance of one port, that is as an electrical impedance or admittance consisting of inductors and capacitors. Here $e(p)$ and $o(p)$ denote the even and the odd part of p 25].

MML identifier: HURWITZ2, version: 8.1.01 5.8.1171
The notation and terminology used in this paper have been introduced in the following articles: [16], [14, [2], 3], [10], [4], [5], [22, [19], [21], [15], [1], 6], [17], [11], [12], [13], [18], [8, [26], [23], 20], [24], [9], [27], and [7].

1. Preliminaries

Now we state the propositions:
(1) Let us consider complex numbers x, y. If $\Im(x)=0$ and $\Re(y)=0$, then $\Re\left(\frac{x}{y}\right)=0$.
(2) Let us consider a complex number a. Then $a \cdot \bar{a}=|a|^{2}$.

One can check that there exists a polynomial of \mathbb{C}_{F} which is Hurwitz and 0 is even.

Now we state the propositions:
(3) Let us consider an add-associative right zeroed right complementable associative distributive non empty double loop structure L, an even element k of \mathbb{N}, and an element x of L. Then $\operatorname{power}_{L}(-x, k)=\operatorname{power}_{L}(x, k)$.
(4) Let us consider an add-associative right zeroed right complementable associative distributive non empty double loop structure L, an odd element k of \mathbb{N}, and an element x of L. Then $\operatorname{power}_{L}(-x, k)=-\operatorname{power}_{L}(x, k)$. The theorem is a consequence of (3).
(5) Let us consider an even element k of \mathbb{N} and an element x of \mathbb{C}_{F}. If $\Re(x)=0$, then $\Im\left(\right.$ power $\left._{\mathbb{C}_{\mathrm{F}}}(x, k)\right)=0$.
(6) Let us consider an odd element k of \mathbb{N} and an element x of \mathbb{C}_{F}. If $\Re(x)=$ 0 , then $\Re\left(\operatorname{power}_{\mathbb{C}_{\mathfrak{F}}}(x, k)\right)=0$.

2. Even and Odd Part of Polynomials

Let L be a non empty zero structure and p be a sequence of L. The functors the even part of p and the odd part of p yielding sequences of L are defined by the conditions, respectively.
(Def. 1) Let us consider an even natural number i. Then
(i) (the even part of $p)(i)=p(i)$, and
(ii) for every odd natural number i, (the even part of $p)(i)=0_{L}$.
(Def. 2) Let us consider an even natural number i. Then
(i) (the odd part of $p)(i)=0_{L}$, and
(ii) for every odd natural number i, (the odd part of $p)(i)=p(i)$.

Let p be a polynomial of L. Observe that the even part of p is finite-Support and the odd part of p is finite-Support. Now we state the propositions:
(7) Let us consider a non empty zero structure L. Then
(i) the even part of $0 . L=0 . L$, and
(ii) the odd part of $0 . L=\mathbf{0} . L$.
(8) Let us consider a non empty multiplicative loop with zero structure L. Then
(i) the even part of 1. $L=1 . L$, and
(ii) the odd part of $1 . L=0 . L$.

Let us consider a left zeroed right zeroed non empty additive loop structure L and a polynomial p of L. Now we state the propositions:
(9) (The even part of $p)+($ the odd part of $p)=p$.
(10) (The odd part of $p)+($ the even part of $p)=p$.

Let us consider an add-associative right zeroed right complementable non empty additive loop structure L and a polynomial p of L. Now we state the propositions:
(11) p - the odd part of $p=$ the even part of p.
(12) p - the even part of $p=$ the odd part of p.

Let us consider an add-associative right zeroed right complementable Abelian non empty additive loop structure L and a polynomial p of L. Now we state the propositions:
(13) (The even part of $p)-p=-$ the odd part of p.
(14) (The odd part of $p)-p=-$ the even part of p.

Let us consider an add-associative right zeroed right complementable Abelian non empty additive loop structure L and polynomials p, q of L. Now we state the propositions:
(15) The even part of $p+q=($ the even part of $p)+($ the even part of $q)$.
(16) The odd part of $p+q=($ the odd part of $p)+($ the odd part of $q)$.

Let us consider a well unital non empty double loop structure L and a polynomial p of L. Now we state the propositions:
(17) Suppose $\operatorname{deg} p$ is even. Then the even part of Leading-Monomial $p=$ Leading-Monomial p.
(18) If $\operatorname{deg} p$ is odd, then the even part of Leading-Monomial $p=\mathbf{0} . L$.
(19) If $\operatorname{deg} p$ is even, then the odd part of Leading-Monomial $p=\mathbf{0}$. L.
(20) Suppose $\operatorname{deg} p$ is odd. Then the odd part of Leading-Monomial $p=$ Leading-Monomial p.
Now we state the proposition:
(21) Let us consider a well unital add-associative right zeroed right complementable Abelian associative distributive non degenerated double loop structure L and a non zero polynomial p of L. Then deg the even part of $p \neq \operatorname{deg}$ the odd part of p. The theorem is a consequence of (9).
Let us consider a well unital add-associative right zeroed right complementable associative Abelian distributive non degenerated double loop structure L and a polynomial p of L. Now we state the propositions:
(i) deg the even part of $p \leqslant \operatorname{deg} p$, and
(ii) deg the odd part of $p \leqslant \operatorname{deg} p$.
(23) $\operatorname{deg} p=\max (\operatorname{deg}$ the even part of p, deg the odd part of p).

3. Even and Odd Polynomials and Rational Functions

Let L be a non empty additive loop structure and f be a function from L into L. We say that f is even if and only if
(Def. 3) Let us consider an element x of L. Then $f(-x)=f(x)$.
We say that f is odd if and only if
(Def. 4) Let us consider an element x of L. Then $f(-x)=-f(x)$.
Let L be a well unital non empty double loop structure and p be a polynomial of L. We say that p is even if and only if
(Def. 5) Polynomial-Function (L, p) is even.
We say that p is odd if and only if
(Def. 6) Polynomial-Function (L, p) is odd.
Let Z be a rational function of L. We say that Z is odd if and only if
(Def. 7) (i) Z_{1} is even and Z_{2} is odd, or
(ii) Z_{1} is odd and Z_{2} is even.

We introduce Z is even as an antonym for Z is odd.
Observe that there exists a polynomial of L which is even.
Let L be an add-associative right zeroed right complementable well unital non empty double loop structure. Let us note that there exists a polynomial of L which is odd.

Let L be a well unital add-associative right zeroed right complementable associative non degenerated double loop structure. Observe that there exists a polynomial of L which is non zero and even.

Let L be an add-associative right zeroed right complementable Abelian well unital non degenerated double loop structure. One can verify that there exists a polynomial of L which is non zero and odd.

Now we state the propositions:
(24) Let us consider a well unital non empty double loop structure L, an even polynomial p of L, and an element x of L. Then $\operatorname{eval}(p,-x)=\operatorname{eval}(p, x)$.
(25) Let us consider an add-associative right zeroed right complementable Abelian well unital non degenerated double loop structure L, an odd polynomial p of L, and an element x of L. Then $\operatorname{eval}(p,-x)=-\operatorname{eval}(p, x)$.
Let L be a well unital non empty double loop structure. One can verify that 0 . L is even.

Let L be an add-associative right zeroed right complementable well unital non empty double loop structure. One can verify that $0 . L$ is odd.

Let L be a well unital add-associative right zeroed right complementable associative non degenerated double loop structure. Note that 1. L is even.

Let L be an Abelian add-associative right zeroed right complementable well unital left distributive non empty double loop structure and p, q be even polynomials of L. Let us note that $p+q$ is even.

Let p, q be odd polynomials of L. Let us note that $p+q$ is odd.
Let L be an Abelian add-associative right zeroed right complementable associative well unital distributive non degenerated double loop structure and p
be a polynomial of L. One can check that the even part of p is even and the odd part of p is odd.

Now we state the propositions:
(26) Let us consider an Abelian add-associative right zeroed right complementable well unital distributive non degenerated double loop structure L, an even polynomial p of L, an odd polynomial q of L, and an element x of L. If x is a common root of p and q, then $-x$ is a root of $p+q$. The theorem is a consequence of (24) and (25).
(27) Let us consider a Hurwitz polynomial p of \mathbb{C}_{F}. Then the even part of p and the odd part of p have no common roots. The theorem is a consequence of (9) and (26).

4. Real Positive Polynomials and Rational Functions

Let p be a polynomial of \mathbb{C}_{F}. We say that p is real if and only if
(Def. 8) Let us consider a natural number i. Then $p(i)$ is a real number.
We say that p is positive if and only if
(Def. 9) Let us consider an element x of \mathbb{C}_{F}. If $\Re(x)>0$, then $\Re(\operatorname{eval}(p, x))>0$.
Let us note that 0. \mathbb{C}_{F} is real and non positive and 1. \mathbb{C}_{F} is real and positive and there exists a polynomial of \mathbb{C}_{F} which is non zero, real, and positive and every polynomial of \mathbb{C}_{F} which is real is also real-valued.

Let p be a real polynomial of \mathbb{C}_{F}. One can verify that the even part of p is real and the odd part of p is real.

Let L be a non empty additive loop structure and p be a polynomial of L. We say that p has all coefficients if and only if
(Def. 10) Let us consider a natural number i. If $i \leqslant \operatorname{deg} p$, then $p(i) \neq 0$.
Let p be a real polynomial of \mathbb{C}_{F}. We say that p has positive coefficients if and only if
(Def. 11) Let us consider a natural number i. If $i \leqslant \operatorname{deg} p$, then $p(i)>0$.
We say that p is negative coefficients if and only if
(Def. 12) Let us consider a natural number i. If $i \leqslant \operatorname{deg} p$, then $p(i)<0$.
One can check that every real polynomial of \mathbb{C}_{F} which has positive coefficients has also all coefficients and every real polynomial of \mathbb{C}_{F} which is negative coefficients has also all coefficients and there exists a real polynomial of \mathbb{C}_{F} which is non constant and has positive coefficients.

Let p be a non zero real polynomial of \mathbb{C}_{F} with all coefficients. Let us note that the even part of p is non zero. Note that the odd part of p is non zero.

Let Z be a rational function of \mathbb{C}_{F}. We say that Z is real if and only if
(Def. 13) Let us consider a natural number i. Then
(i) $Z_{1}(i)$ is a real number, and
(ii) $Z_{\mathbf{2}}(i)$ is a real number.

We say that Z is positive if and only if
(Def. 14) Let us consider an element x of \mathbb{C}_{F}. Suppose
(i) $\Re(x)>0$, and
(ii) $\operatorname{eval}\left(Z_{2}, x\right) \neq 0$.

Then $\Re(\operatorname{eval}(Z, x))>0$.
One can check that there exists a rational function of \mathbb{C}_{F} which is non zero, odd, real, and positive.

Let p_{1} be a real polynomial of \mathbb{C}_{F} and p_{2} be a non zero real polynomial of \mathbb{C}_{F}. Let us note that $\left\langle p_{1}, p_{2}\right\rangle$ is real as a rational function of \mathbb{C}_{F}.

5. The Routh-Schur Stability Criterion

A one port function is a real positive rational function of \mathbb{C}_{F}. A reactance one port function is an odd real positive rational function of \mathbb{C}_{F}.

Let us consider a real polynomial p of \mathbb{C}_{F} and an element x of \mathbb{C}_{F}. Now we state the propositions:
(28) If $\Re(x)=0$, then $\Im(\operatorname{eval}($ the even part of $p, x))=0$.
(29) If $\Re(x)=0$, then $\Re(\operatorname{eval}($ the odd part of $p, x))=0$.

Now we state the proposition:
(30) Let us consider a non constant real polynomial p of \mathbb{C}_{F} with positive coefficients. Suppose
(i) 〈the even part of p, the odd part of $p\rangle$ is positive, and
(ii) the even part of p and the odd part of p have no common roots.

Then
(iii) for every element x of \mathbb{C}_{F} such that $\Re(x)=0$ and eval(the odd part of $p, x) \neq 0$ holds $\Re(\operatorname{eval}(\langle$ the even part of p, the odd part of $p\rangle, x)) \geqslant 0$, and
(iv) (the even part of $p)+($ the odd part of $p)$ is Hurwitz.

The theorem is a consequence of (28), (29), and (1).
Now we state the proposition:
(31) Routh-Schur stability criterion (for a single-input, Singleoutput (SISO), Linear time invariant (LTI) control system):
Let us consider a non constant real polynomial p of \mathbb{C}_{F} with positive coefficients. Suppose
(i) \langle the even part of p, the odd part of $p\rangle$ is a one port function, and
(ii) degree(\langle the even part of p, the odd part of $p\rangle)=\operatorname{degree}(p)$. Then p is Hurwitz. The theorem is a consequence of (23), (30), and (9).

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.
[9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[10] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265-269, 2001.
[11] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
[12] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.
[13] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461470, 2001.
[14] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.
[15] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[16] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[17] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
[18] Christoph Schwarzweller. Introduction to rational functions. Formalized Mathematics, 20 (2):181-191, 2012. doi $10.2478 / \mathrm{v} 10037-012-0021-1$.

19] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Schur's theorem on the stability of networks. Formalized Mathematics, 14(4):135-142, 2006. doi 10.2478/v10037-006-0017-9.
[20] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Rolf Unbehauen. Netzwerk- und Filtersynthese: Grundlagen und Anwendungen. Oldenbourg-Verlag, fourth edition, 1993.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[27] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

