Random Variables and Product of Probability Spaces ${ }^{1}$

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. We have been working on the formalization of the probability and the randomness. In [15 and [16], we formalized some theorems concerning the real-valued random variables and the product of two probability spaces. In this article, we present the generalized formalization of (15) and [16]. First, we formalize the random variables of arbitrary set and prove the equivalence between random variable on Σ, Borel sets and a real-valued random variable on Σ. Next, we formalize the product of countably infinite probability spaces.

MML identifier: RANDOM_3, version: 8.1.01 5.7.1169
The notation and terminology used in this paper have been introduced in the following articles: [1], [14, [12, [4], 11], [18], 7], 8], 5], [2], 3], 9], [13], 22], [15], [16], [20], 21], 17], 19], 6], and [10].

1. Random Variables

In this paper $\Omega, \Omega_{1}, \Omega_{2}$ denote non empty sets, Σ denotes a σ-field of subsets of Ω, S_{1} denotes a σ-field of subsets of Ω_{1}, and S_{2} denotes a σ-field of subsets of Ω_{2}.

Now we state the proposition:
(1) Let us consider a non empty set B and a function f. Then $f^{-1}(\cup B)=$ $\bigcup\left\{f^{-1}(Y)\right.$ where Y is an element of $B:$ not contradiction $\}$.
Let us consider a function f from Ω_{1} into Ω_{2}, a sequence B of subsets of Ω_{2}, and a sequence D of subsets of Ω_{1}. Now we state the propositions:

[^0](2) If for every element n of $\mathbb{N}, D(n)=f^{-1}(B(n))$, then $f^{-1}(\cup B)=\bigcup D$.
(3) If for every element n of $\mathbb{N}, D(n)=f^{-1}(B(n))$, then $f^{-1}($ Intersection $B)=$ Intersection D.
Now we state the propositions:
(4) Let us consider a function F from Ω into \mathbb{R} and a real number r. Suppose F is a real-valued random variable on Σ. Then $F^{-1}(]-\infty, r[) \in \Sigma$. Proof: Consider X being an element of Σ such that $X=\Omega$ and F is measurable on X. For every element $z, z \in F^{-1}(]-\infty, r[)$ iff $z \in \Omega_{\Sigma} \cap \operatorname{LE}-\operatorname{dom}(F, r)$.
(5) Let us consider a function F from Ω into \mathbb{R}. Suppose F is a real-valued random variable on Σ. Then $\{x$ where x is an element of the Borel sets $: F^{-1}(x)$ is element of $\left.\Sigma\right\}$ is a σ-field of subsets of \mathbb{R}. The theorem is a consequence of (4) and (3). Proof: Set $S=\{x$ where x is an element of the Borel sets : $F^{-1}(x)$ is an element of $\left.\Sigma\right\}$. For every element x such that $x \in S$ holds $x \in$ the Borel sets. Set $r_{0}=$ the element of \mathbb{R}. Reconsider $y_{0}=$ halfline $\left(r_{0}\right)$ as an element of the Borel sets. For every subset A of \mathbb{R} such that $A \in S$ holds $A^{\mathrm{c}} \in S$. For every sequence A_{1} of subsets of \mathbb{R} such that rng $A_{1} \subseteq S$ holds Intersection $A_{1} \in S$. \square
Let us consider a function f from Ω into \mathbb{R}. Now we state the propositions:
(6) Suppose f is a real-valued random variable on Σ. Then $\{x$ where x is an element of the Borel sets : $f^{-1}(x)$ is an element of $\left.\Sigma\right\}=$ the Borel sets.
(7) f is random variable on Σ and the Borel sets if and only if f is a realvalued random variable on Σ.
(8) The set of random variables on Σ and the Borel sets $=$ the real-valued random variables set on Σ.
Let us consider $\Omega_{1}, \Omega_{2}, S_{1}$, and S_{2}. Let F be a function from Ω_{1} into Ω_{2}. We say that F is (S_{1}, S_{2})-random variable-like if and only if
(Def. 1) $\quad F$ is random variable on S_{1} and S_{2}.
Observe that there exists a function from Ω_{1} into Ω_{2} which is (S_{1}, S_{2})random variable-like.

A random variable of S_{1} and S_{2} is an $\left(S_{1}, S_{2}\right)$-random variable-like function from Ω_{1} into Ω_{2}. Now we state the proposition:
(9) Let us consider a function f from Ω into \mathbb{R}. Then f is a random variable of Σ and the Borel sets if and only if f is a real-valued random variable on Σ.
Let F be a function. We say that F is random variable family-like if and only if
(Def. 2) Let us consider a set x. Suppose $x \in \operatorname{dom} F$. Then there exist non empty sets Ω_{1}, Ω_{2} and there exists a σ-field S_{1} of subsets of Ω_{1} and there exists
a σ-field S_{2} of subsets of Ω_{2} and there exists a random variable f of S_{1} and S_{2} such that $F(x)=f$.
One can verify that there exists a function which is random variable familylike.

A random variable family is a random variable family-like function. In this paper F denotes a random variable of S_{1} and S_{2}.

Let Y be a non empty set, S be a σ-field of subsets of Y, and F be a function. We say that F is S-measure valued if and only if
(Def. 3) Let us consider a set x. If $x \in \operatorname{dom} F$, then there exists a σ-measure M on S such that $F(x)=M$.
Note that there exists a function which is S-measure valued.
Let F be a function. We say that F is S-probability valued if and only if
(Def. 4) Let us consider a set x. If $x \in \operatorname{dom} F$, then there exists a probability P on S such that $F(x)=P$.
Let us note that there exists a function which is S-probability valued.
Let X, Y be non empty sets. One can verify that there exists an S-probability valued function which is X-defined.

One can verify that there exists an X-defined S-probability valued function which is total.

Let Y be a non empty set. Let us note that every function which is S probability valued is also S-measure valued.

Let F be a function. We say that F is S-random variable family if and only if
(Def. 5) Let us consider a set x. Suppose $x \in \operatorname{dom} F$. Then there exists a realvalued random variable Z on S such that $F(x)=Z$.
Observe that there exists a function which is S-random variable family.
Now we state the propositions:
(10) Let us consider an element y of S_{2}. Suppose $y \neq \emptyset$. Then $\{z$ where z is an element of $\Omega_{1}: F(z)$ is an element of $\left.y\right\}=F^{-1}(y)$. Proof: Set $D=\left\{z\right.$ where z is an element of $\Omega_{1}: F(z)$ is an element of $\left.y\right\}$. For every element $x, x \in D$ iff $x \in F^{-1}(y)$.
(11) Let us consider a random variable F of S_{1} and S_{2}. Then
(i) $\left\{x\right.$ where x is a subset of Ω_{1} : there exists an element y of S_{2} such that $\left.x=F^{-1}(y)\right\} \subseteq S_{1}$, and
(ii) $\left\{x\right.$ where x is a subset of Ω_{1} : there exists an element y of S_{2} such that $\left.x=F^{-1}(y)\right\}$ is a σ-field of subsets of Ω_{1}.
The theorem is a consequence of (3). Proof: Set $S=\{x$ where x is a subset of Ω_{1} : there exists an element y of S_{2} such that $\left.x=F^{-1}(y)\right\}$. For every element x such that $x \in S$ holds $x \in S_{1}$. For every subset A of
Ω_{1} such that $A \in S$ holds $A^{\mathrm{c}} \in S$. For every sequence A_{1} of subsets of Ω_{1} such that rng $A_{1} \subseteq S$ holds Intersection $A_{1} \in S$.
Let us consider $\Omega_{1}, \Omega_{2}, S_{1}$, and S_{2}. Let M be a measure on S_{1} and F be a random variable of S_{1} and S_{2}. The functor the image measure of F and M yielding a measure on S_{2} is defined by
(Def. 6) Let us consider an element y of S_{2}. Then $i t(y)=M\left(F^{-1}(y)\right)$.
Let M be a σ-measure on S_{1}. Note that the image measure of F and M is σ-additive.

Now we state the proposition:
(12) Let us consider a probability P on S_{1} and a random variable F of S_{1} and S_{2}. Then (the image measure of F and P2M $\left.P\right)\left(\Omega_{2}\right)=1$.
Let us consider $\Omega_{1}, \Omega_{2}, S_{1}$, and S_{2}. Let P be a probability on S_{1} and F be a random variable of S_{1} and S_{2}. The functor $\operatorname{probability}(F, P)$ yielding a probability on S_{2} is defined by the term
(Def. 7) M2P the image measure of F and P2M P.
Now we state the propositions:
(13) Let us consider a probability P on S_{1} and a random variable F of S_{1} and S_{2}. Then probability $(F, P)=$ the image measure of F and P2M P. The theorem is a consequence of (12).
(14) Let us consider a probability P on S_{1}, a random variable F of S_{1} and S_{2}, and a set y. If $y \in S_{2}$, then $(\operatorname{probability}(F, P))(y)=P\left(F^{-1}(y)\right)$. The theorem is a consequence of (13).
(15) Every function from Ω_{1} into Ω_{2} is a random variable of the trivial σ-field of Ω_{1} and the trivial σ-field of Ω_{2}.
(16) Let us consider a non empty set S. Then every non empty finite sequence of elements of S is a random variable of the trivial σ-field of Seg len F and the trivial σ-field of S. The theorem is a consequence of (15).
(17) Let us consider finite non empty sets V, S, a random variable G of the trivial σ-field of V and the trivial σ-field of S, and a set y. Suppose $y \in$ the trivial σ-field of S. Then (probability $(G$, the trivial probability of $V))(y)=\frac{\overline{\overline{G^{-1}(y)}}}{\overline{\bar{V}}}$. The theorem is a consequence of (14).
(18) Let us consider a finite non empty set S, a non empty finite sequence s of elements of S, and a set x. Suppose $x \in S$. Then there exists a random variable G of the trivial σ-field of Seg len s and the trivial σ-field of S such that
(i) $G=s$, and
(ii) $(\operatorname{probability}(G$, the trivial probability of $\operatorname{Seg} \operatorname{len} s))(\{x\})=\operatorname{Prob}_{\mathrm{D}}(x, s)$. The theorem is a consequence of (16) and (17).

2. Product of Probability Spaces

Let D be a non-empty many sorted set indexed by \mathbb{N} and n be a natural number. One can check that $D(n)$ is non empty.

Let S, F be many sorted sets indexed by \mathbb{N}. We say that F is σ-field S -sequence-like if and only if
(Def. 8) Let us consider a natural number n. Then $F(n)$ is a σ-field of subsets of $S(n)$.
Let S be a many sorted set indexed by \mathbb{N}. Let us observe that there exists a many sorted set indexed by \mathbb{N} which is σ-field S-sequence-like.

Let D be a many sorted set indexed by \mathbb{N}. A σ-field sequence of D is a σ-field D-sequence-like many sorted set indexed by \mathbb{N}. Let S be a σ-field sequence of D and n be a natural number. Note that the functor $S(n)$ yields a σ-field of subsets of $D(n)$. Let D be a non-empty many sorted set indexed by \mathbb{N}. Let M be a many sorted set indexed by \mathbb{N}. We say that M is S-probability sequence-like if and only if
(Def. 9) Let us consider a natural number n. Then $M(n)$ is a probability on $S(n)$.
Observe that there exists a many sorted set indexed by \mathbb{N} which is S probability sequence-like.

A probability sequence of S is an S-probability sequence-like many sorted set indexed by \mathbb{N}. Let P be a probability sequence of S and n be a natural number. One can verify that the functor $P(n)$ yields a probability on $S(n)$. Let D be a many sorted set indexed by \mathbb{N}. The functor the product domain D yielding a many sorted set indexed by \mathbb{N} is defined by
(Def. 10) (i) $i t(0)=D(0)$, and
(ii) for every natural number $i, i t(i+1)=i t(i) \times D(i+1)$.

Now we state the proposition:
(19) Let us consider a many sorted set D indexed by \mathbb{N}. Then
(i) (the product domain $D)(0)=D(0)$, and
(ii) (the product domain $D)(1)=D(0) \times D(1)$, and
(iii) (the product domain $D)(2)=D(0) \times D(1) \times D(2)$, and
(iv) (the product domain $D)(3)=D(0) \times D(1) \times D(2) \times D(3)$.

Let D be a non-empty many sorted set indexed by \mathbb{N}. Let us note that the product domain D is non-empty.

Let D be a finite-yielding many sorted set indexed by \mathbb{N}. One can check that the product domain D is finite-yielding.

Let us consider Ω and Σ. Let P be a set. Assume P is a probability on Σ. The functor modetrans (P, Σ) yielding a probability on Σ is defined by the term (Def. 11) P.

Let D be a finite-yielding non-empty many sorted set indexed by \mathbb{N}. The functor the trivial σ-field sequence D yielding a σ-field sequence of D is defined by
(Def. 12) Let us consider a natural number n. Then $i t(n)=$ the trivial σ-field of $D(n)$.
Let P be a probability sequence of the trivial σ-field sequence D and n be a natural number. One can check that the functor $P(n)$ yields a probability on the trivial σ-field of $D(n)$. The functor ProductProbability (P, D) yielding a many sorted set indexed by \mathbb{N} is defined by
(Def. 13) (i) $i t(0)=P(0)$, and
(ii) for every natural number $i, i t(i+1)=$

Product-Probability $(($ the product domain $D)(i), D(i+1)$, modetrans $(i t(i)$, the trivial σ-field of (the product domain $D)(i)), P(i+1)$).
Let us consider a finite-yielding non-empty many sorted set D indexed by \mathbb{N}, a probability sequence P of the trivial σ-field sequence D, and a natural number n. Now we state the propositions:
(20) $(\operatorname{ProductProbability}(P, D))(n)$ is a probability on the trivial σ-field of (the product domain $D)(n)$.
(21) There exists a probability P_{4} on the trivial σ-field of (the product domain $D)(n)$ such that
(i) $P_{4}=(\operatorname{ProductProbability}(P, D))(n)$, and
(ii) $(\operatorname{ProductProbability}(P, D))(n+1)=\operatorname{Product-Probability}(($ the product domain $\left.D)(n), D(n+1), P_{4}, P(n+1)\right)$.

Now we state the proposition:
(22) Let us consider a finite-yielding non-empty many sorted set D indexed by \mathbb{N} and a probability sequence P of the trivial σ-field sequence D. Then
(i) $(\operatorname{ProductProbability}(P, D))(0)=P(0)$, and
(ii) $(\operatorname{ProductProbability}(P, D))(1)=$

Product-Probability $(D(0), D(1), P(0), P(1))$, and
(iii) there exists a probability P_{1} on the trivial σ-field of $D(0) \times D(1)$ such that $P_{1}=(\operatorname{ProductProbability}(P, D))(1)$ and $(\operatorname{ProductProbability}(P$, $D)(2)=\operatorname{Product}-\operatorname{Probability}\left(D(0) \times D(1), D(2), P_{1}, P(2)\right)$, and
(iv) there exists a probability P_{2} on the trivial σ-field of $D(0) \times D(1) \times$ $D(2)$ such that $P_{2}=(\operatorname{ProductProbability}(P, D))(2)$ and $(\operatorname{ProductProbability}(P, D))(3)=\operatorname{Product-Probability}(D(0) \times D(1) \times$ $\left.D(2), D(3), P_{2}, P(3)\right)$, and
(v) there exists a probability P_{3} on the trivial σ-field of $D(0) \times D(1) \times$ $D(2) \times D(3)$ such that $P_{3}=(\operatorname{ProductProbability}(P, D))(3)$ and

$$
\begin{aligned}
& (\operatorname{ProductProbability}(P, D))(4)=\operatorname{Product-Probability}(D(0) \times D(1) \times \\
& \left.D(2) \times D(3), D(4), P_{3}, P(4)\right)
\end{aligned}
$$

The theorem is a consequence of (19) and (21).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[6] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Peter Jaeger. Elementary introduction to stochastic finance in discrete time. Formalized Mathematics, 20(1):1-5, 2012. doi $10.2478 / \mathrm{v} 10037-012-0001-5$.
[13] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[14] Hiroyuki Okazaki. Probability on finite and discrete set and uniform distribution. Formalized Mathematics, 17(2):173-178, 2009. doi 10.2478/v10037-009-0020-z
[15] Hiroyuki Okazaki and Yasunari Shidama. Probability on finite set and real-valued random variables. Formalized Mathematics, 17(2):129-136, 2009. doi 10.2478/v10037-009-0014-x.
[16] Hiroyuki Okazaki and Yasunari Shidama. Probability measure on discrete spaces and algebra of real-valued random variables. Formalized Mathematics, 18(4):213-217, 2010. doi $10.2478 / \mathrm{v} 10037-010-0026-6$.
[17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[18] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187-190, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[22] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. The relevance of measure and probability, and definition of completeness of probability. Formalized Mathematics, 14 (4):225-229, 2006. doi $10.2478 / \mathrm{v} 10037-006-0026-8$.

Received December 1, 2012

[^0]: ${ }^{1}$ The 1st author was supported by JSPS KAKENHI 21240001, and the 2nd author was supported by JSPS KAKENHI 22300285.

