DOI: 10.2478/forma-2013-0002

The C^{k} Space 1

Katuhiko Kanazashi Hiroyuki Okazaki Yasunari Shidama
Shizuoka City, Japan Shinshu University Shinshu University
Nagano, Japan
Nagano, Japan

Abstract

Summary. In this article, we formalize continuous differentiability of realvalued functions on n-dimensional real normed linear spaces. Next, we give a definition of the C^{k} space according to [23].

MML identifier: CKSPACE1, version: 8.0.01 5.5.1167
The notation and terminology used in this paper have been introduced in the following articles: [1], 4], 10], [3], 5], [11, [17], [6], 7], 19], [18], [2], 8], [14], [12], [15], [13], 21], 22], 16], 20], and [9].

1. Definition of Continuously Differentiable Functions and Some Properties

Let m be a non zero element of \mathbb{N}, f be a partial function from \mathcal{R}^{m} to \mathbb{R}, k be an element of \mathbb{N}, and Z be a set. We say that f is continuously differentiable up to order of k and Z if and only if
(Def. 1) (i) $Z \subseteq \operatorname{dom} f$, and
(ii) f is partial differentiable up to order k and Z, and
(iii) for every non empty finite sequence I of elements of \mathbb{N} such that len $I \leqslant k$ and $\operatorname{rng} I \subseteq \operatorname{Seg} m$ holds $f \upharpoonright^{I} Z$ is continuous on Z.
Now we state the propositions:
(1) Let us consider a non zero element m of \mathbb{N}, a set Z, a non empty finite sequence I of elements of \mathbb{N}, and a partial function f from \mathcal{R}^{m} to \mathbb{R}. Suppose f is partially differentiable on Z w.r.t. I. Then $\operatorname{dom}\left(f \upharpoonright^{I} Z\right)=Z$.

[^0](2) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty subset X of \mathcal{R}^{m}, and a partial function f from \mathcal{R}^{m} to \mathbb{R}. Suppose
(i) X is open, and
(ii) $X \subseteq \operatorname{dom} f$.

Then f is continuously differentiable up to order of 1 and X if and only if f is differentiable on X and for every element x_{0} of \mathcal{R}^{m} and for every real number r such that $x_{0} \in X$ and $0<r$ there exists a real number s such that $0<s$ and for every element x_{1} of \mathcal{R}^{m} such that $x_{1} \in X$ and $\left|x_{1}-x_{0}\right|<s$ for every element v of $\mathcal{R}^{m},\left|f^{\prime}\left(x_{1}\right)(v)-f^{\prime}\left(x_{0}\right)(v)\right| \leqslant r \cdot|v|$.
(3) Let us consider a non zero element m of \mathbb{N}, a non empty subset X of \mathcal{R}^{m}, and a partial function f from \mathcal{R}^{m} to \mathbb{R}. Suppose
(i) X is open, and
(ii) $X \subseteq \operatorname{dom} f$, and
(iii) f is continuously differentiable up to order of 1 and X.

Then f is continuous on X. The theorem is a consequence of (2).
(4) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty subset X of \mathcal{R}^{m}, and partial functions f, g from \mathcal{R}^{m} to \mathbb{R}. Suppose
(i) f is continuously differentiable up to order of k and X, and
(ii) g is continuously differentiable up to order of k and X, and
(iii) X is open.

Then $f+g$ is continuously differentiable up to order of k and X. The theorem is a consequence of (1). Proof: For every non empty finite sequence I of elements of \mathbb{N} such that len $I \leqslant k$ and $\operatorname{rng} I \subseteq \operatorname{Seg} m$ holds $(f+g) \upharpoonright^{I} X$ is continuous on X.
(5) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty subset X of \mathcal{R}^{m}, a real number r, and a partial function f from \mathcal{R}^{m} to \mathbb{R}. Suppose
(i) f is continuously differentiable up to order of k and X, and
(ii) X is open.

Then $r \cdot f$ is continuously differentiable up to order of k and X. The theorem is a consequence of (1). Proof: For every non empty finite sequence I of elements of \mathbb{N} such that len $I \leqslant k$ and rng $I \subseteq \operatorname{Seg} m$ holds $r \cdot f \upharpoonright^{I} X$ is continuous on X.
(6) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty subset X of \mathcal{R}^{m}, and partial functions f, g from \mathcal{R}^{m} to \mathbb{R}. Suppose
(i) f is continuously differentiable up to order of k and X, and
(ii) g is continuously differentiable up to order of k and X, and
(iii) X is open.

Then $f-g$ is continuously differentiable up to order of k and X. The theorem is a consequence of (1). Proof: For every non empty finite sequence I of elements of \mathbb{N} such that len $I \leqslant k$ and $\operatorname{rng} I \subseteq \operatorname{Seg} m$ holds $\left.(f-g)\right|^{I} X$ is continuous on X.
Let us consider a non zero element m of \mathbb{N}, a non empty subset Z of \mathcal{R}^{m}, a partial function f from \mathcal{R}^{m} to \mathbb{R}, and non empty finite sequences I, G of elements of \mathbb{N}. Now we state the propositions:
(7) $f \upharpoonright^{G \curvearrowright I} Z=\left(f \upharpoonright^{G} Z\right) \upharpoonright^{I} Z$.
(8) $f \upharpoonright^{G^{\wedge} I} Z$ is continuous on Z if and only if $\left(f \upharpoonright^{G} Z\right) \upharpoonright^{I} Z$ is continuous on Z.

Now we state the propositions:
(9) Let us consider a non zero element m of \mathbb{N}, a non empty subset Z of \mathcal{R}^{m}, a partial function f from \mathcal{R}^{m} to \mathbb{R}, elements i, j of \mathbb{N}, and a non empty finite sequence I of elements of \mathbb{N}. Suppose
(i) f is continuously differentiable up to order of $i+j$ and Z, and
(ii) $\operatorname{rng} I \subseteq \operatorname{Seg} m$, and
(iii) $\operatorname{len} I=j$.

Then $f \upharpoonright^{I} Z$ is continuously differentiable up to order of i and Z. The theorem is a consequence of (1) and (7).
(10) Let us consider a non zero element m of \mathbb{N}, a non empty subset Z of \mathcal{R}^{m}, a partial function f from \mathcal{R}^{m} to \mathbb{R}, and elements i, j of \mathbb{N}. Suppose
(i) f is continuously differentiable up to order of i and Z, and
(ii) $j \leqslant i$.

Then f is continuously differentiable up to order of j and Z.
(11) Let us consider a non zero element m of \mathbb{N} and a non empty subset Z of \mathcal{R}^{m}. Suppose Z is open. Let us consider an element k of \mathbb{N} and partial functions f, g from \mathcal{R}^{m} to \mathbb{R}. Suppose
(i) f is continuously differentiable up to order of k and Z, and
(ii) g is continuously differentiable up to order of k and Z.

Then $f \cdot g$ is continuously differentiable up to order of k and Z. The theorem is a consequence of (10), (1), (3), (9), and (7). Proof: Define $\mathcal{P}[$ element of $\mathbb{N}] \equiv$ for every partial functions f, g from \mathcal{R}^{m} to \mathbb{R} such that f is continuously differentiable up to order of $\$_{1}$ and Z and g is continuously differentiable up to order of $\$_{1}$ and Z holds $f \cdot g$ is continuously differentiable up to order of $\$_{1}$ and Z. Set $Z 0=(0$ qua natural number $)$. $\mathcal{P}[0]$. For every element k of \mathbb{N} such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$.
(12) Let us consider a non zero element m of \mathbb{N}, a partial function f from \mathcal{R}^{m} to \mathbb{R}, a non empty subset X of \mathcal{R}^{m}, and a real number d. Suppose
(i) X is open, and
(ii) $f=X \longmapsto d$.

Let us consider an element x of \mathcal{R}^{m}. If $x \in X$, then f is differentiable in x and $f^{\prime}(x)=\mathcal{R}^{m} \longmapsto 0$.
(13) Let us consider a non zero element m of \mathbb{N}, a partial function f from \mathcal{R}^{m} to \mathbb{R}, a non empty subset X of \mathcal{R}^{m}, and a real number d. Suppose
(i) X is open, and
(ii) $f=X \longmapsto d$.

Let us consider an element x_{0} of \mathcal{R}^{m} and a real number r. Suppose
(iii) $x_{0} \in X$, and
(iv) $0<r$.

Then there exists a real number s such that
(v) $0<s$, and
(vi) for every element x_{1} of \mathcal{R}^{m} such that $x_{1} \in X$ and $\left|x_{1}-x_{0}\right|<s$ for every element v of $\mathcal{R}^{m},\left|f^{\prime}\left(x_{1}\right)(v)-f^{\prime}\left(x_{0}\right)(v)\right| \leqslant r \cdot|v|$.
The theorem is a consequence of (12).
(14) Let us consider a non zero element m of \mathbb{N}, a partial function f from \mathcal{R}^{m} to \mathbb{R}, a non empty subset X of \mathcal{R}^{m}, and a real number d. Suppose
(i) X is open, and
(ii) $f=X \longmapsto d$.

Then
(iii) f is differentiable on X, and
(iv) $\operatorname{dom} f_{\Gamma X}^{\prime}=X$, and
(v) for every element x of \mathcal{R}^{m} such that $x \in X$ holds $\left(f_{\uparrow X}^{\prime}\right)_{x}=\mathcal{R}^{m} \longmapsto 0$. The theorem is a consequence of (12).
(15) Let us consider a non zero element m of \mathbb{N}, a partial function f from \mathcal{R}^{m} to \mathbb{R}, a non empty subset X of \mathcal{R}^{m}, a real number d, and an element i of \mathbb{N}. Suppose
(i) X is open, and
(ii) $f=X \longmapsto d$, and
(iii) $1 \leqslant i \leqslant m$.

Then
(iv) f is partially differentiable on X w.r.t. i, and
(v) $f \upharpoonright^{i} X$ is continuous on X.

The theorem is a consequence of (14) and (13).
(16) Let us consider a non zero element m of \mathbb{N}, an element i of \mathbb{N}, a partial function f from \mathcal{R}^{m} to \mathbb{R}, a non empty subset X of \mathcal{R}^{m}, and a real number d. Suppose
(i) X is open, and
(ii) $f=X \longmapsto d$, and
(iii) $1 \leqslant i \leqslant m$.

Then $f \upharpoonright^{i} X=X \longmapsto 0$. The theorem is a consequence of (15) and (12).
Let us consider a non zero element m of \mathbb{N}, a non empty finite sequence I of elements of \mathbb{N}, a non empty subset X of \mathcal{R}^{m}, a partial function f from \mathcal{R}^{m} to \mathbb{R}, and a real number d. Now we state the propositions:
(17) Suppose X is open and $f=X \longmapsto d$ and $\operatorname{rng} I \subseteq \operatorname{Seg} m$. Then
(i) $(\operatorname{PartDiffSeq}(f, X, I))(0)=X \longmapsto d$, and
(ii) for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} I$ holds $(\operatorname{PartDiffSeq}(f, X, I))(i)=X \longmapsto 0$.
(18) Suppose X is open and $f=X \longmapsto d$ and $\operatorname{rng} I \subseteq \operatorname{Seg} m$. Then
(i) f is partially differentiable on X w.r.t. I, and
(ii) $f \upharpoonright^{I} X$ is continuous on X.

Now we state the proposition:
(19) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty subset X of \mathcal{R}^{m}, a partial function f from \mathcal{R}^{m} to \mathbb{R}, and a real number d. Suppose
(i) X is open, and
(ii) $f=X \longmapsto d$.

Then f is continuously differentiable up to order of k and X. The theorem is a consequence of (18).
Let m be a non zero element of \mathbb{N}. Observe that there exists a non empty subset of \mathcal{R}^{m} which is open.

2. Definition of the C^{k} Space

Let m be a non zero element of \mathbb{N}, k be an element of \mathbb{N}, and X be a non empty open subset of \mathcal{R}^{m}. The functor the \mathbb{C}^{k} functions of k and X yielding a non empty subset of RAlgebra X is defined by the term
(Def. 2) $\quad\left\{f\right.$ where f is a partial function from \mathcal{R}^{m} to $\mathbb{R}: f$ is continuously differentiable up to order of k and X and $\operatorname{dom} f=X\}$.

Let us note that the \mathbb{C}^{k} functions of k and X is additively linearly closed and multiplicatively closed.

The functor the \mathbb{R} algebra of \mathbb{C}^{k} functions of k and X yielding a subalgebra of RAlgebra X is defined by the term
(Def. 3) <the \mathbb{C}^{k} functions of k and X, mult(the \mathbb{C}^{k} functions of k and X, RAlgebra X), $\operatorname{Add}\left(\right.$ the \mathbb{C}^{k} functions of k and X, RAlgebra $\left.X\right)$, Mult(the \mathbb{C}^{k} functions of k and X, RAlgebra X), One (the \mathbb{C}^{k} functions of k and X, RAlgebra X), Zero(the \mathbb{C}^{k} functions of k and X, RAlgebra $\left.\left.X\right)\right\rangle$.
Let us note that the \mathbb{R} algebra of \mathbb{C}^{k} functions of k and X is Abelian addassociative right zeroed right complementable vector distributive scalar distributive scalar associative scalar unital commutative associative right unital right distributive and vector associative.

Now we state the propositions:
(20) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty open subset X of \mathcal{R}^{m}, vectors F, G, H of the \mathbb{R} algebra of \mathbb{C}^{k} functions of k and X, and partial functions f, g, h from \mathcal{R}^{m} to \mathbb{R}. Suppose
(i) $f=F$, and
(ii) $g=G$, and
(iii) $h=H$.

Then $H=F+G$ if and only if for every element x of $X, h(x)=f(x)+g(x)$.
(21) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty open subset X of \mathcal{R}^{m}, vectors F, G, H of the \mathbb{R} algebra of \mathbb{C}^{k} functions of k and X, partial functions f, g, h from \mathcal{R}^{m} to \mathbb{R}, and a real number a. Suppose
(i) $f=F$, and
(ii) $g=G$.

Then $G=a \cdot F$ if and only if for every element x of $X, g(x)=a \cdot f(x)$.
(22) Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, a non empty open subset X of \mathcal{R}^{m}, vectors F, G, H of the \mathbb{R} algebra of \mathbb{C}^{k} functions of k and X, and partial functions f, g, h from \mathcal{R}^{m} to \mathbb{R}. Suppose
(i) $f=F$, and
(ii) $g=G$, and
(iii) $h=H$.

Then $H=F \cdot G$ if and only if for every element x of $X, h(x)=f(x) \cdot g(x)$.
Let us consider a non zero element m of \mathbb{N}, an element k of \mathbb{N}, and a non empty open subset X of \mathcal{R}^{m}. Now we state the propositions:
(23) $0_{\alpha}=X \longmapsto 0$, where α is the \mathbb{R} algebra of \mathbb{C}^{k} functions of k and X.
(24) $\mathbf{1}_{\alpha}=X \longmapsto 1$, where α is the \mathbb{R} algebra of \mathbb{C}^{k} functions of k and X.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Higher-order partial differentiation. Formalized Mathematics, 20(2):113-124, 2012. doi 10.2478/v10037-012-0015-z.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1): 35-40, 1990.
[14] Takao Inoué, Adam Naumowicz, Noboru Endou, and Yasunari Shidama. Partial differentiation of vector-valued functions on n-dimensional real normed linear spaces. Formalized Mathematics, 19(1):1-9, 2011. doi $10.2478 / \mathrm{v} 10037-011-0001-\mathrm{x}$
[15] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.
[16] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
[17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
[18] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.
[19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[23] Kosaku Yosida. Functional Analysis. Springer Classics in Mathematics, 1996.
Received November 9, 2012

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 22300285.

