

The C^k Space¹

Katuhiko Kanazashi Shizuoka City, Japan Hiroyuki Okazaki Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we formalize continuous differentiability of real-valued functions on n-dimensional real normed linear spaces. Next, we give a definition of the C^k space according to [23].

MML identifier: CKSPACE1, version: 8.0.01 5.5.1167

The notation and terminology used in this paper have been introduced in the following articles: [1], [4], [10], [3], [5], [11], [17], [6], [7], [19], [18], [2], [8], [14], [12], [15], [13], [21], [22], [16], [20], and [9].

1. Definition of Continuously Differentiable Functions and Some Properties

Let m be a non zero element of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathbb{R} , k be an element of \mathbb{N} , and Z be a set. We say that f is continuously differentiable up to order of k and Z if and only if

- (Def. 1) (i) $Z \subseteq \text{dom } f$, and
 - (ii) f is partial differentiable up to order k and Z, and
 - (iii) for every non empty finite sequence I of elements of \mathbb{N} such that len $I \leq k$ and rng $I \subseteq \operatorname{Seg} m$ holds $f \upharpoonright^I Z$ is continuous on Z.

Now we state the propositions:

(1) Let us consider a non zero element m of \mathbb{N} , a set Z, a non empty finite sequence I of elements of \mathbb{N} , and a partial function f from \mathcal{R}^m to \mathbb{R} . Suppose f is partially differentiable on Z w.r.t. I. Then $\text{dom}(f)^I Z) = Z$.

 $^{^{1}}$ This work was supported by JSPS KAKENHI 22300285.

- (2) Let us consider a non zero element m of \mathbb{N} , an element k of \mathbb{N} , a non empty subset X of \mathbb{R}^m , and a partial function f from \mathbb{R}^m to \mathbb{R} . Suppose
 - (i) X is open, and
 - (ii) $X \subseteq \text{dom } f$.

Then f is continuously differentiable up to order of 1 and X if and only if f is differentiable on X and for every element x_0 of \mathcal{R}^m and for every real number r such that $x_0 \in X$ and 0 < r there exists a real number s such that 0 < s and for every element x_1 of \mathcal{R}^m such that $x_1 \in X$ and $|x_1 - x_0| < s$ for every element v of \mathcal{R}^m , $|f'(x_1)(v) - f'(x_0)(v)| \leq r \cdot |v|$.

- (3) Let us consider a non zero element m of \mathbb{N} , a non empty subset X of \mathbb{R}^m , and a partial function f from \mathbb{R}^m to \mathbb{R} . Suppose
 - (i) X is open, and
 - (ii) $X \subseteq \text{dom } f$, and
 - (iii) f is continuously differentiable up to order of 1 and X.

Then f is continuous on X. The theorem is a consequence of (2).

- (4) Let us consider a non zero element m of \mathbb{N} , an element k of \mathbb{N} , a non empty subset X of \mathbb{R}^m , and partial functions f, g from \mathbb{R}^m to \mathbb{R} . Suppose
 - (i) f is continuously differentiable up to order of k and X, and
 - (ii) g is continuously differentiable up to order of k and X, and
 - (iii) X is open.

Then f+g is continuously differentiable up to order of k and X. The theorem is a consequence of (1). PROOF: For every non empty finite sequence I of elements of \mathbb{N} such that len $I \leq k$ and rng $I \subseteq \operatorname{Seg} m$ holds $(f+g) \upharpoonright^I X$ is continuous on X. \square

- (5) Let us consider a non zero element m of \mathbb{N} , an element k of \mathbb{N} , a non empty subset X of \mathbb{R}^m , a real number r, and a partial function f from \mathbb{R}^m to \mathbb{R} . Suppose
 - (i) f is continuously differentiable up to order of k and X, and
 - (ii) X is open.

Then $r \cdot f$ is continuously differentiable up to order of k and X. The theorem is a consequence of (1). PROOF: For every non empty finite sequence I of elements of \mathbb{N} such that len $I \leq k$ and rng $I \subseteq \operatorname{Seg} m$ holds $r \cdot f \upharpoonright^I X$ is continuous on X. \square

- (6) Let us consider a non zero element m of \mathbb{N} , an element k of \mathbb{N} , a non empty subset X of \mathbb{R}^m , and partial functions f, g from \mathbb{R}^m to \mathbb{R} . Suppose
 - (i) f is continuously differentiable up to order of k and X, and
 - (ii) g is continuously differentiable up to order of k and X, and

(iii) X is open.

Then f-g is continuously differentiable up to order of k and X. The theorem is a consequence of (1). PROOF: For every non empty finite sequence I of elements of \mathbb{N} such that len $I \leq k$ and rng $I \subseteq \operatorname{Seg} m$ holds $(f-g) \upharpoonright^I X$ is continuous on X. \square

Let us consider a non zero element m of \mathbb{N} , a non empty subset Z of \mathcal{R}^m , a partial function f from \mathcal{R}^m to \mathbb{R} , and non empty finite sequences I, G of elements of \mathbb{N} . Now we state the propositions:

- (7) $f \upharpoonright^{G \cap I} Z = (f \upharpoonright^G Z) \upharpoonright^I Z$.
- (8) $f \upharpoonright^{G \cap I} Z$ is continuous on Z if and only if $(f \upharpoonright^G Z) \upharpoonright^I Z$ is continuous on Z. Now we state the propositions:
- (9) Let us consider a non zero element m of \mathbb{N} , a non empty subset Z of \mathbb{R}^m , a partial function f from \mathbb{R}^m to \mathbb{R} , elements i, j of \mathbb{N} , and a non empty finite sequence I of elements of \mathbb{N} . Suppose
 - (i) f is continuously differentiable up to order of i + j and Z, and
 - (ii) $\operatorname{rng} I \subseteq \operatorname{Seg} m$, and
 - (iii) len I = j.

Then $f \upharpoonright^I Z$ is continuously differentiable up to order of i and Z. The theorem is a consequence of (1) and (7).

- (10) Let us consider a non zero element m of \mathbb{N} , a non empty subset Z of \mathbb{R}^m , a partial function f from \mathbb{R}^m to \mathbb{R} , and elements i, j of \mathbb{N} . Suppose
 - (i) f is continuously differentiable up to order of i and Z, and
 - (ii) $j \leq i$.

Then f is continuously differentiable up to order of j and Z.

- (11) Let us consider a non zero element m of \mathbb{N} and a non empty subset Z of \mathbb{R}^m . Suppose Z is open. Let us consider an element k of \mathbb{N} and partial functions f, g from \mathbb{R}^m to \mathbb{R} . Suppose
 - (i) f is continuously differentiable up to order of k and Z, and
 - (ii) g is continuously differentiable up to order of k and Z.

Then $f \cdot g$ is continuously differentiable up to order of k and Z. The theorem is a consequence of (10), (1), (3), (9), and (7). PROOF: Define $\mathcal{P}[\text{element of }\mathbb{N}] \equiv \text{for every partial functions } f, g \text{ from } \mathcal{R}^m \text{ to } \mathbb{R} \text{ such that } f \text{ is continuously differentiable up to order of } 1 \text{ and } Z \text{ and } g \text{ is continuously differentiable up to order of } 1 \text{ and } Z \text{ holds } f \cdot g \text{ is continuously differentiable up to order of } 1 \text{ and } Z \text{ Set } Z0 = (0 \text{ qua natural number}).$ $\mathcal{P}[0]$. For every element k of \mathbb{N} such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. \square

(12) Let us consider a non zero element m of \mathbb{N} , a partial function f from \mathbb{R}^m to \mathbb{R} , a non empty subset X of \mathbb{R}^m , and a real number d. Suppose

- (i) X is open, and
- (ii) $f = X \longmapsto d$.

Let us consider an element x of \mathbb{R}^m . If $x \in X$, then f is differentiable in x and $f'(x) = \mathbb{R}^m \longmapsto 0$.

- (13) Let us consider a non zero element m of \mathbb{N} , a partial function f from \mathbb{R}^m to \mathbb{R} , a non empty subset X of \mathbb{R}^m , and a real number d. Suppose
 - (i) X is open, and
 - (ii) $f = X \longmapsto d$.

Let us consider an element x_0 of \mathbb{R}^m and a real number r. Suppose

- (iii) $x_0 \in X$, and
- (iv) 0 < r.

Then there exists a real number s such that

- (v) 0 < s, and
- (vi) for every element x_1 of \mathcal{R}^m such that $x_1 \in X$ and $|x_1 x_0| < s$ for every element v of \mathcal{R}^m , $|f'(x_1)(v) f'(x_0)(v)| \le r \cdot |v|$.

The theorem is a consequence of (12).

- (14) Let us consider a non zero element m of \mathbb{N} , a partial function f from \mathbb{R}^m to \mathbb{R} , a non empty subset X of \mathbb{R}^m , and a real number d. Suppose
 - (i) X is open, and
 - (ii) $f = X \longmapsto d$.

Then

- (iii) f is differentiable on X, and
- (iv) dom $f'_{\uparrow X} = X$, and
- (v) for every element x of \mathbb{R}^m such that $x \in X$ holds $(f'_{\uparrow X})_x = \mathbb{R}^m \longmapsto 0$.

The theorem is a consequence of (12).

- (15) Let us consider a non zero element m of \mathbb{N} , a partial function f from \mathcal{R}^m to \mathbb{R} , a non empty subset X of \mathcal{R}^m , a real number d, and an element i of \mathbb{N} . Suppose
 - (i) X is open, and
 - (ii) $f = X \longmapsto d$, and
 - (iii) $1 \leqslant i \leqslant m$.

Then

- (iv) f is partially differentiable on X w.r.t. i, and
- (v) $f \upharpoonright^i X$ is continuous on X.

The theorem is a consequence of (14) and (13).

- (16) Let us consider a non zero element m of \mathbb{N} , an element i of \mathbb{N} , a partial function f from \mathcal{R}^m to \mathbb{R} , a non empty subset X of \mathcal{R}^m , and a real number d. Suppose
 - (i) X is open, and
 - (ii) $f = X \longmapsto d$, and
 - (iii) $1 \leqslant i \leqslant m$.

Then $f \upharpoonright^i X = X \longmapsto 0$. The theorem is a consequence of (15) and (12).

Let us consider a non zero element m of \mathbb{N} , a non empty finite sequence I of elements of \mathbb{N} , a non empty subset X of \mathcal{R}^m , a partial function f from \mathcal{R}^m to \mathbb{R} , and a real number d. Now we state the propositions:

- (17) Suppose X is open and $f = X \mapsto d$ and rng $I \subseteq \operatorname{Seg} m$. Then
 - (i) $(PartDiffSeq(f, X, I))(0) = X \longmapsto d$, and
 - (ii) for every element i of \mathbb{N} such that $1 \leq i \leq \text{len } I$ holds $(\text{PartDiffSeq}(f, X, I))(i) = X \longmapsto 0.$
- (18) Suppose X is open and $f = X \mapsto d$ and rng $I \subseteq \operatorname{Seg} m$. Then
 - (i) f is partially differentiable on X w.r.t. I, and
 - (ii) $f \upharpoonright^I X$ is continuous on X.

Now we state the proposition:

- (19) Let us consider a non zero element m of \mathbb{N} , an element k of \mathbb{N} , a non empty subset X of \mathbb{R}^m , a partial function f from \mathbb{R}^m to \mathbb{R} , and a real number d. Suppose
 - (i) X is open, and
 - (ii) $f = X \longmapsto d$.

Then f is continuously differentiable up to order of k and X. The theorem is a consequence of (18).

Let m be a non zero element of \mathbb{N} . Observe that there exists a non empty subset of \mathcal{R}^m which is open.

2. Definition of the C^k Space

Let m be a non zero element of \mathbb{N} , k be an element of \mathbb{N} , and X be a non empty open subset of \mathbb{R}^m . The functor the \mathbb{C}^k functions of k and X yielding a non empty subset of RAlgebra X is defined by the term

(Def. 2) $\{f \text{ where } f \text{ is a partial function from } \mathbb{R}^m \text{ to } \mathbb{R} : f \text{ is continuously differentiable up to order of } k \text{ and } X \text{ and } \text{dom } f = X\}.$

Let us note that the \mathbb{C}^k functions of k and X is additively linearly closed and multiplicatively closed.

The functor the \mathbb{R} algebra of \mathbb{C}^k functions of k and X yielding a subalgebra of RAlgebra X is defined by the term

(Def. 3) (the \mathbb{C}^k functions of k and X, mult(the \mathbb{C}^k functions of k and X, RAlgebra X), Add(the \mathbb{C}^k functions of k and X, RAlgebra X), Mult(the \mathbb{C}^k functions of k and X, RAlgebra X), One(the \mathbb{C}^k functions of k and X, RAlgebra X), Zero(the \mathbb{C}^k functions of k and X, RAlgebra X).

Let us note that the \mathbb{R} algebra of \mathbb{C}^k functions of k and X is Abelian add-associative right zeroed right complementable vector distributive scalar distributive scalar associative scalar unital commutative associative right unital right distributive and vector associative.

Now we state the propositions:

- (20) Let us consider a non zero element m of \mathbb{N} , an element k of \mathbb{N} , a non empty open subset X of \mathbb{R}^m , vectors F, G, H of the \mathbb{R} algebra of \mathbb{C}^k functions of k and X, and partial functions f, g, h from \mathbb{R}^m to \mathbb{R} . Suppose
 - (i) f = F, and
 - (ii) g = G, and
 - (iii) h = H.

Then H = F + G if and only if for every element x of X, h(x) = f(x) + g(x).

- (21) Let us consider a non zero element m of \mathbb{N} , an element k of \mathbb{N} , a non empty open subset X of \mathcal{R}^m , vectors F, G, H of the \mathbb{R} algebra of \mathbb{C}^k functions of k and X, partial functions f, g, h from \mathcal{R}^m to \mathbb{R} , and a real number a. Suppose
 - (i) f = F, and
 - (ii) g = G.

Then $G = a \cdot F$ if and only if for every element x of X, $g(x) = a \cdot f(x)$.

- (22) Let us consider a non zero element m of \mathbb{N} , an element k of \mathbb{N} , a non empty open subset X of \mathbb{R}^m , vectors F, G, H of the \mathbb{R} algebra of \mathbb{C}^k functions of k and X, and partial functions f, g, h from \mathbb{R}^m to \mathbb{R} . Suppose
 - (i) f = F, and
 - (ii) g = G, and
 - (iii) h = H.

Then $H = F \cdot G$ if and only if for every element x of X, $h(x) = f(x) \cdot g(x)$.

Let us consider a non zero element m of \mathbb{N} , an element k of \mathbb{N} , and a non empty open subset X of \mathbb{R}^m . Now we state the propositions:

- (23) $0_{\alpha} = X \longmapsto 0$, where α is the \mathbb{R} algebra of \mathbb{C}^k functions of k and X.
- (24) $\mathbf{1}_{\alpha} = X \longmapsto 1$, where α is the \mathbb{R} algebra of \mathbb{C}^k functions of k and X.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [12] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Higher-order partial differentiation. Formalized Mathematics, 20(2):113–124, 2012. doi:10.2478/v10037-012-0015-z.
- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1): 35–40, 1990.
- [14] Takao Inoué, Adam Naumowicz, Noboru Endou, and Yasunari Shidama. Partial differentiation of vector-valued functions on n-dimensional real normed linear spaces. Formalized Mathematics, 19(1):1–9, 2011. doi:10.2478/v10037-011-0001-x.
- [15] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841–845, 1990.
- [16] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17–21, 1992.
- [17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [18] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341–347, 2003.
- [19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990
- [23] Kosaku Yosida. Functional Analysis. Springer Classics in Mathematics, 1996.

Received November 9, 2012