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Summary. In this article, we formalize that every finite cyclic group is
isomorphic to a direct product of finite cyclic groups which orders are relative
prime. This theorem is closely related to the Chinese Remainder theorem ([18])
and is a useful lemma to prove the basis theorem for finite abelian groups and
the fundamental theorem of finite abelian groups. Moreover, we formalize some
facts about the product of a finite sequence of abelian groups.
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The notation and terminology used in this paper are introduced in the following
articles: [5], [1], [2], [4], [11], [6], [7], [20], [17], [18], [19], [3], [8], [13], [15], [16],
[12], [23], [21], [10], [22], [14], and [9].

Let G be an Abelian add-associative right zeroed right complementable non
empty additive loop structure. Note that 〈G〉 is non empty and Abelian group
yielding as a finite sequence.

Let G, F be Abelian add-associative right zeroed right complementable non
empty additive loop structures. Note that 〈G,F 〉 is non empty and Abelian
group yielding as a finite sequence.

We now state the proposition

(1) Let X be an Abelian group. Then there exists a homomorphism I from
X to

∏
〈X〉 such that I is bijective and for every element x of X holds

I(x) = 〈x〉.
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Let G, F be non empty Abelian group yielding finite sequences. Note that
G a F is Abelian group yielding.

One can prove the following propositions:

(2) Let X, Y be Abelian groups. Then there exists a homomorphism I from
X × Y to

∏
〈X,Y 〉 such that I is bijective and for every element x of X

and for every element y of Y holds I(x, y) = 〈x, y〉.
(3) Let X, Y be sequences of groups. Then there exists a homomorphism I

from
∏
X ×

∏
Y to

∏
(X a Y ) such that

(i) I is bijective, and
(ii) for every element x of

∏
X and for every element y of

∏
Y there exist

finite sequences x1, y1 such that x = x1 and y = y1 and I(x, y) = x1
a y1.

(4) Let G, F be Abelian groups. Then
(i) for every set x holds x is an element of

∏
〈G,F 〉 iff there exists an

element x1 of G and there exists an element x2 of F such that x = 〈x1,

x2〉,
(ii) for all elements x, y of

∏
〈G,F 〉 and for all elements x1, y1 of G and

for all elements x2, y2 of F such that x = 〈x1, x2〉 and y = 〈y1, y2〉 holds
x+ y = 〈x1 + y1, x2 + y2〉,

(iii) 0∏〈G,F 〉 = 〈0G, 0F 〉, and
(iv) for every element x of

∏
〈G,F 〉 and for every element x1 of G and for

every element x2 of F such that x = 〈x1, x2〉 holds −x = 〈−x1,−x2〉.
(5) Let G, F be Abelian groups. Then
(i) for every set x holds x is an element of G×F iff there exists an element
x1 of G and there exists an element x2 of F such that x = 〈〈x1, x2〉〉,

(ii) for all elements x, y of G× F and for all elements x1, y1 of G and for
all elements x2, y2 of F such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds
x+ y = 〈〈x1 + y1, x2 + y2〉〉,

(iii) 0G×F = 〈〈0G, 0F 〉〉, and
(iv) for every element x of G × F and for every element x1 of G and for

every element x2 of F such that x = 〈〈x1, x2〉〉 holds −x = 〈〈−x1, −x2〉〉.
(6) Let G, H, I be groups, h be a homomorphism from G to H, and h1 be

a homomorphism from H to I. Then h1 · h is a homomorphism from G to
I.

Let G, H, I be groups, let h be a homomorphism from G to H, and let h1

be a homomorphism from H to I. Then h1 · h is a homomorphism from G to I.
One can prove the following propositions:

(7) Let G, H be groups and h be a homomorphism from G to H. If h is
bijective, then h−1 is a homomorphism from H to G.

(8) Let X, Y be sequences of groups. Then there exists a homomorphism I

from
∏
〈
∏
X,
∏
Y 〉 to

∏
(X a Y ) such that

(i) I is bijective, and
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(ii) for every element x of
∏
X and for every element y of

∏
Y there exist

finite sequences x1, y1 such that x = x1 and y = y1 and I(〈x, y〉) = x1
ay1.

(9) Let X, Y be Abelian groups. Then there exists a homomorphism I from
X × Y to X ×

∏
〈Y 〉 such that I is bijective and for every element x of X

and for every element y of Y holds I(x, y) = 〈〈x, 〈y〉〉〉.
(10) Let X be a sequence of groups and Y be an Abelian group. Then there

exists a homomorphism I from
∏
X × Y to

∏
(X a 〈Y 〉) such that

(i) I is bijective, and
(ii) for every element x of

∏
X and for every element y of Y there exist

finite sequences x1, y1 such that x = x1 and 〈y〉 = y1 and I(x, y) = x1
ay1.

(11) Let n be a non zero natural number. Then the additive loop structure of
(ZR

n ) is non empty, Abelian, right complementable, add-associative, and
right zeroed.

Let n be a natural number. The functor Z/nZ yields an additive loop struc-
ture and is defined by:

(Def. 1) Z/nZ = the additive loop structure of (ZR
n ).

Let n be a non zero natural number. Observe that Z/nZ is non empty and
strict.

Let n be a non zero natural number. Note that Z/nZ is Abelian, right
complementable, add-associative, and right zeroed.

Next we state a number of propositions:

(12) Let X be a sequence of groups, x, y, z be elements of
∏
X, and x1, y1,

z1 be finite sequences. Suppose x = x1 and y = y1 and z = z1. Then
z = x + y if and only if for every element j of domX holds z1(j) = (the
addition of X(j))(x1(j), y1(j)).

(13) For every CR-sequence m and for every natural number j and for every
integer x such that j ∈ domm holds x mod

∏
m mod m(j) = x mod m(j).

(14) Letm be a CR-sequence andX be a sequence of groups. Suppose lenm =
lenX and for every element i of N such that i ∈ domX there exists a non
zero natural number m1 such that m1 = m(i) and X(i) = Z/m1Z . Then
there exists a homomorphism I from Z/(

∏
m)Z to

∏
X such that for every

integer x if x ∈ the carrier of Z/(
∏
m)Z, then I(x) = mod(x,m).

(15) Let X, Y be non empty sets. Then there exists a function I from X ×
Y into X ×

∏
〈Y 〉 such that I is one-to-one and onto and for all sets x, y

such that x ∈ X and y ∈ Y holds I(x, y) = 〈〈x, 〈y〉〉〉.
(16) For every non empty set X holds

∏
〈X〉 = X .

(17) Let X be a non-empty non empty finite sequence and Y be a non empty
set. Then there exists a function I from

∏
X × Y into

∏
(X a 〈Y 〉) such

that
(i) I is one-to-one and onto, and
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(ii) for all sets x, y such that x ∈
∏
X and y ∈ Y there exist finite sequences

x1, y1 such that x = x1 and 〈y〉 = y1 and I(x, y) = x1
a y1.

(18) Let m be a finite sequence of elements of N and X be a non-empty non
empty finite sequence. Suppose lenm = lenX and for every element i of
N such that i ∈ domX holds X(i) = m(i). Then

∏
X =

∏
m.

(19) Letm be a CR-sequence andX be a sequence of groups. Suppose lenm =
lenX and for every element i of N such that i ∈ domX there exists a non
zero natural number m1 such that m1 = m(i) and X(i) = Z/m1Z . Then
the carrier of

∏
X =

∏
m.

(20) Let m be a CR-sequence, X be a sequence of groups, and I be a function
from Z/(

∏
m)Z into

∏
X. Suppose that

(i) lenm = lenX,
(ii) for every element i of N such that i ∈ domX there exists a non zero

natural number m1 such that m1 = m(i) and X(i) = Z/m1Z, and
(iii) for every integer x such that x ∈ the carrier of Z/(

∏
m)Z holds I(x) =

mod(x,m).
Then I is one-to-one.

(21) Letm be a CR-sequence andX be a sequence of groups. Suppose lenm =
lenX and for every element i of N such that i ∈ domX there exists a non
zero natural number m1 such that m1 = m(i) and X(i) = Z/m1Z . Then
there exists a homomorphism I from Z/(

∏
m)Z to

∏
X such that I is

bijective and for every integer x such that x ∈ the carrier of Z/(
∏
m)Z

holds I(x) = mod(x,m).
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