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Summary. We introduce an algebra with free variables, an algebra with
undefined values, a program algebra over a term algebra, an algebra with integers,
and an algebra with arrays. Program algebra is defined as universal algebra with
assignments. Programs depend on the set of generators with supporting variables
and supporting terms which determine the value of free variables in the next state.
The execution of a program is changing state according to successor function
using supporting terms.
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1. Preliminaries

For simplicity, we adopt the following convention: i denotes a natural num-
ber, x, y, z denote sets, Σ denotes a non empty non void many sorted signature,
and X denotes a non-empty many sorted set indexed by the carrier of Σ.

We now state three propositions:

(1) For all sets A, B and for every A-valued binary relation R holds
R◦B ⊆ A.
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385136).
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(2) For all sets I, J such that I ⊆ J holds Ii ⊆ J i.
(3) Let I, J be non empty sets and f be a homogeneous partial function from

I∗ to J . Then f is quasi total and non empty if and only if dom f = Iarity f .

Let I be a set, let f be a many sorted set indexed by I, let i be a set, and
let us consider x. Then f +· (i, x) is a many sorted set indexed by I.

Let A, B be sets, let f be a function from A into B, let x be a set, and let
y be an element of B. Then f +· (x, y) is a function from A into B.

Let I be a set, let A, B be many sorted sets indexed by I, let F be a many
sorted function from A into B, and let us consider x. Then F (x) is a function
from A(x) into B(x).

Let I be a set, let f be a non-empty many sorted set indexed by I, let i be
a set, and let x be a non empty set. Note that f +· (i, x) is non-empty.

The following propositions are true:

(4) For every set I and for all many sorted sets f , g indexed by I such that
f ⊆ g holds f# ⊆ g#.

(5) Let I be a non empty set, J be a set, and A, B be many sorted sets
indexed by I. If A ⊆ B, then for every function f from J into I holds
A · f ⊆ B · f.

(6) For every set I and for all many sorted sets A, B indexed by I such that
A ⊆ B holds

∏
A ⊆

∏
B.

Let f be a function yielding function. Note that Frege(f) is function yielding.
The following two propositions are true:

(7) For all function yielding functions f , g holds domκ(f · g)(κ) =
(domκ f(κ)) · g.

(8) For all functions f , g such that g = f(x) holds g(y) = f(x)(y).

Let I be a set, let i be an element of I, and let us consider x. The functor
i -singletonx yields a many sorted set indexed by I and is defined by:

(Def. 1) i -singletonx = 0.I +· (i, {x}).
One can prove the following propositions:

(9) For every non empty set I and for all elements i, j of I and for every x
holds (i -singletonx)(i) = {x} and if i 6= j, then (i -singletonx)(j) = ∅.

(10) Let I be a non empty set, i be an element of I, A be a many sorted set
indexed by I, and given x. If x ∈ A(i), then i -singletonx is a many sorted
subset of A.

Let I be a set, let A, B be many sorted sets indexed by I, let F be a many
sorted function from A into B, and let i be a set. Let us assume that i ∈ I.

Let j be a set. Let us assume that j ∈ A(i). Let v be a set. Let us assume that
v ∈ B(i). The functor F +·(i, j, v) yields a many sorted function from A into B
and is defined as follows:
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(Def. 2) (F +·(i, j, v))(i) = F (i) +· (j, v) and for every set s such that s ∈ I and
s 6= i holds (F +·(i, j, v))(s) = F (s).

Let a, b, c, d, x, y, z, v be sets. The functor (a, b, c, d) 7→ (x, y, z, v) yielding
a set is defined as follows:

(Def. 3) (a, b, c, d) 7→ (x, y, z, v) = (a, b, c) 7→ (x, y, z)+·(d 7−→. v).

Let a, b, c, d, x, y, z, v be sets. Observe that (a, b, c, d) 7→ (x, y, z, v) is
relation-like and function-like.

Next we state a number of propositions:

(11) Let a1, a2, a3, b1, b2, b3 be sets. Then ((a1, a2, a3) 7→ (b1, b2, b3))(a3) = b3
and if a2 6= a3, then ((a1, a2, a3) 7→ (b1, b2, b3))(a2) = b2 and if a1 6= a2

and a1 6= a3, then ((a1, a2, a3) 7→ (b1, b2, b3))(a1) = b1.

(12) For all sets a1, a2, a3, a4, b1, b2, b3, b4 holds dom((a1, a2, a3, a4) 7→
(b1, b2, b3, b4)) = {a1, a2, a3, a4}.

(13) Let a1, a2, a3, a4, b1, b2, b3, b4 be sets. Then
(i) ((a1, a2, a3, a4) 7→ (b1, b2, b3, b4))(a4) = b4,

(ii) if a3 6= a4, then ((a1, a2, a3, a4) 7→ (b1, b2, b3, b4))(a3) = b3,

(iii) if a2 6= a3 and a2 6= a4, then ((a1, a2, a3, a4) 7→ (b1, b2, b3, b4))(a2) = b2,

and
(iv) if a1 6= a2 and a1 6= a3 and a1 6= a4, then ((a1, a2, a3, a4) 7→

(b1, b2, b3, b4))(a1) = b1.

(14) For all sets a1, a2, a3, b1, b2, b3 such that a2 6= a3 and a1 6= a2 and
a1 6= a3 holds rng((a1, a2, a3) 7→ (b1, b2, b3)) = {b1, b2, b3}.

(15) For all sets a1, a2, a3, a4, b1, b2, b3, b4 such that a2 6= a3 and a1 6= a2 and
a1 6= a3 and a4 6= a1 and a4 6= a2 and a4 6= a3 holds rng((a1, a2, a3, a4) 7→
(b1, b2, b3, b4)) = {b1, b2, b3, b4}.

(16) For every set X and for all sets a1, a2, a3 such that a1, a2, a3 ∈ X holds
{a1, a2, a3} ⊆ X.

(17) For every set X and for all sets a1, a2, a3, a4 such that a1, a2, a3, a4 ∈ X
holds {a1, a2, a3, a4} ⊆ X.

(18) Let X be a set and a1, a2, a3, a4, a5, a6 be sets. If a1, a2, a3, a4, a5,
a6 ∈ X, then {a1, a2, a3, a4, a5, a6} ⊆ X.

(19) Let X be a set and a1, a2, a3, a4, a5, a6, a7, a8, a9 be sets. Suppose a1, a2,
a3, a4, a5, a6, a7, a8, a9 ∈ X. Then {a1, a2, a3, a4, a5, a6, a7, a8, a9} ⊆ X.

(20) Let X be a set and a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be
sets. Suppose a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 ∈ X. Then
{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10} ⊆ X.

(21) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9 holds {a1} ∪
{a2, a3, a4, a5, a6, a7, a8, a9} = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

(22) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 holds {a1} ∪
{a2, a3, a4, a5, a6, a7, a8, a9, a10} = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}.
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(23) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9 holds
{a1, a2, a3, a4, a5, a6, a7, a8} ∪ {a9} = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

(24) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 holds
{a1, a2, a3, a4, a5, a6, a7, a8, a9} ∪ {a10} =
{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}.

(25) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9 holds {a1, a2, a3} ∪
{a4, a5, a6, a7, a8, a9} = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

(26) For all sets a1, a2, a3, a4 such that a1 6= a2 and a1 6= a3 and a1 6= a4 and
a2 6= a3 and a2 6= a4 and a3 6= a4 holds 〈a1, a2, a3, a4〉 is one-to-one.

Let a1, a2, a3, a4, a5, a6 be sets. The functor 〈〈a1, a2, a3, a4, a5, a6〉〉 yielding
a finite sequence is defined as follows:

(Def. 4) 〈〈a1, a2, a3, a4, a5, a6〉〉 = 〈a1, a2, a3, a4, a5〉 a 〈a6〉.
Let X be a non empty set and let a1, a2, a3, a4, a5, a6 be elements of X.

Then 〈〈a1, a2, a3, a4, a5, a6〉〉 is a finite sequence of elements of X.
Let a1, a2, a3, a4, a5, a6 be sets. One can check that 〈〈a1, a2, a3, a4, a5, a6〉〉 is

6-element.
We now state two propositions:

(27) Let a1, a2, a3, a4, a5, a6 be sets and f be a finite sequence. Then f =
〈〈a1, a2, a3, a4, a5, a6〉〉 if and only if the following conditions are satisfied:
len f = 6 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and
f(5) = a5 and f(6) = a6.

(28) For all sets a1, a2, a3, a4, a5, a6 holds rng 〈〈a1, a2, a3, a4, a5, a6〉〉 =
{a1, a2, a3, a4, a5, a6}.

Let a1, a2, a3, a4, a5, a6, a7 be sets. The functor 〈〈a1, a2, a3, a4, a5, a6, a7〉〉
yields a finite sequence and is defined by:

(Def. 5) 〈〈a1, a2, a3, a4, a5, a6, a7〉〉 = 〈a1, a2, a3, a4, a5〉 a 〈a6, a7〉.
Let X be a non empty set and let a1, a2, a3, a4, a5, a6, a7 be elements of

X. Then 〈〈a1, a2, a3, a4, a5, a6, a7〉〉 is a finite sequence of elements of X.
Let a1, a2, a3, a4, a5, a6, a7 be sets. Observe that 〈〈a1, a2, a3, a4, a5, a6, a7〉〉

is 7-element.
We now state two propositions:

(29) Let a1, a2, a3, a4, a5, a6, a7 be sets and f be a finite sequence. Then
f = 〈〈a1, a2, a3, a4, a5, a6, a7〉〉 if and only if the following conditions are
satisfied:
len f = 7 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and
f(5) = a5 and f(6) = a6 and f(7) = a7.

(30) For all sets a1, a2, a3, a4, a5, a6, a7 holds rng 〈〈a1, a2, a3, a4, a5, a6, a7〉〉 =
{a1, a2, a3, a4, a5, a6, a7}.

Let a1, a2, a3, a4, a5, a6, a7, a8 be sets. The functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉
yielding a finite sequence is defined by:
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(Def. 6) 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 = 〈a1, a2, a3, a4, a5〉 a 〈a6, a7, a8〉.
Let X be a non empty set and let a1, a2, a3, a4, a5, a6, a7, a8 be elements

of X. Then 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 is a finite sequence of elements of X.
Let a1, a2, a3, a4, a5, a6, a7, a8 be sets.
Observe that 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 is 8-element.
The following propositions are true:

(31) Let a1, a2, a3, a4, a5, a6, a7, a8 be sets and f be a finite sequence. Then
f = 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 if and only if the following conditions are
satisfied:
len f = 8 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and
f(5) = a5 and f(6) = a6 and f(7) = a7 and f(8) = a8.

(32) For all sets a1, a2, a3, a4, a5, a6, a7, a8 holds
rng 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 = {a1, a2, a3, a4, a5, a6, a7, a8}.

(33) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9 holds
rng(〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 a 〈a9〉) = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

(34) Seg 9 = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
(35) Seg 10 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

We now state the proposition

(36) Let a1, a2, a3, a4, a5, a6, a7, a8, a9 be sets. Then domw9 = Seg 9 and
w9(1) = a1 and w9(2) = a2 and w9(3) = a3 and w9(4) = a4 and w9(5) = a5

and w9(6) = a6 and w9(7) = a7 and w9(8) = a8 and w9(9) = a9, where
w9 = 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 a 〈a9〉.

The following proposition is true

(37) Let a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be sets. Then domw10 = Seg 10
and w10(1) = a1 and w10(2) = a2 and w10(3) = a3 and w10(4) = a4

and w10(5) = a5 and w10(6) = a6 and w10(7) = a7 and w10(8) = a8 and
w10(9) = a9 and w10(10) = a10, where w10 = 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉a
〈a9, a10〉.

Let I, J be sets and let Σ be a many sorted set indexed by I. A many sorted
function indexed by I is said to be a double many sorted set of Σ and J if:

(Def. 7) For all sets i, j such that i ∈ I holds dom it(i) = Σ(i) and if j ∈ Σ(i),
then it(i)(j) is a many sorted set indexed by J .

Let I, J be sets, let Σ1 be a many sorted set indexed by I, and let Σ2 be a
many sorted set indexed by J . A double many sorted set of Σ1 and J is said to
be a double many sorted set of Σ1 and Σ2 if:

(Def. 8) For all sets i, a such that i ∈ I and a ∈ Σ1(i) holds it(i)(a) is a many
sorted subset of Σ2.

Let I be a set, let X, Y be many sorted sets indexed by I, let f be a
double many sorted set of X and Y , and let x, y be sets. Note that f(x)(y) is
function-like and relation-like.
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Let Σ be a many sorted signature, let o, a be sets, and let r be an element
of Σ. We say that o is of type a → r if and only if:

(Def. 9) (The arity of Σ)(o) = a and (the result sort of Σ)(o) = r.

One can prove the following propositions:

(38) Let Σ be a non void non empty many sorted signature, o be an operation
symbol of Σ, and r be a sort symbol of Σ. Suppose o is of type ∅ → r. Let A

be an algebra over Σ. Suppose (the sorts of A)(r) 6= ∅. Then (Den(o(∈ the
carrier’ of Σ),A))(∅) is an element of (the sorts of A)(r).

(39) Let Σ be a non void non empty many sorted signature, o, a be sets, and
r be a sort symbol of Σ. Suppose o is of type 〈a〉 → r. Let A be an algebra
over Σ. Suppose (the sorts of A)(a) 6= ∅ and (the sorts of A)(r) 6= ∅. Let
x be an element of (the sorts of A)(a). Then (Den(o(∈ the carrier’ of Σ),
A))(〈x〉) is an element of (the sorts of A)(r).

(40) Let Σ be a non void non empty many sorted signature, o, a, b be sets,
and r be a sort symbol of Σ. Suppose o is of type 〈a, b〉 → r. Let A be an
algebra over Σ. Suppose (the sorts of A)(a) 6= ∅ and (the sorts of A)(b) 6= ∅
and (the sorts of A)(r) 6= ∅. Let x be an element of (the sorts of A)(a) and
y be an element of (the sorts of A)(b). Then (Den(o(∈ the carrier’ of Σ),
A))(〈x, y〉) is an element of (the sorts of A)(r).

(41) Let Σ be a non void non empty many sorted signature, o, a, b, c be sets,
and r be a sort symbol of Σ. Suppose o is of type 〈a, b, c〉 → r. Let A

be an algebra over Σ. Suppose (the sorts of A)(a) 6= ∅ and (the sorts of
A)(b) 6= ∅ and (the sorts of A)(c) 6= ∅ and (the sorts of A)(r) 6= ∅. Let x be
an element of (the sorts of A)(a), y be an element of (the sorts of A)(b),
and z be an element of (the sorts of A)(c). Then (Den(o(∈ the carrier’ of
Σ),A))(〈x, y, z〉) is an element of (the sorts of A)(r).

(42) Let Σ1, Σ2 be many sorted signatures. Suppose the many sorted signa-
ture of Σ1 = the many sorted signature of Σ2. Let o, a be sets, r1 be an
element of Σ1, and r2 be an element of Σ2. If r1 = r2, then if o is of type
a → r1, then o is of type a → r2.

(43) Let o be an operation symbol of Σ, r be a sort symbol of Σ, and A be
an algebra over Σ. If o is of type ∅ → r, then ∅ ∈ Args(o,A).

(44) Let o be an operation symbol of Σ, s, r be sort symbols of Σ, and A be
an algebra over Σ. If o is of type 〈s〉 → r and x ∈ (the sorts of A)(s), then
〈x〉 ∈ Args(o,A).

(45) Let o be an operation symbol of Σ, s1, s2, r be sort symbols of Σ, and A

be an algebra over Σ. Suppose o is of type 〈s1, s2〉 → r and x ∈ (the sorts
of A)(s1) and y ∈ (the sorts of A)(s2). Then 〈x, y〉 ∈ Args(o,A).

(46) Let o be an operation symbol of Σ, s1, s2, s3, r be sort symbols of Σ, and
A be an algebra over Σ. Suppose o is of type 〈s1, s2, s3〉 → r and x ∈ (the
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sorts of A)(s1) and y ∈ (the sorts of A)(s2) and z ∈ (the sorts of A)(s3).
Then 〈x, y, z〉 ∈ Args(o,A).

2. Free Variables

Let Σ be a non empty non void many sorted signature. We consider free
variable algebras over Σ as extensions of algebra over Σ as systems
〈 sorts, a characteristics, free variables 〉,

where the sorts constitute a many sorted set indexed by the carrier of Σ, the
characteristics is a many sorted function from the sorts# · the arity of Σ into
the sorts ·the result sort of Σ, and the free variables constitute a double many
sorted set of the sorts and the sorts.

Let Σ be a non empty non void many sorted signature, let U be a non-empty
many sorted set indexed by the carrier of Σ, let C be a many sorted function
from U# · the arity of Σ into U · the result sort of Σ, and let v be a double many
sorted set of U and U . Observe that 〈〈U,C, v〉〉V is non-empty.

Let Σ be a non empty non void many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of Σ. Observe that there exists
a strict free variable algebra over Σ which is non-empty and including Σ-terms
over X.

Let Σ be a non empty non void many sorted signature. One can check that
there exists a free variable algebra over Σ which is non-empty and disjoint
valued. Let X be a non-empty many sorted set indexed by the carrier of Σ.
One can check that every including Σ-terms over X free variable algebra over
Σ which has all variables is also non-empty.

Let Σ be a non empty non void many sorted signature, let A be a non-empty
free variable algebra over Σ, let a be a sort symbol of Σ, and let t be an element
of A from a. The functor vf t yields a many sorted subset of the sorts of A and
is defined as follows:

(Def. 10) vf t = (the free variables of A)(a)(t).

Let Σ be a non empty non void many sorted signature and let A be a non-
empty free variable algebra over Σ. We say that A is vf-correct if and only if
the condition (Def. 11) is satisfied.

(Def. 11) Let o be an operation symbol of Σ and p be a finite sequence. Sup-
pose p ∈ Args(o,A). Let b be an element of A from the result sort
of o. Suppose b = (Den(o,A))(p). Let s be a sort symbol of Σ. Then
(vf b)(s) ⊆

⋃
{(vf a)(s); s0 ranges over sort symbols of Σ, a ranges over

elements of A from s0:
∨
i : natural number (i ∈ dom Arity(o) ∧ s0 =

Arity(o)(i) ∧ a = p(i))}.
Next we state three propositions:
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(47) Let Σ be a non empty non void many sorted signature and A, B be
algebras over Σ. Suppose the algebra of A = the algebra of B. Let G be a
subset of A and H be a subset of B. If G = H, then Gen(G) = Gen(H).

(48) Let Σ be a non empty non void many sorted signature and A, B be
algebras over Σ. Suppose the algebra of A = the algebra of B. Then every
generator set of A is a generator set of B.

(49) Let Σ be a non empty non void many sorted signature and A, B be
non-empty algebras over Σ. Suppose the algebra of A = the algebra of B.
Let G be a generator set of A and H be a generator set of B. If G = H,

then if G is free, then H is free.

Let Σ be a non empty non void many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of Σ. Observe that there exists a
non-empty including Σ-terms over X strict free variable algebra over Σ which
is free in itself, has all variables, and inherits operations.

Let Σ be a non empty non void many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of Σ, and let A be a non-empty including
Σ-terms over X free variable algebra over Σ. We say that A is vf-free if and only
if the condition (Def. 12) is satisfied.

(Def. 12) Let s, r be sort symbols of Σ and t be an element of A from s. Then
(vf t)(r) = {t�p; p ranges over elements of dom t : (t�p)(∅)2 = r}.

The scheme Scheme deals with a non empty set A, non-empty many sorted
sets B, C indexed by A, and a ternary functor F yielding a set, and states that:

There exists a double many sorted set f of B and C such that
for all elements s, r of A and for every element t of B(s) holds
f(s)(t)(r) = F(s, r, t)

provided the parameters satisfy the following condition:
• For all elements s, r of A and for every element t of B(s) holds
F(s, r, t) is a subset of C(r).

Next we state the proposition

(50) Let Σ be a non empty non void many sorted signature, X be a non-
empty many sorted set indexed by the carrier of Σ, and A be a free in itself
including Σ-terms over X algebra over Σ with all variables and inheriting
operations. Then there exists a double many sorted set V1 of the sorts of
A and the sorts of A and there exists a free in itself including Σ-terms
over X free variable algebra B over Σ with all variables and inheriting
operations such that B = 〈〈the sorts of A, the characteristics of A, V1〉〉V
and B is vf-free.

Let Σ be a non empty non void many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of Σ. One can verify that there
exists a free in itself including Σ-terms over X free variable algebra over Σ with
all variables and inheriting operations which is strict and vf-free.
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We now state two propositions:

(51) Let Σ be a non empty non void many sorted signature, X be a non-empty
many sorted set indexed by the carrier of Σ, A be a vf-free including Σ-
terms over X free variable algebra over Σ with all variables and inheriting
operations, s be a sort symbol of Σ, and t be an element of A from s. Then
vf t is a many sorted subset of FreeGenerator(X).

(52) Let Σ be a non empty non void many sorted signature, X be a non-empty
many sorted set indexed by the carrier of Σ, A be a vf-free non-empty
including Σ-terms over X free variable algebra over Σ, s be a sort symbol
of Σ, and x be an element of A from s. If x ∈ (FreeGenerator(X))(s), then
vf x = s -singletonx.

3. Algebra with Undefined Values

Let I be a set and let Σ be a many sorted set indexed by I. A many sorted
element of Σ is an element of Σ.

Let I be a non empty set, let A be a non-empty many sorted set indexed by
I, let e be a many sorted element of A, and let i be an element of I. Then e(i)
is an element of A(i).

Let Σ be a non empty non void many sorted signature. We introduce algebras
over Σ with undefined values which are extensions of algebra over Σ and are
systems
〈 sorts, a characteristics, an undefined map 〉,

where the sorts constitute a many sorted set indexed by the carrier of Σ, the
characteristics is a many sorted function from the sorts# · the arity of Σ into
the sorts ·the result sort of Σ, and the undefined map is a many sorted element
of the sorts.

Let Σ be a non empty non void many sorted signature. Note that there exists
an algebra over Σ with undefined values which is non-empty.

Let Σ be a non empty non void many sorted signature, let A be an algebra
over Σ with undefined values, let s be a sort symbol of Σ, and let a be an element
of A from s. We say that a is undefined if and only if:

(Def. 13) a = (the undefined map of A)(s).

Let Σ be a non empty non void many sorted signature, let A be an algebra
over Σ, let s be a sort symbol of Σ, and let a be an element of A from s. We say
that a is defined if and only if:

(Def. 14) For every algebra B over Σ with undefined values such that B = A holds
a 6= (the undefined map of B)(s).

Let Σ be a non empty non void many sorted signature and let A be an
algebra over Σ. The defined sorts of A constitute a many sorted subset of the
sorts of A defined by:
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(Def. 15)(i) For every algebra B over Σ with undefined values such that A = B

and for every many sorted set U indexed by the carrier of Σ such that
for every sort symbol s of Σ holds U(s) = {(the undefined map of B)(s)}
holds the defined sorts of A = (the sorts of A) \ U if A is an algebra over
Σ with undefined values,

(ii) the defined sorts of A = the sorts of A, otherwise.

We now state the proposition

(53) Let Σ1, Σ2 be non empty non void many sorted signatures, A1 be an
algebra over Σ1 with undefined values, and A2 be an algebra over Σ2

with undefined values. Suppose the sorts of A1 = the sorts of A2 and the
undefined map of A1 = the undefined map of A2. Then the defined sorts
of A1 = the defined sorts of A2.

Let Σ be a non empty non void many sorted signature and let A be an
algebra over Σ. We say that A has defined elements if and only if:

(Def. 16) The defined sorts of A are non-empty.

Let Σ be a non empty non void many sorted signature, let A be a non-empty
algebra over Σ with undefined values, let s be a sort symbol of Σ, and let a be
an element of A from s. Let us observe that a is defined if and only if:

(Def. 17) a ∈ (the defined sorts of A)(s).

Let Σ be a non empty non void many sorted signature and let A be an
algebra over Σ with undefined values. We say that A is undefined consequently
if and only if the condition (Def. 18) is satisfied.

(Def. 18) Let o be an operation symbol of Σ and p be a finite sequence. Suppose
that

(i) p ∈ Args(o,A), and
(ii) there exists a natural number i and there exists a sort symbol s of Σ

and there exists an element a of A from s such that i ∈ dom Arity(o) and
s = Arity(o)(i) and a = p(i) and a is undefined.
Let b be an element of A from the result sort of o. If b = (Den(o,A))(p),
then b is undefined.

Let I be a set and let A be a many sorted set indexed by I. The functor
succA yielding a many sorted set indexed by I is defined as follows:

(Def. 19) For every set i such that i ∈ I holds (succA)(i) = succA(i).

Let I be a set and let A be a many sorted set indexed by I. Note that succA
is non-empty.

Let Σ be a non empty non void many sorted signature, let A be an algebra
over Σ, and let B be an algebra over Σ with undefined values. We say that B

is A with undefined values if and only if the conditions (Def. 20) are satisfied.

(Def. 20)(i) B is undefined consequently,
(ii) the undefined map of B = the sorts of A,
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(iii) the sorts of B = succ (the sorts of A), and
(iv) for every operation symbol o of Σ and for every element a of Args(o,A)

such that Args(o,A) 6= ∅ holds if (Den(o,B))(a) 6= (Den(o,A))(a), then
(Den(o,B))(a) = (the undefined map of B)(the result sort of o).

We now state the proposition

(54) Let Σ be a non empty non void many sorted signature, A be an algebra
over Σ, and B be an algebra over Σ with undefined values. Suppose B is
A with undefined values. Then the defined sorts of B = the sorts of A.

Let Σ be a non empty many sorted signature and let A be an algebra over
Σ. Observe that the characteristics of A is function yielding.

Let Σ be a non empty non void many sorted signature. Note that every
algebra over Σ which has defined elements is also non-empty.

The scheme UndefAlgebra deals with a non empty non void many sorted
signature A, a non-empty algebra B over A, and a binary predicate P, and
states that:

There exists a strict algebra B over A with undefined values such
that
(i) B is B with undefined values and has defined elements,
(ii) the undefined map of B = the sorts of B,
(iii) the sorts of B = succ (the sorts of B), and
(iv) for every operation symbol o of A and for every element a
of Args(o,B) holds if not P[o, a], then (Den(o,B))(a) = (Den(o,
B))(a) and if P[o, a], then (Den(o,B))(a) = (the undefined map
of B)(the result sort of o)

for all values of the parameters.
One can prove the following proposition

(55) Let A be a non-empty algebra over Σ. Then there exists a strict algebra
B over Σ with undefined values such that

(i) B is A with undefined values and has defined elements,
(ii) the undefined map of B = the sorts of A,
(iii) the sorts of B = succ (the sorts of A), and
(iv) for every operation symbol o of Σ and for every element a of Args(o,A)

holds (Den(o,B))(a) = (Den(o,A))(a).

Let Σ be a non empty non void many sorted signature and let A be a non-
empty algebra over Σ. Note that every algebra over Σ with undefined values
which is A with undefined values is also undefined consequently and there exists
a strict algebra over Σ with undefined values which is A with undefined values
and has defined elements.

Let Σ be a non empty non void many sorted signature. One can verify that
there exists an algebra over Σ which has defined elements.
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Let Σ be a non empty non void many sorted signature and let A be an
algebra over Σ with defined elements. One can verify that the defined sorts of
A is non-empty. Let s be a sort symbol of Σ. Note that there exists an element
of A from s which is defined.

Let us consider Σ, let A be an algebra over Σ with undefined values with
defined elements, and let s be a sort symbol of Σ. Note that there exists an
element of A from s which is defined.

4. Program Algebra

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. We introduce program algebra struc-
tures of J , T, and X which are extensions of universal algebra structures and
are systems
〈 a carrier, a characteristic, assignments 〉,

where the carrier is a set, the characteristic is a finite sequence of operational
functions of the carrier, and the assignments constitute a function from

⋃
[[X, the

sorts of T]] into the carrier.
Let J be a non empty non void many sorted signature, let T be an algebra

over J , let X be a generator set of T, and let A be a program algebra structure
of J , T, and X. We say that A is disjoint valued if and only if:

(Def. 21) The sorts of T are disjoint valued and the assignments of A are one-to-
one.

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. Note that there exists a strict program
algebra structure of J , T, and X which is partial, quasi total, and non-empty.

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. Note that there exists a partial quasi
total non-empty non empty strict program algebra structure of J , T, and X

which has empty-instruction, catenation, if-instruction, and while-instruction.
We now state several propositions:

(56) Let U1, U2 be pre-if-while algebras. Suppose the universal algebra struc-
ture of U1 = the universal algebra structure of U2. Then

(i) EmptyIns(U1) = EmptyIns(U2), and
(ii) for all elements I1, J1 of U1 and for all elements I2, J2 of U2 such that

I1 = I2 and J1 = J2 holds I1; J1 = I2; J2 and while I1 do J1 = while I2 do J2

and for every element C1 of U1 and for every element C2 of U2 such that
C1 = C2 holds if C1 then I1 else J1 = if C2 then I2 else J2.

(57) Let U1, U2 be pre-if-while algebras. Suppose the universal alge-
bra structure of U1 = the universal algebra structure of U2. Then
ElementaryInstructions(U1) = ElementaryInstructions(U2) .
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(58) Let U1, U2 be universal algebras, Σ1 be a subset of U1, and Σ2 be a
subset of U2. Suppose Σ1 = Σ2. Let o1 be an operation of U1 and o2 be
an operation of U2. If o1 = o2, then if Σ1 is closed on o1, then Σ2 is closed
on o2.

(59) Let U1, U2 be universal algebras. Suppose the universal algebra structure
of U1 = the universal algebra structure of U2. Let Σ1 be a subset of U1

and Σ2 be a subset of U2. If Σ1 = Σ2, then if Σ1 is operations closed, then
Σ2 is operations closed.

(60) Let U1, U2 be universal algebras. Suppose the universal algebra structure
of U1 = the universal algebra structure of U2. Then every generator set of
U1 is a generator set of U2.

(61) Let U1, U2 be universal algebras. Suppose the universal algebra struc-
ture of U1 = the universal algebra structure of U2. Then signatureU1 =
signatureU2.

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. Note that there exists a partial quasi
total non-empty non empty strict program algebra structure of J , T, and X

with empty-instruction, catenation, if-instruction, and while-instruction which
is non degenerated, well founded, E.C.I.W.-strict, and infinite.

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. A pre-if-while algebra over X is a
partial quasi total non-empty non empty program algebra structure of J , T, and
X with empty-instruction, catenation, if-instruction, and while-instruction.

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. A if-while algebra over X is a non
degenerated well founded E.C.I.W.-strict pre-if-while algebra over X.

Let J be a non empty non void many sorted signature, let T be a non-empty
algebra over J , let X be a non-empty generator set of T, let A be a non empty
program algebra structure of J , T, and X, let a be a sort symbol of J , let x be
an element of X(a), and let t be an element of T from a. The functor x :=At

yielding an algorithm of A is defined as follows:

(Def. 22) x:=At = (the assignments of A)(〈〈x, t〉〉).
Let Σ be a set and let T be a disjoint valued non-empty many sorted set

indexed by Σ. Note that there exists a many sorted subset of T which is non-
empty.

Let J be a non void non empty many sorted signature, let T, C be non-empty
algebras over J , and let X be a non-empty generator set of T. The functor
C -States(X) yields a subset of MSFuncs(X, the sorts of C) and is defined by the
condition (Def. 23).

(Def. 23) Let s be a many sorted function from X into the sorts of C. Then s ∈
C -States(X) if and only if there exists a many sorted function f from T
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into C such that f is a homomorphism of T into C and s = f � X.

Let J be a non void non empty many sorted signature, let T be a non-empty
algebra over J , let C be a non-empty image of T, and let X be a non-empty
generator set of T. One can verify that C -States(X) is non empty.

The following proposition is true

(62) Let B be a non void non empty many sorted signature, T, C be non-
empty algebras over B, X be a non-empty generator set of T, and g be a
set. Suppose g ∈ C -States(X). Then g is a many sorted function from X

into the sorts of C.

Let B be a non void non empty many sorted signature, let T, C be non-
empty algebras over B, and let X be a non-empty generator set of T. Note that
every element of C -States(X) is relation-like and function-like.

Let B be a non void non empty many sorted signature, let T, C be non-
empty algebras over B, and let X be a non-empty generator set of T. One can
check that every element of C -States(X) is function yielding and the carrier of
B-defined.

Let B be a non void non empty many sorted signature, let T be a non-empty
algebra over B, let C be a non-empty image of T, and let X be a non-empty
generator set of T. Observe that every element of C -States(X) is total.

Let B be a non void non empty many sorted signature, let T be a non-empty
algebra over B, let C be a non-empty algebra over B, let X be a non-empty
generator set of T, let a be a sort symbol of B, let x be an element of X(a),
and let f be an element of C from a. The functor Statesx 6→f (X) yields a subset
of C -States(X) and is defined by the condition (Def. 24).

(Def. 24) Let s be a many sorted function from X into the sorts of C. Then s ∈
Statesx 6→f (X) if and only if s ∈ C -States(X) and s(a)(x) 6= f.

Let Σ be a non empty non void many sorted signature, let A be a non-
empty algebra over Σ, and let o be an operation symbol of Σ. Observe that
every element of Args(o,A) is function-like and relation-like.

Let B be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of B, let T be an including B-terms over
X non-empty algebra over B, let C be a non-empty image of T, let a be a sort
symbol of B, let t be an element of T from a, and let s be a function yielding
function. Let us assume that there exist a many sorted function h from T into
C and a generator set Q of T such that h is a homomorphism of T into C and
Q = domκ s(κ) and s = h � Q. The functor t value at(C, s) yielding an element
of C from a is defined by the condition (Def. 25).

(Def. 25) There exists a many sorted function f from T into C and there exists
a generator set Q of T such that f is a homomorphism of T into C and
Q = domκ s(κ) and s = f � Q and t value at(C, s) = f(a)(t).
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5. Generator System

Let us consider Σ, X and let T be a non-empty including Σ-terms over X
algebra over Σ. We introduce generator systems over Σ, X, and T which are
systems
〈 generators, a supported variable, a supported term 〉,

where the generators constitute a non-empty generator set of T, the supported
variable is a many sorted function from the generators into FreeGenerator(X),
and the supported term is a double many sorted set of the generators and the
carrier of Σ.

Let us consider Σ, X, let T be a non-empty including Σ-terms over X algebra
over Σ, let G be a generator system over Σ, X, and T, and let s be a sort symbol
of Σ. An element of T from s is said to be an element of G from s if:

(Def. 26) It ∈ (the generators of G)(s).

Let us consider Σ, X, let T be a non-empty including Σ-terms over X algebra
over Σ, let G be a generator system over Σ, X, and T, and let s be a sort symbol
of Σ. The functor G(s) yields a component of the generators of G and is defined
by:

(Def. 27) G(s) = (the generators of G)(s).

Let g be an element of G from s. The functor supp-var g yielding an element of
(FreeGenerator(X))(s) is defined as follows:

(Def. 28) supp-var g = (the supported variable of G)(s)(g).

Let us consider Σ, X, let T be a non-empty including Σ-terms over X free
variable algebra over Σ, let G be a generator system over Σ, X, and T, let s be
a sort symbol of Σ, and let g be an element of G from s. Let us assume that
(the supported term of G)(s)(g) is a many sorted function from vf g into the
sorts of T. The functor supp-term g yielding a many sorted function from vf g
into the sorts of T is defined as follows:

(Def. 29) supp-term g = (the supported term of G)(s)(g).

Let Σ be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of Σ, let T be a non-empty including
Σ-terms over X free variable algebra over Σ, let C be a non-empty image of T,
and let G be a generator system over Σ, X, and T. We say that G is C-supported
if and only if the conditions (Def. 30) are satisfied.

(Def. 30)(i) FreeGenerator(X) is a many sorted subset of the generators of G, and
(ii) for every sort symbol s of Σ holds dom (the supported term of

G)(s) = G(s) and for every element t of G from s holds (the suppor-
ted term of G)(s)(t) is a many sorted function from vf t into the sorts of
T and if t ∈ (FreeGenerator(X))(s), then supp-term t = ids -singleton t and
supp-var t = t and for every element v of C -States(the generators of G)
such that v(s)(supp-var t) = v(s)(t) and for every sort symbol r of Σ and
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for every element x of (FreeGenerator(X))(r) and for every element q of
(the sorts of T)(r) such that x ∈ (vf t)(r) and q = (supp-term t)(r)(x)
and q value at(C, v) is defined holds v(r)(x) = q value at(C, v) and if
t 6∈ (FreeGenerator(X))(s), then for every many sorted subset H of the
generators of G such that H = FreeGenerator(X) and for every element
v of C from s and for every many sorted function f from the genera-
tors of G into the sorts of C such that f ∈ C -States(the generators of
G) and for every many sorted function u from FreeGenerator(X) in-
to the sorts of C such that for every sort symbol a of Σ and for eve-
ry element z of (FreeGenerator(X))(a) such that z ∈ (vf t)(a) and for
every element q of T from a such that q = (supp-term t)(a)(z) holds
u(a)(z) = q value at(C, (f � H) +·(s, supp-var t, v)) and for every many
sorted subset H of the sorts of T such that H = FreeGenerator(X) and
for every many sorted function h from T into C such that h is a homomor-
phism of T into C and h � H = u holds v = h(s)(t).

Let us consider Σ, let us consider X, let A be a vf-free free in itself including
Σ-terms over X free variable algebra over Σ with all variables and inheriting
operations, let C be a non-empty image of A, and let G be a generator system
over Σ, X, and A. Let us assume that G is C-supported. Let s be an element of
C -States(the generators of G), let r be a sort symbol of Σ, let v be an element
of C from r, and let t be an element of G from r. The functor succt:=v(s) yields
an element of C -States(the generators of G) and is defined by the conditions
(Def. 31).

(Def. 31)(i) (succt:=v(s))(r)(t) = v, and

(ii) for every sort symbol p of Σ and for every element x of
(FreeGenerator(X))(p) such that if p = r, then x 6= t holds if x 6∈ (vf t)(p),
then (succt:=v(s))(p)(x) = s(p)(x) and for every many sorted function u

from FreeGenerator(X) into the sorts of C and for every many sorted sub-
set H of the generators of G such that H = FreeGenerator(X) and for
every many sorted function f from the generators of G into the sorts of C

such that f = s and u = (f � H) +·(r, supp-var t, v) holds if x ∈ (vf t)(p),
then for every element q of A from p such that q = (supp-term t)(p)(x)
holds (succt:=v(s))(p)(x) = q value at(C, u).

Let B be a non void non empty many sorted signature, let Y be a non-
empty many sorted set indexed by the carrier of B, let T be a vf-free free in
itself including B-terms over Y free variable algebra over B with all variables
and inheriting operations, let C be a non-empty image of T, let X be a generator
system over B, Y , and T, let A be a pre-if-while algebra over the generators of X,
let a be a sort symbol of B, let x be an element of (the generators of X)(a), and
let z be an element of C from a. The functor C -Executionx 6→z(A) yields a subset
of (C -States(the generators of X))(C -States(the generators of X))×the carrier of A and
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is defined by the condition (Def. 32).

(Def. 32) Let f be a function from (C -States(the generators of X)) × the carrier
of A into C -States(the generators of X). Then f ∈ C -Executionx 6→z(A) if
and only if f is an execution function of A over C -States(the generators
of X) and Statesx 6→z(the generators of X).

6. Boolean Signature

We consider connectives signatures as extensions of many sorted signature
as systems
〈 a carrier, a carrier’, an arity, a result sort, connectives 〉,

where the carrier and the carrier’ are sets, the arity is a function from the carrier’
into the carrier∗, the result sort is a function from the carrier’ into the carrier,
and the connectives constitute a finite sequence of elements of the carrier’.

Let Σ be a connectives signature. We say that Σ is 1-1-connectives if and
only if:

(Def. 33) The connectives of Σ are one-to-one.

Let n be a natural number and let Σ be a connectives signature. We say
that Σ is n-connectives if and only if:

(Def. 34) len (the connectives of Σ) = n.

Let n be a natural number. Note that there exists a strict connectives signa-
ture which is n-connectives, non empty, and non void.

We consider boolean signatures as extensions of connectives signature as
systems
〈 a carrier, a carrier’, an arity, a result sort, a boolean sort, connectives 〉,

where the carrier and the carrier’ are sets, the arity is a function from the carrier’
into the carrier∗, the result sort is a function from the carrier’ into the carrier,
the boolean sort is an element of the carrier, and the connectives constitute a
finite sequence of elements of the carrier’.

Let n be a natural number. Note that there exists a strict boolean signature
which is n-connectives, non empty, and non void.

Let B be a boolean signature. We say that B is boolean correct if and only
if the conditions (Def. 35) are satisfied.

(Def. 35)(i) len (the connectives of B) ≥ 3,
(ii) (the connectives of B)(1) is of type ∅ → the boolean sort of B,
(iii) (the connectives of B)(2) is of type 〈the boolean sort of B〉 → the

boolean sort of B, and
(iv) (the connectives of B)(3) is of type 〈the boolean sort of B, the boolean

sort of B〉 → the boolean sort of B.
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One can verify that there exists a strict boolean signature which is 3-
connectives, 1-1-connectives, boolean correct, non empty, and non void.

Let us note that there exists a connectives signature which is 1-1-connectives,
non empty, and non void.

Let Σ be a 1-1-connectives non empty non void connectives signature. Note
that the connectives of Σ is one-to-one.

Let Σ be a non empty non void boolean signature and let B be an algebra
over Σ. We say that B is boolean correct if and only if the conditions (Def. 36)
are satisfied.

(Def. 36)(i) (The defined sorts of B)(the boolean sort of Σ) = Boolean,
(ii) (Den((the connectives of Σ)(1)(∈ the carrier’ of Σ),B))(∅) = true, and
(iii) for all boolean sets x, y holds (Den((the connectives of Σ)(2)(∈ the

carrier’ of Σ),B))(〈x〉) = ¬x and (Den((the connectives of Σ)(3)(∈ the
carrier’ of Σ),B))(〈x, y〉) = x ∧ y.

One can prove the following proposition

(63) Let A, B be non empty sets, n be a natural number, and f be a function
from An into B. Then

(i) f is a homogeneous quasi total non empty partial function from A∗ to
B, and

(ii) for every homogeneous function g such that f = g holds g is n-ary.

Let A, B be non empty sets and let n be a natural number. Note that there
exists a homogeneous quasi total non empty partial function from A∗ to B which
is n-ary.

Now we present two schemes. The scheme Sch1 deals with non empty sets
A, B and a unary functor F yielding an element of B, and states that:

There exists a 1-ary homogeneous quasi total non empty partial
function f from A∗ to B such that for every element a of A holds
f(〈a〉) = F(a)

for all values of the parameters.
The scheme Sch2 deals with non empty sets A, B and a binary functor F

yielding an element of B, and states that:
There exists a 2-ary homogeneous quasi total non empty partial
function f from A∗ to B such that for all elements a, b of A holds
f(〈a, b〉) = F(a, b)

for all values of the parameters.
One can prove the following propositions:

(64) Let Σ be a non empty non void many sorted signature, A be a non-empty
many sorted set indexed by the carrier of Σ, f be a many sorted function
from A# · the arity of Σ into A · the result sort of Σ, o be an operation
symbol of Σ, and d be a function from (A# · the arity of Σ)(o) into (A · the
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result sort of Σ)(o). Then f+·(o, d) is a many sorted function from A# ·the
arity of Σ into A · the result sort of Σ.

(65) Let Σ be a boolean correct non empty non void boolean signature and
A be a non-empty many sorted set indexed by the carrier of Σ. Then
there exists a strict algebra B over Σ with undefined values with defined
elements such that

(i) the defined sorts of B = A+· (the boolean sort of Σ, Boolean),
(ii) the undefined map of B = the defined sorts of B,
(iii) the sorts of B = succ (the defined sorts of B), and
(iv) B is boolean correct and undefined consequently.

Let Σ be a boolean correct non empty non void boolean signature. One can
verify that there exists a strict algebra over Σ with undefined values which is
boolean correct and undefined consequently and has defined elements and there
exists an algebra over Σ which is boolean correct and has defined elements.

Let Σ be a boolean correct non empty non void boolean signature and let
B be a non-empty algebra over Σ. The functor trueB yielding an element of B

from the boolean sort of Σ is defined as follows:

(Def. 37) trueB = (Den((the connectives of Σ)(1)(∈ the carrier’ of Σ),B))(∅).
Let p be an element of B from the boolean sort of Σ. The functor ¬p yields an
element of B from the boolean sort of Σ and is defined as follows:

(Def. 38) ¬p = (Den((the connectives of Σ)(2)(∈ the carrier’ of Σ),B))(〈p〉).
Let q be an element of B from the boolean sort of Σ. The functor p∧ q yielding
an element of B from the boolean sort of Σ is defined as follows:

(Def. 39) p ∧ q = (Den((the connectives of Σ)(3)(∈ the carrier’ of Σ),B))(〈p, q〉).
Let Σ be a boolean correct non empty non void boolean signature and let

B be a non-empty algebra over Σ. The functor falseB yielding an element of B

from the boolean sort of Σ is defined as follows:

(Def. 40) falseB = ¬ trueB .

Let p be an element of B from the boolean sort of Σ and let q be an element
of B from the boolean sort of Σ. The functor p∨ q yields an element of B from
the boolean sort of Σ and is defined by:

(Def. 41) p ∨ q = ¬(¬p ∧ ¬q).
The functor p⇒ q yielding an element of B from the boolean sort of Σ is defined
by:

(Def. 42) p⇒ q = ¬(p ∧ ¬q).
Let Σ be a boolean correct non empty non void boolean signature, let B be

a non-empty algebra over Σ, let p be an element of B from the boolean sort of
Σ, and let q be an element of B from the boolean sort of Σ. The functor p⇔ q

yielding an element of B from the boolean sort of Σ is defined by:

(Def. 43) p⇔ q = (p ∧ q) ∨ (¬p ∧ ¬q).
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The following proposition is true

(66) Let Σ be a boolean correct non empty non void boolean signature and
B be a boolean correct algebra over Σ with undefined values with defined
elements. Then

(i) trueB = true,
(ii) falseB = false, and

(iii) for all defined elements x, y of B from the boolean sort of Σ and for
all boolean numbers a, b such that a = x and b = y holds ¬x = ¬a and
x ∧ y = a ∧ b and x ∨ y = a ∨ b and x⇒ y = a⇒ b and x⇔ y = a⇔ b.

7. Algebra with Integers

Let i be a natural number, let s be a set, and let Σ be a boolean signature.
We say that Σ has integers with connectives from i and the sort at s if and only
if the conditions (Def. 44) are satisfied.

(Def. 44)(i) len (the connectives of Σ) ≥ i+ 6, and
(ii) there exists an element I of Σ such that I = s and I 6= the boolean sort

of Σ and (the connectives of Σ)(i) is of type ∅ → I and (the connectives of
Σ)(i+1) is of type ∅ → I and (the connectives of Σ)(i) 6= (the connectives
of Σ)(i + 1) and (the connectives of Σ)(i + 2) is of type 〈I〉 → I and
(the connectives of Σ)(i + 3) is of type 〈I, I〉 → I and (the connectives
of Σ)(i + 4) is of type 〈I, I〉 → I and (the connectives of Σ)(i + 5) is of
type 〈I, I〉 → I and (the connectives of Σ)(i + 3) 6= (the connectives of
Σ)(i+ 4) and (the connectives of Σ)(i+ 3) 6= (the connectives of Σ)(i+ 5)
and (the connectives of Σ)(i+ 4) 6= (the connectives of Σ)(i+ 5) and (the
connectives of Σ)(i+ 6) is of type 〈I, I〉 → the boolean sort of Σ.

The following proposition is true

(67) There exists an 10-connectives non empty non void strict boolean signa-
ture Σ such that

(i) Σ is 1-1-connectives and boolean correct and has integers with connec-
tives from 4 and the sort at 1,

(ii) the carrier of Σ = {0, 1}, and
(iii) there exists a sort symbol I of Σ such that I = 1 and (the connectives

of Σ)(4) is of type ∅ → I.

Let us mention that there exists a strict boolean signature which is 10-
connectives, 1-1-connectives, boolean correct, non empty, and non void and has
integers with connectives from 4 and the sort at 1.

Let Σ be a non empty non void boolean signature, let N be a set, and let I
be a sort symbol of Σ. We say that I is integer sort of N if and only if:

(Def. 45) I = N.



Program algebra over an algebra 329

Let Σ be a non empty non void boolean signature and let I be a sort symbol
of Σ. We say that I is integer if and only if:

(Def. 46) I is integer sort of 1.

Let Σ be a non empty non void boolean signature. Observe that every sort
symbol of Σ which is integer is also integer sort of 1 and every sort symbol of Σ
which is integer sort of 1 is also integer.

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1. One can verify that there exists a sort symbol
of Σ which is integer.

We now state the proposition

(68) Let Σ be a non empty non void boolean signature with integers with
connectives from 4 and the sort at 1 and I be an integer sort symbol of
Σ. Then I 6= the boolean sort of Σ and (the connectives of Σ)(4) is of
type ∅ → I and (the connectives of Σ)(4 + 1) is of type ∅ → I and (the
connectives of Σ)(4) 6= (the connectives of Σ)(4 + 1) and (the connectives
of Σ)(4 + 2) is of type 〈I〉 → I and (the connectives of Σ)(4 + 3) is of
type 〈I, I〉 → I and (the connectives of Σ)(4 + 4) is of type 〈I, I〉 → I and
(the connectives of Σ)(4 + 5) is of type 〈I, I〉 → I and (the connectives of
Σ)(4+3) 6= (the connectives of Σ)(4+4) and (the connectives of Σ)(4+3) 6=
(the connectives of Σ)(4 + 5) and (the connectives of Σ)(4 + 4) 6= (the
connectives of Σ)(4 + 5) and (the connectives of Σ)(4 + 6) is of type 〈I, I〉
→ the boolean sort of Σ.

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1, let A be a non-empty algebra over Σ, and let
I be an integer sort symbol of Σ. The functor 0IA yields an element of (the sorts
of A)(I) and is defined by:

(Def. 47) 0IA = (Den((the connectives of Σ)(4)(∈ the carrier’ of Σ),A))(∅).
The functor 1IA yields an element of (the sorts of A)(I) and is defined as follows:

(Def. 48) 1IA = (Den((the connectives of Σ)(5)(∈ the carrier’ of Σ),A))(∅).
Let a be an element of (the sorts of A)(I). The functor −a yielding an element
of (the sorts of A)(I) is defined as follows:

(Def. 49) −a = (Den((the connectives of Σ)(6)(∈ the carrier’ of Σ),A))(〈a〉).
Let b be an element of (the sorts of A)(I). The functor a+ b yielding an element
of (the sorts of A)(I) is defined as follows:

(Def. 50) a+ b = (Den((the connectives of Σ)(7)(∈ the carrier’ of Σ),A))(〈a, b〉).
The functor a · b yielding an element of (the sorts of A)(I) is defined as follows:

(Def. 51) a · b = (Den((the connectives of Σ)(8)(∈ the carrier’ of Σ),A))(〈a, b〉).
The functor a div b yielding an element of (the sorts of A)(I) is defined by:

(Def. 52) a div b = (Den((the connectives of Σ)(9)(∈ the carrier’ of Σ),A))(〈a, b〉).
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The functor leq(a, b) yielding an element of (the sorts of A)(the boolean sort of
Σ) is defined by:

(Def. 53) leq(a, b) = (Den((the connectives of Σ)(10)(∈ the carrier’ of Σ),A))(〈a,
b〉).

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1, let A be a non-empty algebra over Σ, let I be
an integer sort symbol of Σ, and let a, b be elements of A from I. The functor
a− b yields an element of A from I and is defined by:

(Def. 54) a− b = a+−b.
The functor a mod b yields an element of A from I and is defined by:

(Def. 55) a mod b = a+−(a div b) · b.
Let Σ be a non empty non void boolean signature with integers with con-

nectives from 4 and the sort at 1 and let X be a non-empty many sorted set
indexed by the carrier of Σ. One can verify that X(1) is non empty.

Let n be a natural number, let s be a set, let Σ be a boolean correct non
empty non void boolean signature, and let A be a boolean correct algebra over
Σ. We say that A has integers with connectives from n and the sort at s if and
only if the condition (Def. 56) is satisfied.

(Def. 56) There exists a sort symbol I of Σ such that
(i) I = s,

(ii) (the connectives of Σ)(n) is of type ∅ → I,
(iii) (the defined sorts of A)(I) = Z,
(iv) (Den((the connectives of Σ)(n)(∈ the carrier’ of Σ),A))(∅) = 0,
(v) (Den((the connectives of Σ)(n+1)(∈ the carrier’ of Σ),A))(∅) = 1, and
(vi) for all integers i, j holds (Den((the connectives of Σ)(n+ 2)(∈ the car-

rier’ of Σ),A))(〈i〉) = −i and (Den((the connectives of Σ)(n+3)(∈ the car-
rier’ of Σ),A))(〈i, j〉) = i+j and (Den((the connectives of Σ)(n+4)(∈ the
carrier’ of Σ),A))(〈i, j〉) = i · j and if j 6= 0, then (Den((the connectives of
Σ)(n + 5)(∈ the carrier’ of Σ),A))(〈i, j〉) = idiv j and (Den((the connec-
tives of Σ)(n+ 6)(∈ the carrier’ of Σ),A))(〈i, j〉) = (i > j → false, true).

Let Σ be a non empty non void boolean signature, let I be a set, let n be
a natural number, and let A be an algebra over Σ with undefined values with
defined elements. We say that A has division by 0 undefined with n and I if and
only if the condition (Def. 57) is satisfied.

(Def. 57) Let J be a sort symbol of Σ. Suppose I = J. Let a be a defined element
of (the sorts of A)(J). Then (Den((the connectives of Σ)(n + 5)(∈ the
carrier’ of Σ),A))(〈a, (Den((the connectives of Σ)(n)(∈ the carrier’ of Σ),
A))(∅)〉) = (the undefined map of A)(J).

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1 and let A be an algebra over Σ with undefined
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values with defined elements. We say that A has division by 0 undefined if and
only if:

(Def. 58) A has division by 0 undefined with 4 and 1.

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1 and let A be an algebra over Σ with undefined
values with defined elements. Let us observe that A has division by 0 undefined
if and only if the condition (Def. 59) is satisfied.

(Def. 59) Let I be an integer sort symbol of Σ and a be a defined element of (the
sorts of A)(I). Then adiv 0IA is undefined.

The following proposition is true

(69) Let n be a natural number and I be a set. Suppose n ≥ 1. Let Σ be
a boolean correct non empty non void boolean signature. Suppose Σ has
integers with connectives from n and the sort at I. Then there exists a
boolean correct strict algebra A over Σ with undefined values with defined
elements such that

(i) the undefined map of A = the defined sorts of A,
(ii) the sorts of A = succ (the defined sorts of A), and
(iii) A is undefined consequently and has integers with connectives from n

and the sort at I and division by 0 undefined with n and I.

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1. Note that there exists a
boolean correct strict algebra over Σ with undefined values with defined elements
which is undefined consequently and has integers with connectives from 4 and
the sort at 1 and division by 0 undefined.

One can prove the following proposition

(70) Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1, A be a boolean correct
algebra over Σ with undefined values with integers with connectives from
4 and the sort at 1 and defined elements, and I be an integer sort symbol
of Σ. Then

(i) (the defined sorts of A)(I) = Z,
(ii) 0IA = 0,
(iii) 1IA = 1, and
(iv) for all integers i, j and for all elements a, b of (the sorts of A)(I) such

that a = i and b = j holds −a = −i and a + b = i + j and a − b = i − j
and a · b = i · j and if j 6= 0, then adiv b = idiv j and a mod b = i mod j

and leq(a, b) = (i > j → false, true) and leq(a, b) = true iff i ≤ j and
leq(a, b) = false iff i > j.
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8. Algebras with Arrays

Let I, N be sets, let n be a natural number, and let Σ be a connectives
signature. We say that Σ has arrays of type I with connectives from n and
integers at N if and only if the conditions (Def. 60) are satisfied.

(Def. 60)(i) len (the connectives of Σ) ≥ n+ 3, and
(ii) there exist elements J , K, L of Σ such that L = I and K = N and

J 6= L and J 6= K and (the connectives of Σ)(n) is of type 〈J,K〉 → L and
(the connectives of Σ)(n+1) is of type 〈J,K,L〉 → J and (the connectives
of Σ)(n + 2) is of type 〈J〉 → K and (the connectives of Σ)(n + 3) is of
type 〈K,L〉 → J .

Next we state the proposition

(71) Let Σ1, Σ2 be non empty non void connectives signatures. Suppose the
connectives signature of Σ1 = the connectives signature of Σ2. Let I, N
be sets and n be a natural number such that Σ1 has arrays of type I with
connectives from n and integers at N . Then Σ2 has arrays of type I with
connectives from n and integers at N .

Let Σ be a non empty non void connectives signature, let I, N be sets, let
n be a natural number, and let A be an algebra over Σ with defined elements.
We say that A has arrays of type I with connectives from n and integers at N
if and only if the condition (Def. 61) is satisfied.

(Def. 61) There exist elements J , K of Σ such that
(i) K = I,

(ii) (the connectives of Σ)(n) is of type 〈J,N〉 → K,
(iii) (the defined sorts of A)(J) = (the defined sorts of A)(K)ω,
(iv) (the defined sorts of A)(N) = Z,
(v) for every 0-based finite array a of (the defined sorts of A)(K) holds

for every integer i such that i ∈ dom a holds (Den((the connectives of
Σ)n,A))(〈a, i〉) = a(i) and for every defined element x of A from K holds
(Den((the connectives of Σ)n+1,A))(〈a, i, x〉) = a +· (i, x) and (Den((the
connectives of Σ)n+2,A))(〈a〉) = a, and

(vi) for every integer i and for every defined element x of A from K such
that i ≥ 0 holds (Den((the connectives of Σ)n+3,A))(〈i, x〉) = i 7−→ x.

Let B be a non empty boolean signature and let C be a non empty connec-
tives signature. The functor B+·C yielding a strict boolean signature is defined
by the conditions (Def. 62).

(Def. 62)(i) The many sorted signature of B+·C = B+·C,
(ii) the boolean sort of B+·C = the boolean sort of B, and
(iii) the connectives of B+·C = (the connectives of B)a (the connectives of

C).

Next we state the proposition
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(72) Let B be a non empty boolean signature and C be a non empty connec-
tives signature. Then

(i) the carrier of B+·C = (the carrier of B) ∪ (the carrier of C),
(ii) the carrier’ of B+·C = (the carrier’ of B) ∪ (the carrier’ of C),
(iii) the arity of B+·C = (the arity of B)+·(the arity of C), and
(iv) the result sort of B+·C = (the result sort of B)+·(the result sort of

C).

Let B be a non empty boolean signature and let C be a non empty connec-
tives signature. Note that B+·C is non empty.

Let B be a non void non empty boolean signature and let C be a non empty
connectives signature. One can verify that B+·C is non void.

Let n1, n2 be natural numbers, let B be an n1-connectives non empty non
void boolean signature, and let C be an n2-connectives non empty non void
connectives signature. One can check that B+·C is n1 + n2-connectives.

One can prove the following proposition

(73) Let M , O be sets and N , I be sets. Suppose I, N ∈M. Then there exists
an 4-connectives non empty non void strict connectives signature C such
that

(i) C is 1-1-connectives and has arrays of type I with connectives from 1
and integers at N ,

(ii) M ⊆ the carrier of C,
(iii) O misses the carrier’ of C, and
(iv) (the result sort of C)((the connectives of C)(2)) 6∈M.

Let I, N be sets. Note that there exists a non empty non void strict connec-
tives signature which is 4-connectives and has arrays of type I with connectives
from 1 and integers at N .

The following propositions are true:

(74) Let n, m be natural numbers. Suppose m > 0. Let B be an n-connectives
non empty non void boolean signature, I, N be sets, and C be a non
empty non void connectives signature. Suppose C has arrays of type I

with connectives from m and integers at N . Then B+·C has arrays of
type I with connectives from n+m and integers at N .

(75) Let m be a natural number. Suppose m > 0. Let s be a set, B be a
non empty non void boolean signature, and C be a non empty non void
connectives signature. Suppose that

(i) B has integers with connectives from m and the sort at s, and
(ii) the carrier’ of B misses the carrier’ of C.

Then B+·C has integers with connectives from m and the sort at s.

(76) Let B be a boolean correct non empty non void boolean signature and
C be a non empty non void connectives signature. Suppose the carrier’ of
B misses the carrier’ of C. Then B+·C is boolean correct.
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Let n be a natural number and let B be a boolean signature. We say that
B is n-array correct if and only if:

(Def. 63) (The result sort of B)((the connectives of B)(n+ 1)) 6= the boolean sort
of B.

Let us note that there exists a strict boolean signature which is 1-1-
connectives, 14-connectives, 11-array correct, boolean correct, non empty, and
non void and has arrays of type 1 with connectives from 11 and integers at 1
and integers with connectives from 4 and the sort at 1.

Let Σ be a non empty non void boolean signature with arrays of type 1 with
connectives from 11 and integers at 1. Observe that there exists a sort symbol
of Σ which is integer.

Let Σ be a non empty non void boolean signature with arrays of type 1 with
connectives from 11 and integers at 1. The array sort of Σ yields a sort symbol
of Σ and is defined as follows:

(Def. 64) The array sort of Σ = (the result sort of Σ)((the connectives of Σ)(12)).

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1 and arrays of type 1 with connectives from 11
and integers at 1, let A be a non-empty algebra over Σ, let a be an element of
(the sorts of A)(the array sort of Σ), and let I be an integer sort symbol of Σ.
The functor lengthI a yields an element of (the sorts of A)(I) and is defined as
follows:

(Def. 65) lengthI a = (Den((the connectives of Σ)(13)(∈ the carrier’ of Σ),
A))(〈a〉).

Let i be an element of (the sorts of A)(I). The functor a(i) yields an element of
(the sorts of A)(I) and is defined by:

(Def. 66) a(i) = (Den((the connectives of Σ)(11)(∈ the carrier’ of Σ),A))(〈a, i〉).
Let x be an element of (the sorts of A)(I). The functor ai←x yielding an element
of (the sorts of A)(the array sort of Σ) is defined as follows:

(Def. 67) ai←x = (Den((the connectives of Σ)(12)(∈ the carrier’ of Σ),A))(〈a, i,
x〉).

Let Σ be a boolean correct non empty non void boolean signature, let I, s
be sets, let n, m be natural numbers, and let A be a non-empty algebra over Σ
with undefined values. We say that A has index overflow undefined with n, m,
I, and s if and only if the condition (Def. 68) is satisfied.

(Def. 68) Let J , K be sort symbols of Σ. Suppose I = J and s = K. Let a be a
defined element of (the sorts of A)(K) and i, x be defined elements of (the
sorts of A)(J). Suppose that

(i) (Den((the connectives of Σ)(n+ 6)(∈ the carrier’ of Σ),A))(〈(Den((the
connectives of Σ)(n)(∈ the carrier’ of Σ),A))(∅), i〉) = falseA, or
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(ii) (Den((the connectives of Σ)(n+ 6)(∈ the carrier’ of Σ),A))(〈(Den((the
connectives of Σ)(m+ 2)(∈ the carrier’ of Σ),A))(〈a〉), i〉) = trueA .

Then
(iii) (Den((the connectives of Σ)(m)(∈ the carrier’ of Σ),A))(〈a, i〉) = (the

undefined map of A)(J), and
(iv) (Den((the connectives of Σ)(m+1)(∈ the carrier’ of Σ),A))(〈a, i, x〉) =

(the undefined map of A)(K).

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and arrays of type 1 with
connectives from 11 and integers at 1 and let A be a non-empty algebra over Σ
with undefined values. We say that A has index overflow undefined if and only
if:

(Def. 69) A has index overflow undefined with 4, 11, 1, and the array sort of Σ.

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and arrays of type 1 with
connectives from 11 and integers at 1 and let A be a non-empty algebra over
Σ with undefined values. Let us observe that A has index overflow undefined if
and only if the condition (Def. 70) is satisfied.

(Def. 70) Let I be an integer sort symbol of Σ, a be a defined element of (the
sorts of A)(the array sort of Σ), and i, x be defined elements of (the sorts
of A)(I). If leq(0IA, i) = falseA or leq(lengthI a, i) = trueA, then a(i) is
undefined and ai←x is undefined.

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1 and arrays of type 1 with connectives from 11
and integers at 1, let A be a non-empty algebra over Σ, let I be an integer sort
symbol of Σ, let i be an element of (the sorts of A)(I), and let x be an element
of (the sorts of A)(I). The functor init.array(i, x) yielding an element of (the
sorts of A)(the array sort of Σ) is defined as follows:

(Def. 71) init.array(i, x) = (Den((the connectives of Σ)(14)(∈ the carrier’ of Σ),
A))(〈i, x〉).

Let X be a non empty set. One can check that 〈X〉 is non-empty. Let Y , Z
be non empty sets. One can verify that 〈X,Y, Z〉 is non-empty.

Let X be a functional non empty set, let Y , Z be non empty sets, and let f
be an element of

∏
〈X,Y, Z〉. Observe that f(1) is relation-like and function-like.

Let X be an integer-membered non empty set, let Y be a non empty set,
and let f be an element of

∏
〈X,Y 〉. Observe that f(1) is integer.

The following proposition is true

(77) Let I, N be sets, Σ be a non empty non void connectives signature with
arrays of type I with connectives from 1 and integers at N , Y be a non
empty set, and X be a non-empty many sorted set indexed by Y . Suppose
that
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(i) (the result sort of Σ)((the connectives of Σ)(2)) 6∈ Y or X((the result
sort of Σ)((the connectives of Σ)(2))) = X(I)ω,

(ii) X(N) = Z, and
(iii) I ∈ Y.

Then there exists a strict algebra A over Σ with undefined values with
defined elements such that

(iv) A has arrays of type I with connectives from 1 and integers at N ,
(v) the defined sorts of A ≈ X, and

(vi) for every 0-based finite array a of (the defined sorts of A)(I) and for
every integer i such that i 6∈ dom a holds (Den((the connectives of Σ)(1)(∈
the carrier’ of Σ),A))(〈a, i〉) = (the undefined map of A)(I) and for every
element x of (the defined sorts of A)(I) holds (Den((the connectives of
Σ)(2)(∈ the carrier’ of Σ),A))(〈a, i, x〉) = (the undefined map of A)(the
result sort of (the connectives of Σ)(2)(∈ the carrier’ of Σ)).

Let I, N be sets and let Σ be a non empty non void connectives signature
with arrays of type I with connectives from 1 and integers at N . One can verify
that there exists a strict algebra over Σ with undefined values with defined
elements which has arrays of type I with connectives from 1 and integers at N .

Let Σ1 be a non empty non void boolean signature, let Σ2 be a non empty
non void connectives signature, let A1 be an algebra over Σ1 with undefined
values with defined elements, and let A2 be an algebra over Σ2 with undefined
values with defined elements. Let us assume that the sorts of A1 ≈ the sorts
of A2 and the undefined map of A1 ≈ the undefined map of A2. The functor
A1Σ1+·Σ2A2 yields a strict algebra over Σ1+·Σ2 with undefined values with
defined elements and is defined by the conditions (Def. 72).

(Def. 72)(i) The sorts of A1Σ1+·Σ2A2 = (the sorts of A1)+·(the sorts of A2),
(ii) the characteristics of A1Σ1+·Σ2A2 = (the characteristics of A1)+·(the

characteristics of A2), and
(iii) the undefined map of A1Σ1+·Σ2A2 = (the undefined map of A1)+·(the

undefined map of A2).

The following propositions are true:

(78) Let B, C be non empty non void connectives signatures, A1 be an algebra
over B with undefined values with defined elements, and A2 be an algebra
over C with undefined values with defined elements. Suppose the sorts of
A1 ≈ the sorts of A2 and the undefined map of A1 ≈ the undefined map
of A2. Then the defined sorts of A1 ≈ the defined sorts of A2.

(79) Let B be a non empty non void boolean signature, A1 be an algebra over
B with undefined values with defined elements, C be a non empty non void
connectives signature, and A2 be an algebra over C with undefined values
with defined elements. Suppose the sorts of A1 ≈ the sorts of A2 and the
undefined map of A1 ≈ the undefined map of A2. Then the defined sorts
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of A1B+·CA2 = (the defined sorts of A1)+·(the defined sorts of A2).

(80) Let B be a boolean correct non empty non void boolean signature, A1

be a boolean correct algebra over B with undefined values with defined
elements, and C be a non empty non void connectives signature. Suppose
the carrier’ of B misses the carrier’ of C. Let A2 be an algebra over C with
undefined values with defined elements. Suppose the sorts of A1 ≈ the
sorts of A2 and the undefined map of A1 ≈ the undefined map of A2.
Then A1B+·CA2 is boolean correct.

(81) Let n be a natural number and I be a set. Suppose n ≥ 4. Let B be
a boolean correct non empty non void boolean signature. Suppose B has
integers with connectives from n and the sort at I. Let A1 be a boolean
correct algebra over B with undefined values with defined elements. Sup-
pose A1 has integers with connectives from n and the sort at I. Let C
be a non empty non void connectives signature. Suppose the carrier’ of
B misses the carrier’ of C. Let A2 be an algebra over C with undefined
values with defined elements. Suppose the sorts of A1 ≈ the sorts of A2

and the undefined map of A1 ≈ the undefined map of A2. Let Σ be a bo-
olean correct non empty non void boolean signature. Suppose the boolean
signature of Σ = B+·C. Let A be a boolean correct algebra over Σ with
undefined values with defined elements. Suppose the algebra of A with
undefined values = A1B+·CA2. Then

(i) A has integers with connectives from n and the sort at I, and
(ii) if A1 has division by 0 undefined with n and I, then A has division by

0 undefined with n and I.

(82) Let n, m be natural numbers and s, r be sets. Suppose n ≥ 1 and m ≥ 1.
Let B be an m-connectives non empty non void boolean signature, A1 be
an algebra over B with undefined values with defined elements, and C be
a non empty non void connectives signature. Suppose that

(i) the carrier’ of B misses the carrier’ of C, and
(ii) C has arrays of type s with connectives from n and integers at r.

Let A2 be an algebra over C with undefined values with defined elements.
Suppose that

(iii) the sorts of A1 ≈ the sorts of A2,
(iv) the undefined map of A1 ≈ the undefined map of A2, and
(v) A2 has arrays of type s with connectives from n and integers at r.

Let Σ be a non empty non void boolean signature. Suppose the boolean
signature of Σ = B+·C. Let A be an algebra over Σ with undefined values
with defined elements. Suppose the algebra of A with undefined values
= A1B+·CA2. Then

(vi) A has arrays of type s with connectives from m+ n and integers at r,
and
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(vii) if the characteristics of A1 ≈ the characteristics of A2 and B ≈ C and
A1 is undefined consequently and A2 is undefined consequently, then A is
undefined consequently.

(83) Let n, n1, m be natural numbers and r be a set. Suppose n ≥ 1 and
n1 ≥ 4. Let B be a boolean correct non empty non void boolean signature.
Suppose B is m-connectives. Let A1 be a boolean correct algebra over B
with undefined values with defined elements. Suppose that

(i) B has integers with connectives from n1 and the sort at r, and
(ii) A1 has integers with connectives from n1 and the sort at r.

Let C be a non empty non void connectives signature. Suppose that
(iii) the carrier’ of B misses the carrier’ of C, and
(iv) C has arrays of type r with connectives from n and integers at r.

Let A2 be an algebra over C with undefined values with defined elements.
Suppose that

(v) the sorts of A1 ≈ the sorts of A2,
(vi) the undefined map of A1 ≈ the undefined map of A2, and
(vii) A2 has arrays of type r with connectives from n and integers at r.

Let Σ be a boolean correct non empty non void boolean signature. Sup-
pose the boolean signature of Σ = B+·C. Let A be a boolean correct
algebra over Σ with undefined values with defined elements such that the
algebra of A with undefined values = A1B+·CA2 and for every 0-based
finite array a of Z and for every integer i such that i 6∈ dom a holds
(Den((the connectives of C)(n)(∈ the carrier’ of C),A2))(〈a, i〉) = (the
undefined map of A2)(r) and for every integer x holds (Den((the connecti-
ves of C)(n+ 1)(∈ the carrier’ of C),A2))(〈a, i, x〉) = (the undefined map
of A2)(the result sort of (the connectives of C)(n+1)(∈ the carrier’ of C)).
Then A has index overflow undefined with n1, n + m, r, and the result
sort of the connectives of Σ(n+m+ 1)(∈ the carrier’ of Σ).

(84) Let n be a natural number, s be a set, and Σ1, Σ2 be boolean signatures.
Suppose that

(i) the boolean sort of Σ1 = the boolean sort of Σ2,
(ii) len (the connectives of Σ2) ≥ 3, and

(iii) for every i such that i ≥ 1 and i ≤ 3 holds (the arity of Σ1)((the
connectives of Σ1)(i)) = (the arity of Σ2)((the connectives of Σ2)(i)) and
(the result sort of Σ1)((the connectives of Σ1)(i)) = (the result sort of
Σ2)((the connectives of Σ2)(i)).
If Σ1 is boolean correct, then Σ2 is boolean correct.

(85) Let n be a natural number, s be a set, and Σ1, Σ2 be non empty bo-
olean signatures. Suppose that n ≥ 1 and the boolean sort of Σ1 = the
boolean sort of Σ2 and len (the connectives of Σ2) ≥ n + 6 and (the con-
nectives of Σ2)(n) 6= (the connectives of Σ2)(n + 1) and (the connecti-
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ves of Σ2)(n + 3) 6= (the connectives of Σ2)(n + 4) and (the connectives
of Σ2)(n + 3) 6= (the connectives of Σ2)(n + 5) and (the connectives of
Σ2)(n+4) 6= (the connectives of Σ2)(n+5) and for every i such that i ≥ n
and i ≤ n + 6 holds (the arity of Σ1)((the connectives of Σ1)(i)) = (the
arity of Σ2)((the connectives of Σ2)(i)) and (the result sort of Σ1)((the con-
nectives of Σ1)(i)) = (the result sort of Σ2)((the connectives of Σ2)(i)).
Suppose Σ1 has integers with connectives from n and the sort at s. Then
Σ2 has integers with connectives from n and the sort at s.

(86) Let n, m be natural numbers, s, r be sets, and Σ1, Σ2 be non empty
connectives signatures. Suppose that

(i) 1 ≤ n,
(ii) len (the connectives of Σ1) ≥ n+ 3, and
(iii) for every i such that i ≥ n and i ≤ n + 3 holds (the arity of Σ1)((the

connectives of Σ1)(i)) = (the arity of Σ2)((the connectives of Σ2)(i+m))
and (the result sort of Σ1)((the connectives of Σ1)(i)) = (the result sort
of Σ2)((the connectives of Σ2)(i+m)).
Suppose Σ2 has arrays of type s with connectives from n+m and integers
at r. Then Σ1 has arrays of type s with connectives from n and integers
at r.

(87) Let j, k be sets and i, m, n be natural numbers. Suppose m ≥ 4 and
m + 6 ≤ n and i ≥ 1. Let Σ be a 1-1-connectives boolean correct non
empty non void boolean signature. Suppose that
then there exists a boolean correct non empty non void boolean signature
B and there exists a non empty non void connectives signature C such
that
the boolean signature of Σ = B+·C and B is n-connectives and has inte-
gers with connectives from m and the sort at k and C has arrays of type j
with connectives from i and integers at k and the carrier of B = the carrier
of C and the carrier’ of B = (the carrier’ of Σ)\ rng (the connectives of C)
and the carrier’ of C = rng (the connectives of C) and the connectives of
B = (the connectives of Σ)�n and the connectives of C = (the connectives
of Σ)�n.

(88) Let s, I be sets and Σ be a boolean correct non empty non void boolean
signature. Suppose Σ has integers with connectives from 4 and the sort
at I. Let X be a non empty set. Suppose s ∈ the carrier of Σ and s 6= I

and s 6= the boolean sort of Σ. Then there exists a boolean correct strict
algebra A over Σ with undefined values with defined elements such that

(i) the undefined map of A = the defined sorts of A,
(ii) the sorts of A = succ (the defined sorts of A),

(iii) A is undefined consequently and has integers with connectives from 4
and the sort at I,
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(iv) (the defined sorts of A)(s) = X, and
(v) A has division by 0 undefined with 4 and I.

Let Σ be a 1-1-connectives 11-array correct boolean correct non empty non
void boolean signature with arrays of type 1 with connectives from 11 and
integers at 1 and integers with connectives from 4 and the sort at 1. One can
check that there exists a boolean correct strict algebra over Σ with undefined
values with defined elements which is undefined consequently and has arrays
of type 1 with connectives from 11 and integers at 1, integers with connectives
from 4 and the sort at 1, division by 0 undefined, and index overflow undefined.
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